Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 182000 dokumen yang sesuai dengan query
cover
Muhamad Rafli
"Nanofluida merupakan campuran antara nanopartikel 1-100 nm dan fluida yang dapat memberikan peningkatan karakteristik dari suatu media, salah satunya adalah konduktivitas termal. adanya peningkatan sifat tersebut, maka nanofluida dapat diaplikasikan pada heat transfer, salah satunya adalah sebagai media pendingin pada perlakuan panas material. Pada penelitian ini membahas penggunaan nanofluida sebagai media pendingin pada perlakuan panas baja S45C dengan menggunakan nanofluida yang disintesis dari campuran air distilasi dan partikel karbon biomassa dari arang batok kelapa. Sintesis partikel karbon biomassa yang berasal dari karbon komersil yang dilakukan proses wet milling dengan planetary ball mill dan penambahan lubrikan berupa air ketika proses milling dengan variabel kecepatan milling 250; 500; dan 750 rpm serta variabel waktu milling 10; 15; dan 20 jam. Kemudian sintesis nanofluida dengan pendispersian 0,1% w/v partikel karbon biomassa didalam 100 ml air distilasi dan 3% w/v SDBS. Hasil pengujian Particle Size Analyzer (PSA) pada partikel menunjukkan adanya peningkatan ukuran partikel dari 1771 d.nm menjadi 1949 d.nm dan ukuran partikel terkecil adalah 1013 d.nm. Ukuran partikel yang dihasilkan tidak mencapai ukuran nano sehingga fluida termasuk kedalam thermal fluids. Nilai konduktivitas termal mengalami peningkatan secara tidak linear seiring menurunnya ukuran partikel, dengan nilai konduktivitas termal tertinggi adalah 0,83 W/moC. Untuk validasi, Baja dilakukan pemanasan pada suhu 900oC dengan suhu penahanan selama 1 jam, dan dilakukan pendinginan cepat dengan thermal fluids. Hasil pengamatan struktur mikro pada baja menunjukkan fasa martensite dan bainite setelah dilakukan pendinginan cepat, dan nilai kekerasan tertinggi hasil dari pendinginan cepat dengan media pendingin thermal fluids adalah 52 HRC.

Nanofluid is a mixture of 1-100 nm nanoparticles and a fluid that can improve the characteristics of a medium, one of which is thermal conductivity. With the increase in these properties, nanofluids can be applied to heat transfer, for instance, as a cooling medium for heat treatment materials. In this study, we will discuss the use of nanofluids as a cooling medium in the heat treatment of S45C steel using synthesized nanofluids from a mixture of distilled water and biomass carbon particles from coconut shells charcoal. Carbon particles from commercial carbon using a wet milling process to reduce size with a planetary ball mill and the addition of water as a lubricant during the milling process, with a variable milling speed of 250; 500; and 750 rpm and milling time variable 10; 15; and 20 hours. Then the synthesis of nanofluids by dispersing 0.1% w/v biomass carbon particles in 100 ml of distilled water and 3% w/v SDBS. The results of the Particle Size Analyzer (PSA) test showed an increase in particle size from 1771 d.nm to 1949 d.nm and the smallest particle size being 1013 d.nm. Particles do not reach nano size so the fluid is categorized as a thermal fluid . The thermal conductivity value increased non-linearly as the particle size decreased, with the highest thermal conductivity value being 0.83 W/moC . The steels were heated at 900oC with a holding temperature for 1 hour and fast cooling with nanofluids. The results of microstructure observation of the steel showed the martensitic and bainitic phase after rapid cooling, and the highest hardness value from heat treatment and rapid cooling with thermal fluid cooling media was 52 HRC."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aulia Tri Vanindita
"Meningkatnya penelitian akan nanofluida berbasis karbon mengakibatkan adanya dorongan untuk mengembangkan nanofluida alternatif yang memiliki harga yang relatif lebih rendah, yaitu nanofluida berbasis partikel karbon yang berasal dari karbon biomassa. Penelitian ini dilakukan untuk mempelajari kondisi optimum pada proses pendinginan baja S45C dengan melihat pengaruh media quench nanofluida berbasis partikel karbon dari arang batok kelapa hasil dry milling menggunakan parameter waktu milling dan kecepatan milling yang bervariasi. Variasi waktu milling yang digunakan yaitu 10, 15, dan 20 jam, sedangkan variasi kecepatan milling yaitu 250, 500, dan 750 rpm. Nanofluida disintesis melalui metode dua tahap, yaitu dengan memproduksi partikel terlebih dahulu melalui proses dry milling, kemudian 0.1% w/v partikel hasil milling didispersikan ke dalam 100 ml air distilasi dengan menambahkan 3% w/v surfaktan SDBS. Pada penelitian ini partikel karbon dikarakterisasi menggunakan pengujian SEM, EDS, dan PSA. Nanofluida dikarakterisasi menggunakan pengujian konduktivitas termal, zeta potensial, dan viskositas. Sampel baja S45C dikarakterisasi menggunakan pengujian OES, uji kekerasan Rockwell, dan pengamatan mikrostruktur. Hasil yang didapatkan dari penelitian bahwa ukuran partikel mengalami peningkatan seiring dengan peningkatan waktu milling pada kecepatan milling 250 dan 500 rpm. Sedangkan pada kecepatan milling 750 rpm mengalami penurunan ukuran partikel. Ukuran partikel terendah diperoleh oleh sampel dengan parameter milling 10 jam/500 rpm, yaitu sebesar 700.5 d.nm. Ukuran partikel tersebut tidak masuk dalam rentang nanopartikel sehingga fluida pendingin yang difabrikasi dikategorikan sebagai thermal fluids. Nilai konduktivitas termal dan viskositas mengalami peningkatan secara tidak linear seiring dengan menurunnya ukuran partikel. Nilai konduktivitas dan viskositas tertinggi secara berurutan adalah sebesar 0.75 W/m.℃ dan 1.12 mPa.s pada thermal fluids 500 rpm/10 jam. Hasil pengamatan mikrostruktur dan kekerasan Rockwell menunjukkan bahwa sampel baja 250 rpm/10 jam dan 500 rpm/10 jam memiliki kekerasan tertinggi sebesar 52 HRC dengan fasa yang didominasi oleh martensite dan bainite.

The increased research on carbon-based nanofluids has resulted in an impetus to develop alternative nanofluids with relatively lower prices, namely nanofluids based on carbon nanoparticles derived from biomass carbon. This research was conducted to study the optimum conditions in the cooling process of S45C steel by looking at the effect of quench nanofluids based on carbon particles from dry milled coconut shell charcoal using various milling times and milling speed parameters. The variation of milling times used are 10, 15, and 20 hours, while the variation of milling speeds are 250, 500, and 750 rpm. Nanofluid was synthesized through a two-step method, first by producing particles through a dry milling process, then 0.1% w/v milled particles were dispersed into 100 ml of distilled water by adding 3% w/v SDBS surfactant. In this study, carbon particles were characterized using SEM, EDS, and PSA. Nanofluids were characterized using thermal conductivity, zeta potential, and viscosity. S45C steel samples were characterized using OES, Rockwell hardness test, and microstructural observations. The results obtained from the research show that the particle size will increase with increasing milling time at milling speeds of 250 and 500 rpm. Meanwhile, at a milling speed of 750 rpm, the particle size decreases with increasing milling time. The sample obtained the smallest particle size with a parameter of 10 hours/500 rpm, which was 700.5 nm. The particle size is not included in the nanoparticle range, therefore the fabricated cooling fluids are categorized as thermal fluids. The thermal conductivity and viscosity value increase non-linearly as the particle size decreases. The highest conductivity and viscosity values, respectively, were 0.75 W/m.℃ and 1.12 mPa.s at 500 rpm/10 hour thermal fluids. The results of microstructures and hardness observations showed that the steel sample at 250 rpm/10 hours and 500 rpm/10 hours had the highest hardness of 52 HRC with a phase dominated by martensite and bainite."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Safira Salmadewi
"Pada perkembangan teknologi terbaru dilakukan penambahan nanopartikel ke dalam media quench untuk meningkatkan konduktivitas termal dalam perpindahan panas yang disebut sebagai nanofluida. Pembuatan nanofluida diawali dengan milling partikel biomassa karbon batok kelapa selama 15 jam dengan kecepatan 500 rpm untuk mereduksi ukuran, kemudian nanopartikel tersebut dengan konsentrasi 0,1%w/v, 0,3%w/v dan 0,5%w/v didispersikan ke dalam fluida dasar oli 5W-40 menggunakan ultrasonikasi, baik tanpa penambahan surfaktan maupun dengan penambahan surfaktan Sodium Dodecylbenzene Sulfonate (SDBS), Cetyl Trimethyl Ammonium Bromide (CTAB), atau Polyethylene glycol (PEG) sebanyak 3%w/v untuk meningkatkan stabilitas. Proses perlakuan panas dilakukan dengan memanaskan baja karbon S45C hingga suhu 900 ̊C kemudian di quench menggunakan media quench berupa nanofluida karbon batok kelapa. Karakterisasi nanopartikel dilakukan dengan SEM, EDS dan PSA, selanjutnya karakterisasi nanofluida dilakukan dengan pengujian zeta potensial, viskositas dan konduktivitas termal, sedangkan Baja S45C dikarakterisasi dengan OES, kekerasan dan struktur mikro. Secara garis besar terjadi penurunan konduktivitas termal nanofluida dengan meningkatnya konsentrasi nanopartikel. Konduktivitas termal tertinggi dimiliki oleh nanofluida dengan konsentrasi 0,3%w/v dengan penambahan surfaktan CTAB dengan nilai 0,173 W/mK. Setelah dilakukan heat treatment pada baja S45C menggunakan media quench nanofluida dapat diamati peningkatan kekerasan, namun penggunaan konsentrasi nanopartikel yang berlebih dapat menyebabkan terjadinya aglomerasi sehingga saat nanofluida tersebut digunakan sebagai media quench dapat menurunkan kekerasan baja S45C. Kekerasan tertinggi dimiliki oleh baja S45C yang di quench menggunakan nanofluida dengan konsentrasi 0,1%w/v serta penambahan surfaktan SDBS maupun PEG dengan nilai kekerasan keduanya 0,36 HRC. Nanofluida dengan konduktivitas termal tertinggi sebagai media quench tidak menunjukan hasil kekerasan yang tertinggi pada baja S45C.

In the latest technological developments, nanoparticles are added to the quench media to increase thermal conductivity in heat transfer, which is known as nanofluid. The fabrication of nanofluids starts with milling coconut shell carbon biomass nanoparticles for 15 hours at 500 rpm to reduce their particle size, then the nanoparticles with concentrations of 0.1%w/v, 0.3%w/v, and 0.5%w/v respectively are dispersed into 5W-40 as base fluid using ultrasonication, either without the addition of surfactants or with the addition of the surfactant Sodium Dodecylbenzene Sulfonate (SDBS), Cetyl Trimethyl Ammonium Bromide (CTAB), Polyethylene glycol (PEG) with a concentration of 3%w/v to increase the stability. The heat treatment process is carried out by heating S45C carbon steel to a temperature of 900°C and then quenched with coconut shell carbon nanofluid as a quench media. Nanoparticles are characterized with SEM, EDS, and PSA, then the nanofluids are characterized by testing the zeta potential, viscosity, and thermal conductivity, while S45C steel was characterized by OES, hardness and microstructure observations. In general, the thermal conductivity of nanofluids decreases with the increasing concentration of nanoparticles. The highest thermal conductivity value was obtained by nanofluids with a concentration of 0.3%w/v with the addition of CTAB surfactant, which the value is 0.173 W/mK. After heat treatment of S45C steel using nanofluid as media quench, an increase of hardness in S45C steel can be observed, but the use of an excessive concentration of nanoparticles can cause agglomeration of nanoparticles in nanofluid so that when nanofluid is used as a quenching medium it can reduce the hardness of S45C steel. S45C steel which is quenched using nanofluid with a concentration of 0.1% w/v with the addition of SDBS or PEG surfactants has the highest hardness and the value is 0.36 HRC. The highest thermal conductivity in nanofluid didn’t show the highest hardness value of S45C steel after quench."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ghina Almas Afnany
"Kekerasan yang tinggi pada sebuah material dapat dicapai dengan melakukan proses perlakuan panas menggunakan media quench yang memiliki nilai konduktivitas termal yang tinggi, seperti nanofluida. Pada penelitian ini, nanofluida berbasis CNT disintesis menggunakan metode 2 tahap, yaitu dengan mendispersikan CNT dengan konsentrasi sebesar 0,1%, 0,3%, dan 0,5% ke dalam fluida dasar berupa air distilasi yang kemudian ditambahkan surfaktan Cetyl Trimethylammonium Bromide (CTAB) sebanyak 0%, 3%, 5%, dan 7% untuk meningkatkan stabilitasnya, lalu dilakukan ultrasonikasi. Nanofluida tersebut kemudian digunakan sebagai media quench pada sampel baja S45C. Proses perlakuan panas dilakukan dengan memanaskan baja hingga suhu 900ºC kemudian di quenching. Baja hasil quenching diamati mikrostrukturnya dan dihitung nilai kekerasannya. Konduktivitas termal nanofluida mengalami penurunan saat digunakan surfaktan CTAB 3%, lalu mengalami peningkatan saat digunakan surfaktan CTAB 5%, dan menurun kembali saat digunakan surfaktan CTAB 7% dengan nilai konduktivitas termal tertinggi diperoleh oleh sampel nanofluida pada konsentrasi CNT 0,3% dengan surfaktan CTAB 5%, yaitu sebesar 0,72 W/mK. Sementara nilai kekerasan tertinggi untuk baja yang di quenching dengan nanofluida adalah sebesar 39 HRC, yaitu ketika digunakan konsentrasi 0,1% CNT tanpa penambahan surfaktan.

High hardness of a material can be achieved by doing heat treatment using a quench medium that has a high thermal conductivity value, such as nanofluids. In this study, CNT-based nanofluids were synthesized using a 2-step method, which by dispersing CNT with concentrations of 0.1%, 0.3%, and 0.5% into the base fluid in the form of distilled water which was then added with surfactant Cetyl Trimethylammonium Bromide (CTAB) as much as 0%, 3%, 5%, and 7% to increase their stability, then ultrasonication was performed. The nanofluid was then used as a quench medium for the S45C steel sample. The heat treatment process is carried out by heating the steel to a temperature of 900ºC then quench it. The quenched steel was observed for its microstructure and the hardness was calculated. The thermal conductivity of nanofluids decreased when 3% CTAB surfactant was used, increased when 5% CTAB surfactant was used, and decreased when 7% CTAB surfactant was used with the highest thermal conductivity value obtained by nanofluid samples at 0.3% CNT concentration with 5% CTAB surfactant, which the value is 0.72 W/mK. Meanwhile, the highest hardness value for steel quenched with nanofluids was 39 HRC, when 0.1% CNT was used without the addition of surfactants."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Diffa Sthasyant Nauvalin
"Quenchant dengan konduktivitas termal tinggi dapat meningkatkan laju
pendinginan, sehingga didapat hasil perlakuan panas dengan sifat mekanis yang lebih
baik. Salah satu cara meningkatkan konduktivitas termal adalah dengan membuat
nanofluida. Pada penelitian ini, digunakan nanopartikel berupa Multi-walled Carbon
Nanotubes (MWCNT) as-received. Nanofluida berbasis CNT disintesis menggunakan
metode dua tahap. CNT dengan konsentrasi sebesar 0,1%, 0,3%, dan 0,5%
didispersikan pada fluida dasar berupa air distilasi. Untuk meningkatkan stabilitas
nanofluida, ditambahkan surfaktan Sodium Dodecyl Benzene Sulphonate (SDBS)
sebanyak 3%, 5%, dan 7% serta dilakukan ultrasonikasi selama 15 menit. Nanofluida
tersebut digunakan sebagai quenchant dengan lama imersi 4 menit untuk proses
perlakuan panas baja S45C dengan temperatur austenisasi sebesar 900˚C. Hasil
penelitian menunjukkan bahwa konduktivitas termal nanofluida meningkat seiring
dengan penambahan konsentrasi CNT, kecuali pada sampel tanpa penambahan
surfaktan. Seiring penambahan surfaktan, konduktivitas termal meningkat hingga
mencapai kadar optimum dan kemudian menurun, kecuali pada sampel dengan
penambahan surfaktan sebanyak 3%. Nilai kekerasan baja S45C hasil quenching tidak
dipengaruhi secara linear oleh konduktivitas termal quenchant.

Quenchant with high thermal conductivity could increase the cooling rate;
hence heat treatment results with better mechanical properties are obtained. One
method to increase the thermal conductivity is by creating nanofluids. In this study,
Multi-walled Carbon Nanotubes (MWCNT) as-received were used as nanoparticles.
The CNT-based nanofluids were synthesized using the two-step method. CNTs with
concentrations of 0.1%, 0.3%, and 0.5% were dispersed to the base fluid, distilled
water. To increase the stability of the nanofluids, Sodium Dodecyl Benzene Sulphonate
(SDBS) surfactants as much as 3%, 5%, and 7% were added; further, ultrasonication
was carried out for 15 minutes. The nanofluids were used as quenchants with an
immersion time of 4 minutes for the heat treatment process of S45C steel with an
austenitizing temperature of 900˚C. The results showed that the thermal conductivity of
nanofluids increased with the addition of CNT concentration, except for samples
without the addition of surfactants. On the other side, as more surfactants were added,
the thermal conductivity increased until it reached the optimum level and then
decreased, except for samples with 3% surfactant. The hardness values of quenched
S45C steels are not linearly affected by the thermal conductivity of the quenchants.
"
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Faradila Khairani
"Pada proses perlakuan panas baja, tahap pendinginan merupakan tahapan krusial yang menentukan kekerasan dari baja tersebut. Pada proses ini dibutuhkannya media pendingin yang dapat memberikan laju pendinginan yang tinggi seperti thermal fluids. Pada penelitian ini, digunakan partikel Multi-Walled Carbon Nanotube (MWCNT) yang berukuran 5820 d.nm dengan oli 5W-40. Proses sintesis thermal fluids dilakukan dengan metode dua-tahap yaitu dengan mencampurkan variasi konsentrasi partikel sebesar 0,1 w/v%; 0,3 w/v%; dan 0,5 w/v% ke dalam fluida, yang selanjutnya ditambahkan dengan variasi surfaktan yaitu SDBS, PEG, dan CTAB sebesar 3 w/v% untuk meningkatkan kestabilannya. Thermal fluids kemudian dilakukan karakterisasi untuk mengetahui kestabilan, viskositas, dan konduktifitas termalnya. Selanjutnya akan digunakan baja S45C yang diberi perlakuan panas dengan cara memanaskan baja hingga temperature 900oC dengan waktu penahanan (holding time) selama satu jam, yang kemudian dilakukan pendinginan pada media pendingin nanofluida. Baja hasil pendinginan kemudian dilakukan pengujian mikrostruktur dan kekerasannya. Secara keseluruhan karakterisasi thermal fluids dengan MWCNT, penggunaan surfaktan CTAB memberikan hasil yang paling optimal pada kestabilan, viskositas, dan konduktifitas termal dari thermal fluids, yaitu 74,6mV, 138,6 cP, and 0,17 Wm-1C-1 secara berurutan. Kekerasan tertinggi baja yang dapat dicapai pada thermal fluids dengan MWCNT yaitu dengan penggunaan surfaktan dimana nilai kekerasan berkisar di 28 HRC.

In the heat treatment process of steel, the cooling (quenching) stage is a crucial step that determines the hardness of the steel. This step requires a quenching medium that can provide a high cooling rate such as thermal fluids. In this research, thermal fluids using Multi-Walled Carbon Nanotubes (MWCNT) particles with a size of 5820 d.nm and 5w-40 oil were used. The thermal fluids synthesis process was carried out by the two-step method, mixing variations of 0,1 w/v%; 0,3 w/v%; and 0,5 w/v% particle into the fluid, then adding them with variations of 3 w/v% surfactants namely SDBS, PEG, and CTAB to increase stability. The thermal fluids were then characterized to determine their stability, viscosity, and thermal conductivity. Furthermore, S45C steel will be used, and heat treated to a temperature of 900oC with a holding time of one hour, which then quenched in a nanofluid cooling medium. The quenched steel is then tested for its microstructure and hardness. Overall, the use of CTAB surfactants gave the most optimal results on the stability, viscosity, and thermal conductivity of thermal fluids, which is 74,6mV, 138,6 cP, and 0,17 Wm-1C-1consecutively. The highest hardness of steel can be achieved in thermal fluids with surfactants (PEG, SDBS, and CTAB) where the hardness values range around 28 HRC."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Valleta Jovanka Widodo
"Seiring dengan berkembangnya teknologi baru dengan beban termal yang terus meningkat, penciptaan cairan inovatif untuk meningkatkan kinerja pendinginan dan mencapai perpindahan panas yang efisien seperti fluida termal sangat dibutuhkan. Dalam penelitian ini, karbon berbasis kelapa menjalani planetary ball milling selama 15 jam pada 500 rpm untuk menghasilkan nanopartikel, meskipun sayangnya tidak mencapai ukuran nano. Partikel berbasis karbon kelapa (CCP) dengan konsentrasi 0,1%, 0,3% dan 0,5% didispersikan ke dalam akuades untuk termal fluida termal berbasis karbon kelapa. Penambahan surfaktan Sodium Dodecyl Benzene Sulphonate (SDBS) sebanyak 3%, 5%, dan 7% dilakukan dan dilanjut dengan ultrasonikasi selama 16 menit. Selanjutnya, cairan termal karbon kelapa digunakan sebagai quenchant baja S45C. Dalam penelitian ini, campuran partikel dan surfaktan yang optimum untuk menghasilkan fluida termal yang efisien adalah konsentrasi CCP 0,5% dengan surfaktan SDBS 3%. Nilai konduktivitas termal mencapai 0,7 w/mK dan menghasilkan nilai kekerasan 54 HRC. Secara bersamaan, tanpa surfaktan, penambahan partikel yang optimal adalah 0,3%. Pada akhirnya, fluida termal berbasis karbon kelapa cenderung menghasilkan konduktivitas termal yang lebih tinggi dibandingkan dengan air dengan pengaruh terutama dari nilai kritis partikel, konsentrasi SDBS, dan suhu.

As new technologies with increasing thermal loads continuously developed, the creation of an innovative fluid to increase cooling performance and achieve an efficient heat transfer such as thermal fluid is urgently needed. In this study, coconut-based carbon underwent planetary ball milling for 15 hours in 500 rpm to create nanoparticles, although unfortunately it did not reach nano-sized. Coconut carbon-based particles (CCP) with 0.1%, 0.3% and 0.5% concentrations were dispersed into distilled water to create coconut carbon-based thermal fluids. An addition of Sodium Dodecyl Benzene Sulphonate (SDBS) surfactants as much as 3%, 5%, and 7% were added, concurrent with ultrasonication that was carried out for 16 minutes. Furthermore, coconut carbon-thermal fluids were used as quenchants of S45C steel. In this research, the optimum mixture of particles and surfactant to create an efficient thermal fluid would be 0.5% CCP concentration with 3% SDBS surfactant. The thermal conductivity value reached up to 0.7 w/mK and produced the hardness value of 54 HRC. Concurrently, without surfactant, the optimum addition of particles would be 0.3%. In the end, coconut carbon-based thermal fluids tend to produce higher thermal conductivity compared to water with influence mainly from the critical value of the particle, SDBS concentration, and temperature."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fakhri Rafi Rosyidi
"Limbah elektronik yang dibiarkan secara terus menerus akan menjadi sebuah masalah jika tidak dilakukan tindakan. Permasalahan ini perlu dicari solusinya agar limbah elektronik memiliki manfaat. Nanofluida adalah fluida yang dapat menghantarkan panas yang didalamnya dari partikel nano berukuran sekitar 1 hingga 100 nanometer. Nanofluida  terus menerus mengalami perkembangan karena nanofluida memiliki kelebihan yang lebih baik jika dibandingkan dengan fluida lain dengan partikel ukuran tidak nano. Luas area permukaan yang lebih besar dibandingkan dengan partikel dengan ukuran yang lebih besar dapat lebih baik menghantarkan panas sehingga nanofluida sangat cocok jika digunakan sebagai media quenching dalam perlakuan panas. Penelitian ini membahas karakterisasi nanofluida yang menggunakan micro-dispersed partikel non-logam yang didominasi oleh kandungan SiO2. Pada penelitian ini, karakterisasi dilakukan pada pengaruh konsentrasi partikel (0; 0,1; 0,3; dan 0,5%) dan konsentrasi surfaktan PEG (0, 3, 5, dan 7%) terhadap viskositas, zeta potensial, dan konduktivitas termal nanofluida. Hasil dari pengujian Particle Size Analysis (PSA) pada partikel menunjukkan terjadinya peningkatan ukuran partikel dari 268,7 d.nm menjadi 1035,6 d.nm (milling 10 jam) dan 572,6 d.nm (milling 20 jam). Dari hasil pengujian, partikel tidak mencapai ukuran nano sehingga partikel tergolong kedalam thermal fluid. Hasil pengujian viskositas pada thermal fluid mengalami peningkatan linier seiring dengan penambahan konsentrasi surfaktan dengan nilai tertinggi pada konsentrasi partikel 0,5% dan konsentrasi surfaktan 5% sebesar 1,29 mPa.s. Hasil pengujian zeta potensial pengalami peningkatan seiring meningkatnya konsentrasi surfaktan dengan nilai tertinggi pada konsentrasi surfaktan sebesar 7% sebesar  39,6 mV.  Hasil pengujian konduktivitas  thermal pengalami penurunan seiring meningkatnya konsentrasi partikel dan konsentrasi surfaktan melewati titik optimum pada konsentrasi partikel 0,5% dan konsentrasi surfaktan 7% sebesar 0,652 W/mK.

Electronic waste that is left unattended continuously will become a problem if no action is taken. This issue needs to be addressed in order for electronic waste to have a beneficial purpose. Nanofluids are fluids that can conduct heat due to the presence of nano-sized particles, typically ranging from 1 to 100 nanometers. Nanofluids continue to undergo development because they offer superior advantages compared to non-nano-sized particle fluids. The larger surface area of the nanoparticles allows for better heat conduction, making nanofluids suitable as quenching media in heat treatment processes. This study focuses on the characterization of nanofluids that utilize micro-dispersed non-metallic particles predominantly composed of SiO2. In this research, characterization was conducted to analyze the influence of particle concentration (0, 0.1, 0.3, and 0.5%) and PEG SDBS surfactant concentration (0, 3, 5, and 7%) on the viscosity, zeta potential, and thermal conductivity of the nanofluids. The Particle Size Analysis (PSA) test results indicate an increase in particle size from 268.7 d.nm to 1035.6 d.nm (after 10 hours of milling) and 572.6 d.nm (after 20 hours of milling). Based on these test results, the particles did not reach the nano size range and are classified as thermal fluids. The viscosity test results for the thermal fluid showed a linear increase with the addition of surfactant concentration, reaching the highest value at a particle concentration of 0.5% and a surfactant concentration of 7%, which was 0.627 mPa.s. The zeta potential test results exhibited an increase with the increasing surfactant concentration, reaching the highest value at a surfactant concentration of 7%, which was 39.6 mV. The thermal conductivity test results showed a decrease with the increasing particle and surfactant concentrations, reaching an optimum point at a particle concentration of 0.5% and a surfactant concentration of 7%, which was 0.652 W/mK."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dania Haidi Ramdhony
"Pada penelitian nanofluida yang dilakukan akhir-akhir ini molekul Carbon Nanotube (CNT) merupakan salah satu molekul nano yang sering digunakan, hal ini karena CNT memiliki nilai konduktivitas termal yang tinggi dan memiliki karakterisasi yang unggul, CNT sendiri dibagi menjadi dua jenis berlapisan tunggal atau single-walled CNT (SWCNT) dan multi-walled (MWCNT). Dalam penelitian ini menggunakan MWCNT as-received yang dikarakterisasi dengan menggunakan Energy Dispersive Spectroscopy (EDS) dan Scanning Electron Microscope (SEM). Nanofluida berbasis CNT disintesis dengan menambahkan konsentrasi CNT sebesar 0,1%, 0,3%, dan 0,5% serta surfaktan sodium dodecylbenzenesulfonate (SDBS) sebanyak 10%, 20%, dan 30% pada fluida dasar yaitu air distilasi yang kemudian didispersikan menggunakann alat ultrasonikasi selama 15 menit. Kemudian nanofluida akan dikarakterisasi nilai zeta potensial dan konduktivitas termalnya di suhu ruang (25oC). nanofluida sebanyak 100ml yang sudah dikarakterisasi kemudian akan digunakan untuk proses quenching atau perlakuan panas pada baja S45C, sebelumnya baja S45C sudah diaustenisasi di suhu 900oC. Baja S45C hasil perlakuan panas akan dikarakterisasi menggunakan mikroskop optik dan rockwell hardness C. Penambahan konsentrasi CNT tanpa surfaktan pada nanofluida menaikan konduktivitas termal nanofluida, namun penambahan surfaktan konsentrasi tinggi (10%, 20%, dan 30%) pada nanofluida menurunkan konduktivtas termal nanofluida. Nilai zeta potensial dari nanofluida meningkat seiring dengan bertambahnya konsentrasi surfaktan, zeta potensial dapat mengukur stabilitas nanofluida. Hubungan konduktivitas termal dan kekerasan baja S45C hasil perlakuan panas menggunakan nanofluida tidak dapat dihubungkan secara linier walaupun terlihat tren semakin tinggi konduktivitas termal, maka nilai kekerasan akan semakin tinggi. Hal tersebut terjadi karena proses perlakuan panas dilakukan di temperatur tinggi yang dapat mempengaruhi stabilitas nanofluida. Mikrostruktur Baja S45C hasil perlakuan panas dengan media quench dengan konsentrasi SDBS 0% hingga 10% memiliki mikrostruktur yang didominasi martensite, sedangkan untuk konsentrasi SDBS 20-30% mikrostruktur baja didominasi dengan pearlite, ferrite dan sedikit widmanstätten ferrite.

In recent nanofluid research, Carbon Nanotube (CNT) are one of the nano-molecules that are often used in studies, this is because CNT’s have a high thermal conductivity value and have superior characterization. There are two kinds of CNT, Single-walled CNT (SWCNT) and multi-walled (MWCNT). In this study, the as-received MWCNT is characterized by using Energy Dispersive Spectroscopy (EDS) and Scanning Electron Microscope (SEM). CNT-based nanofluids were synthesized by adding 0.1%, 0.3%, and 0.5% CNT and as much as 10%, 20%, and 30% surfactant sodium dodecylbenzenesulfonate (SDBS) in the base fluid, namely distilled water which was then dispersed. using ultrasonication tool for 15 minutes. Then the nanofluid will be characterized by its zeta potential value and thermal conductivity at room temperature (25oC). 100ml of nanofluid that has been characterized will then be used for the quenching process or heat treatment on S45C steel, previously S45C steel has been austenized at 900oC. Heat treated S45C steel will be characterized using an optical microscope and rockwell hardness C. The addition of CNT concentrations without surfactants in nanofluids increased the thermal conductivity of nanofluids, but the addition of high concentrations of surfactants (10%, 20%, and 30%) in nanofluids decreased the thermal conductivity of nanofluids. The zeta potential value of nanofluids increases with increasing surfactant concentration, the zeta potential can measure the stability of nanofluids. The relationship between thermal conductivity and hardness of the heat treated S45C steel cannot be linearly related, although the trend is that the higher the thermal conductivity, the higher the hardness value. This happens because the heat treatment process is carried out at high temperatures which can affect the stability of the nanofluid. The microstructure of the heat treated S45C steel with nanofluids quenchant with a concentration of 0% to 10% SDBS has a predominantly martensite microstructure, while for an SDBS 20-30% concentration the steel microstructure is dominated by pearlite, ferrite and a little widmanstätten ferrite."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sayyidah Farhana
"Peningkatan sifat mekanik material dalam rekayasa mikrostruktur memiliki salah satu proses penting yaitu pendinginan cepat. Karbon aktif berbasis tempurung kelapa sawit ditumbuk halus untuk mereduksi ukuran karbon. Setelah karbon dihaluskan, proses penggilingan dilakukan untuk kembali mereduksi ukuran partikel menjadi lebih kecil menggunakan planetary ball mill dengan kecepatan 500 rpm selama 15 jam serta ditambahkan aditif Polyvinyl Alcohol (PVA). Surfaktan yang digunakan berupa Polyethylene Glycol (PEG) memiliki tujuan untuk mengurangi aglomerasi partikel sehingga dapat meningkatkan konduktivitas termal secara optimal. Penelitian ini menggunakan variasi konsentrasi partikel karbon berbasis tempurung kelapa sawit sebesar 0,1%, 0,3%, dan 0,5% serta konsentrasi surfaktan 0%, 10%, dan 20%. Karakterisasi nanopartikel karbon tempurung kelapa sawit menggunakan Energy Dispersive Spectroscopy (EDS) dan Field-Emission Scanning Electron Microscope (FE- SEM) untuk mengamati unsur, komposisi, serta morfologi partikel. Karakterisasi nanofluida menggunakan Particle Size Analyzer (PSA), uji Konduktivitas Termal, dan Zeta Potensial untuk mengamati ukuran partikel, konduktivitas termal nanofluida, dan stabilitas dari nanofluida dari karbon berbasis tempurung kelapa sawit.

ABSTRACT
Mechanical properties enhancement in microstructure modification has one important process called quenching. Palm kernell shell ash-based active carbon was crushed in order to reduce the carbon size. After carbon was crushed, the particle went through grinding process to reduce the size furthermore using planetary ball mill at 500 rpm for 15 hours and with Polyvinyl Alcohol addition. Polyethylene Glycol used as surfactant to reduce agglomeration between particle so that the thermal conductivity can be optimally improved. This research used variation of palm kernelll shell-based carbon concentration 0.1%, 0.3%, and 0.5% and surfactant concentration 0%, 10%, and 20%. Palm kernell shell-based carbon nanoparticle was characterized by Energy Dispersive Spectroscopy (EDS) and Field-Emission Scanning Electron Microscope (FE-SEM) to observe element, composition, and particle morphology. Nanofluids was characterized using Particle Size Abalyzer (PSA), Thermal Conductivity Test, and Zeta Potential Test to observe particle size, thermal conductivity of nanofluids, and palm oil kernell-based carbon nanofluids stability.
"
Depok: Fakultas Teknik Universitas Indonesia , 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>