Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 64275 dokumen yang sesuai dengan query
cover
Sumardi
"Additive Manufacturing (AM) adalah kumpulan teknologi untuk fabrikasi komponen 3D dari sebuah model CAD dengan cara layar per layar. AM memiliki kelebihan seperti menghemat biaya material, waktu fabrikasi yang relatif cepat serta kemampuan untuk fabrikasi struktur rumit. Kelebihan – kelebihan tersebut menjadi AM sangat populer diaplikasikan pada area biomedical terutama bone grafting, scaffolding atau area trauma maxillofacial. Oleh karena itu, studi ini dilakukan untuk menelusuri lebih lanjut mengenai perancangan mesin 3d printer keramik dengan basis plunger type extrusion additive manufacturing serta pengaruh – pengaruh dari variasi parameter cetak guna menghasilkan cara untuk memproduksi biomedical implant basis keramik yang affordable dan sesuai spesifikasi yang didesain. Variasi terhadap nilai parameter cetak meliputi diameter nozzle dari ukuran 1.5 mm, 2 mm, 2.5 mm dan 3 mm, kecepatan cetak 5 mm/s, 10 mm/s, 15 mm/s, dan 20 mm/s serta extrusion flow rate 10 mm3/s, 15 mm3/s, 20 mm3/s, 25 mm3/s. Dari hasil penelitian lebih lanjut, penulis menemukan bahwa nilai optimal dari variasi parameter cetak yang menghasilkan spesimen terakurat dan presisi terhadap desain CAD semula adalah diameter nozzle 2.5 mm, kecepatan cetak 20 mm/s dan extrusion flow rate 25 mm3/s. Selain dari itu, melalui uji ANOVA, penulis juga menemukan bahwa extrusion flow rate memiliki pengaruh paling signifikan terhadap kualitas hasil cetak
AM is a collection of technologies for fabricating 3D components from a screen-by-screen CAD model. AM has advantages such as saving material costs, relatively fast fabrication time, and the ability to fabricate complex structures. These advantages make AM very popular to be applied in biomedical areas, especially bone grafting, scaffolding, or areas of maxillofacial trauma. Therefore, this study was conducted to explore further the design of a ceramic 3d printer machine with a plunger-type extrusion additive manufacturing base and the effects of variations in printing parameters to generate a way to produce affordable ceramic-based biomedical implants according to the designed specifications. Variations in printing parameter values ​​include nozzle diameters of 1.5 mm, 2 mm, 2.5 mm, and 3 mm, print speeds of 5 mm/s, 10 mm/s, 15 mm/s, and 20 mm/s as well as an extrusion flow rate of 10 mm3 /s, 15 mm3/s, 20 mm3/s, 25 mm3/s. From the results of further research, the authors found that the optimal value of the variation of printing parameters that produce accurate and precise specimens against the original CAD design is a nozzle diameter of 2.5 mm, a print speed of 20 mm/s, and an extrusion flow rate of 25 mm3/s. Apart from that, the ANOVA test also found that the extrusion flow rate had the most significant effect on the quality of the printouts."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"This book presents a selection of papers on advanced technologies for 3D printing and additive manufacturing, and demonstrates how these technologies have changed the face of direct, digital technologies for the rapid production of models, prototypes and patterns. Because of their wide range of applications, 3D printing and additive manufacturing technologies have sparked a powerful new industrial revolution in the field of manufacturing. The evolution of 3D printing and additive manufacturing technologies has changed design, engineering and manufacturing processes across such diverse industries as consumer products, aerospace, medical devices and automotive engineering. This book will help designers, R&D personnel, and practicing engineers grasp the latest developments in the field of 3D Printing and Additive Manufacturing. "
Singapore: Springer Singapore, 2019
e20501292
eBooks  Universitas Indonesia Library
cover
"This book provides a solid background for understanding the immediate past, the ongoing present, and the emerging trends of additive manufacturing, with an emphasis on innovations and advances in its use for a wide spectrum of manufacturing applications. It contains contributions from leading authors in the field, who view the research and development progress of additive manufacturing techniques from the unique angle of developing high-performance composites and other complex material parts. It is a valuable reference book for scientists, engineers, and entrepreneurs who are seeking technologically novel and economically viable innovations for high-performance materials and critical applications. It can also benefit graduate students and post-graduate fellows majoring in mechanical, manufacturing, and material sciences, as well as biomedical engineering."
Switzerland: Springer Cham, 2019
e20502136
eBooks  Universitas Indonesia Library
cover
"This edited volume comprises select chapters on advanced technologies for 3D printing and additive manufacturing and how these technologies have changed the face of direct, digital technologies for rapid production of models, prototypes and patterns. Because of its wide applications, 3D printing and additive manufacturing technology has become a powerful new industrial revolution in the field of manufacturing. The evolution of 3D printing and additive manufacturing technologies has changed design, engineering and manufacturing processes across industries such as consumer products, aerospace, medical devices and automotives. The objective of this book is to help designers, R&​D personnel, and practicing engineers understand the state-of-the-art developments in the field of 3D Printing and Additive Manufacturing
"
Singapore: Springer, 2017
670 ADV
Buku Teks SO  Universitas Indonesia Library
cover
Muhammad Fadli Bayu Samudra
"Additive Manufacturing (AM) adalah metode manufaktur yang menciptakan komponen dengan bentuk kompleks melalui penambahan material layer-by-layer. Meskipun memiliki banyak keuntungan, AM juga memiliki keterbatasan seperti ruang kerja terbatas, yang tergantung pada ukuran bed printer, dan orientasi pencetakan yang memerlukan optimasi untuk mencapai dimensi yang akurat dan mechanical properties dari komponen yang dicetak. Salah satu solusi untuk masalah ini adalah dengan membagi komponen menjadi dua atau lebih bagian untuk dicetak. Hal ini memerlukan perancangan sambungan untuk bagian yang dicetak, sehingga dapat dirakit kembali menjadi bentuk aslinya. Tujuan dari penelitian ini adalah untuk mengidentifikasi metode dan desain terbaik untuk sambungan tersebut. Desain sambungan dioptimasi menggunakan finite element analysis (FEA) untuk memastikan integritas struktural. Penelitian ini juga mengeksplorasi penggunaan Inventor API untuk mengotomatisasi pembuatan bentuk sambungan berdasarkan desain yang dioptimisasi. Hasil penelitian menunjukkan bahwa desain sambungan yang dioptimalkan memiliki nilai maksimum stress yang lebih tinggi namun tetap berada dalam area safety factor, yang memiliki arti desain dapat untuk digunakan dalam manufaktur komponen berukuran besar dalamadditive manufacturing (AM).

Additive Manufacturing (AM) is a manufacturing method that creates components with complex shapes by adding material layer by layer. Despite its advantages, AM has limitations such as a restricted working envelope, which is dependent on the printer bed size, and variable printing orientation that requires optimization to achieve accurate dimensions and mechanical properties of the printed components. One solution to these issues is to divide the component into two or more parts for printing, allowing the final printed component to match the original design. This requires designing joints for the printed parts, enabling them to be reassembled into the original shape. The objective of this research is to identify the best methods and designs for these joints. The joint designs are optimized using Finite Element Analysis (FEA) to ensure structural integrity. The study also explores the use of Inventor API for automating the generation of joint shapes based on the optimized designs. Results indicate that the optimized joint designs exhibit higher maximum stress but remain within the safety factor area, confirming their suitability for use in manufacturing large dimensional parts in additive manufacturing (AM)."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Laue, Kurt
Ohio: American Society of Metals, 1981
671.34 LAU e
Buku Teks SO  Universitas Indonesia Library
cover
"This book provides an overview of training and teaching methods, as well as education strategies, for Additive Manufacturing (AM) and its application in different business sectors. It presents real-world applications and case studies to demonstrate the key practical and theoretical fundamentals of AM training, written by international experts from the field.
Additive Manufacturing is a rapidly developing technology, and having a well-trained workforce is essential. Accordingly, readers are introduced to new training approaches and recent breakthroughs that can facilitate and accelerate the design, application and implementation of AM."
Switzerland: Springer Cham, 2019
e20501666
eBooks  Universitas Indonesia Library
cover
Dimas Yanuar Dewanto
"Metode Wire Arc Additive Manufacturing (WAAM) merupakan metode yang sedang berkembang saat ini. Metode ini adalah proses produksi yang digunakan untuk 3D print atau memperbaiki bagian logam, yang mengakibatkan metode WAAM sangat potensial dan inovatif. Skripsi ini menyajikan studi awal metode WAAM pada pengelasan dissimilar menggunakan Tungsten Inert Gas (TIG) otomatis, yang melibatkan stainless steel 316 dengan filler aluminium ER5356 dan ER1100, yang bertujuan untuk mencari hasil pengelasan yang terbaik dengan permukaaan yang rapih dan cacat las seminimal mungkin, dengan menggunakan polaritas AC dan DC dan arus 60 A – 170 A. Kecepatan pengelasan konstan di 3.125 cm/s dan gas pelindung menggunakan Argon dengan flowrate konstan sebesar 11 L/min. Hasil yang didapat menunjukkan bahwa pengelasan menggunakan filler ER5356 hanya optimal menggunakan polaritas DC pada arus 160A. Sedangkan filler ER1100 optimal pada range arus 125A – 130A dengan menggunakan polaritas DC dan arus 75A dengan menggunakan polaritas AC. Disarankan menggunakan polaritas DC untuk kedua filler karena hasil manik lebih konsisten. Studi WAAM ini masih tahap awal, maka pengembangan yang lebih lanjut dibutuhkan untuk mendapatkan hasil yang sempurna.

Wire Arc Additive Manufacturing (WAAM) is a method that is currently being developed until now. This method is a production process used for 3D print or to repair metal parts, which makes the WAAM method very potential and innovative. This thesis presents a preliminary study of the WAAM method using automatic Tungsten Inert Gas (TIG) welding, involving stainless steel 316 with aluminium fillers ER5356 and ER1100, which aims to find the best welding results with a clean surface and minimal defects, using both AC and DC polarity, weld current at 60 A – 170 A. The welding speed is constant at 3.125 cm/s and Argon is used as a shielding gas with a constant flowrate of 11 L/min. The results obtained show that welding using ER5356 filler is optimal only using DC polarity at 160A. While the ER1100 filler is optimal in the current range of 125A – 130A using DC polarity and 75A using AC polarity. It is recommended to use DC polarity for both fillers because the bead results are more consistent. This WAAM study is still in its early stages, so more development is needed to get perfect results."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Diegel, Olaf
"This book provides a wealth of practical guidance on how to design parts to gain the maximum benefit from what additive manufacturing (AM) can offer. It begins by describing the main AM technologies and their respective advantages and disadvantages. It then examines strategic considerations in the context of designing for additive manufacturing (DfAM), such as designing to avoid anisotropy, designing to minimize print time, and post-processing, before discussing the economics of AM.
The following chapters dive deeper into computational tools for design analysis and the optimization of AM parts, part consolidation, and tooling applications. They are followed by an in-depth chapter on designing for polymer AM and applicable design guidelines, and a chapter on designing for metal AM and its corresponding design guidelines. These chapters also address health and safety, certification and quality aspects. A dedicated chapter covers the multiple post-processing methods for AM, offering the reader practical guidance on how to get their parts from the AM machine into a shape that is ready to use. The books final chapter outlines future applications of AM. "
Singapore: Springer Nature, 2020
e20505492
eBooks  Universitas Indonesia Library
cover
"The new updated and expanded edition serves as an overview of extrusion processes, equipment, and tooling. Increased coverage of extruded products is provided to demonstrate the range of current applications and suggest potential applications in new areas."
Materials Park, Ohio: ASM International, 2006
e20451905
eBooks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>