Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 5501 dokumen yang sesuai dengan query
cover
Jakarta: Badan Litbang ESDM, 2021
662.6 BIO
Buku Teks  Universitas Indonesia Library
cover
Aziz Afandi
"Biodiesel adalah minyak diesel alternatif yang secara umum didefinisikan sebagai ester monoalkil dari minyak tanaman, lemak hewan, dan minyak jelantah. Biodiesel diperoleh dari hasil reaksi transterifikasi antara minyak dengan alkohol monohidrat dalam suatu katalis NaOH. Reaksi transterifikasi berlangsung 0,5-1 jam pada suhu sekitar 400C hingga terbentuk dua lapisan. Lapisan bawah adalah gliserol dan lapisan atas metil ester.
Penelitian ini pada intinya adalah mensimulasikan proses pembuatan biodiesel dengan menggunakan chemcad, dimana metode yang digunakan adalah metode hybrid. Pada penelitian ini akan digunakan senyawa trigliserida sebagai minyak nabatai (CPO) yang akan direaksikan dengan senyawa alkohol (methanol) dengan bantuan katalis basa (NaOH) dalam proses transesterifikasi. Transesterifikasi adalah tahap konversi dari trigliserida menjadi alkyl ester, melalui reaksi dengan alkohol, dan menghasilkan produk samping yaitu gliserol.
Dalam penelitian ini, dimana akan menggunakan temperatur proses pada reaktornya sebesar 60 0C dan pada tekana 200 Kpa, rasio molar Alkohol-Minyak 9:1 dengan katalis sebanyak 1% dari jumlah minyak yang diumpankan. Perhitungan awal ekonominya diperoleh dengan memperhatikan nilai CCF sebesar 1,30 maka bisnis dalam produksi biodiesel sangat feasible untuk dijalankan mengingat nilai CCF > 0,33.

Biodiesel is alternative diesel oil that the definition as methyl esterfrom nabati oil, animal fat and waste cooking oil. Biodiesel from result reaction transesterification between oil and alcohol in base catalyzed. Transesterification reaction works 0.5 - 1 hours at temperature about 40 0C until formed two layers, under layer is glycerol and up layers is methyl esters.
Result this simulated process biodiesel with chemcad, where the method using hybrid method. This research used triglycerides compound as nabati oil (CPO) that can bereacted with methanolcompound with base catalyzed (NaOH) in transesterification process. Transesterification is convertion step from triglycerides be came alkyl esters from reaction with alcohol and result side product as glycerol.
This research which using temperature process at reactor abaut 60 0C and at preasure 200 kpa, molar ratio alcohol-oil 9:1 with catalyzed 1% from all feed oil. Early economic acount from see the CCF score abaut 1.30 so businessin biodiesel production is very feasible for runing, remember that score CCF > 0.33.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S52232
UI - Skripsi Open  Universitas Indonesia Library
cover
"Considering that there has been a constant high rate of growth in the demand for ADO (Automotive Diesel Oil) in the Indonesian liquid fuel mix, particularly in the transport sector, and realizing that import of ADO is the highest among liquid fuel imports, due to constraints in domestic production, a preliminary assessment has been undertaken on the possibility of subtituting or complementing the supply for ADO with biodiesel, by way of converting oil extracted from Jatropha curcas. Jatropha curcas oil has been chosen as the base material since (a) its physico-chemical properties is highly suitable to be used as feedstock for the production of biodiesel, (b) it is not an edible oil, and (c) the planting of Jatropha curcas can be undertaken in arid lands, thereby beneficial effects can be obtained, as the massive planting wood result in recovering such lands into productive uses."
JIUPH 4:8 (2001)
Artikel Jurnal  Universitas Indonesia Library
cover
Giviani Puspita Dewi
"Biodiesel merupakan salah satu energi terbarukan yang memiliki kelemahan mudah teroksidasi. Ketidakstabilan oksidasi pada biodiesel dapat menurunkan kualitas biodiesel. Oksidasi biodiesel dapat dicegah dengan melakukan penambahan aditif antioksidan berupa senyawa fenolik seperti pyrogallol. Kelarutan pyrogallol di dalam biodiesel yang rendah dapat ditingkatkan dengan melakukan subtitusi atom hidrogen pada cincin benzena pyrogallol dengan senyawa hidrokarbon tidak jenuh seperti metil linoleat. Katalis 2,2-diphenyl-1-picrylhydrazyl (DPPH) dibutuhkan untuk mereaksikan pyrogallol dan metil linoleat karena dapat larut dalam keduanya. Pada penelitian sebelumnya digunakan metil linoleat murni yang tidak ekonomis jika diaplikasikan dalam skala industri. Pada penelitian ini, biodiesel minyak kanola dengan kandungan metil linoleat sebesar 11,23% digunakan untuk mensintesis turunan pyrogallol dengan rasio 10 ml biodiesel, 5 ml DPPH, dan 5 ml pyrogallol. Thin Layer Chromatography (TLC), Fourier Transform Infrared Spectroscopy (FTIR), dan Liquid Chromatography-Mass Spectrometry (LCMS/MS) digunakan untuk mengetahui keberadaan senyawa turunan pyrogallol. Reaksi menghasilkan spot baru pada uji TLC yang menunjukkan perbedaan polaritas antara pyrogallol dan senyawa turunan pyrogallol yang terbentuk. Uji FTIR menunjukkan terbentuknya senyawa turunan pyrogallol yang ditunjukkan dengan pergeseran peak sebesar 3,73 cm-1. LCMS/MS menunjukkan berat molekul senyawa turunan pyrogallol yang terbentuk yang terdiri atas pyrogallol dan metil linoleat. Hasil uji UV-Vis menunjukkan bahwa senyawa turunan pyrogallol memiliki kelarutan yang lebih baik dalam biodiesel dibandingkan dengan pyrogallol murni. Kinerja antioksidan dalam biodiesel diukur berdasarkan bilangan iodin dan periode induksi. Penambahan antioksidan senyawa turunan pyrogallol pada biodiesel dapat meningkatkan periode induksi sebesar 0,16 - 0,71 jam untuk konsentrasi 1000 - 2000 ppm serta menghambat penurunan bilangan iodin dengan slope sebesar -1,0 sampai dengan -0,8.

Biodiesel is renewable energy which has the disadvantage of being easily oxidized. Oxidation instability in biodiesel can reduce the quality of biodiesel. Biodiesel oxidation can be prevented by adding antioxidant additives in the form of phenolic compounds such as pyrogallol. The solubility of pyrogallol in biodiesel can be increased by substitution of hydrogen atoms in the benzene ring pyrogallol with unsaturated hydrocarbon compounds such as methyl linoleate. 2,2-diphenyl-1-picrylhydrazyl (DPPH) catalyst is needed to react pyrogallol and methyl linoleate because it can dissolve in both. In previous studies, pure methyl linoleate was used which was not economical if applied on an industrial scale. In this study, biodiesel of canola oil with a methyl linoleic content of 11.23% was used to synthesize pyrogallol derivatives with a ratio of 10 ml of biodiesel, 5 ml of DPPH, and 5 ml of pyrogallol. Thin Layer Chromatography (TLC), Fourier Transform Infrared Spectroscopy (FTIR), and Liquid Chromatography-Mass Spectrometry (LCMS / MS) are used to determine the presence of pyrogallol-derived compounds. The reaction produces a new spot in the TLC test which shows the difference in polarity between pyrogallol and pyrogallol derivative compounds formed. FTIR test shows the formation of pyrogallol derivatives which is indicated by a peak shift of 3.73 cm-1. LCMS / MS shows the molecular weight of pyrogallol derivative compounds formed consisting of pyrogallol and methyl linoleate. UV-Vis test results showed that pyrogallol derivative compounds had better solubility in biodiesel compared to pure pyrogallol. The performance of antioxidants in biodiesel is measured based on the iodine number and induction period. The addition of antioxidant pyrogallol derivatives to biodiesel can increase the induction period by 0.16 - 0.71 hours for a concentration of 1000 - 2000 ppm and inhibit the decline in iodine numbers with slopes of -1.0 to -0.8.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Situmorang, Widya Yanti
"Kebutuhan energi yang semakin meningkat dari tahun ke tahun, dimana ketergantungan terhadap minyak bumi dan terakhir terhadap LPG perlu disiasati dengan mencari sumber energi baru. Dimetil Eter dinilai sebagai sumber energi alternatif yang potensial menimbang sumber bahan baku pembuatan DME dapat diperoleh dari biomassa, batubara dan gas alam, yang mana merupakan sumber bahan baku yang terbarukan dan tidak terbarukan, menjamin ketersediaan DME secara terus-menerus. Kajian pustaka terhadap keekonomian pembuatan Dimetil Eter dari tiga bahan baku tersebut dengan menggunakan Indirect dan Direct Technology) akan dibahas, yang mana lebih lanjut analisa pada tesis ini hanya terbatas kepada bahan baku biomassa dan batubara saja.
Dengan membandingkan empat variasi yaitu BB1PI ( Biomassa ? direct technology), BB2P1 (Batubara- direct technology), BB1P2 ( Biomassa ? indirect technology), BB2P2 (Batubara- indirect technology) dengan basis kapasitas produksi DME 5.000 ton/hari (351 hari operasional) dan harga DME adalah USD 1.000/ MT DME atau USD 907.220/ ton DME diperoleh nilai CAPEX dan OPEX terendah USD 3.203.965.095,66 dan USD 373.546.794,34 berturut, dengan nilai IRR tertinggi 38% dan PBP (Pay Back Period) terendah 2.63 tahun untuk variasi BB2P1 (Batubara - direct Technology). Sehingga dengan membandingkan empat variasi tersebut diatas diperoleh kesimpulan bahwa bahan baku dan proses teknologi yang dinilai paling ekonomis didalam penerapannya adalah variasi BB2P1 (Batubara-direct technology).

The need for energy is increasing from year to year, where the dependence on petroleum and LPG should last to overcome by finding new sources of energy. Dimethyl Ether assessed as a potential alternative sources of energy considering its raw material can be obtained from biomass, coal and natural gas, which is the renewable source of raw materials and non-renewable, ensuring the availability of DME continuously. Literature review on the economical manufacture of Dimethyl Ether from three raw materials by using Indirect and Direct Technology will be discussed, which further analysis in this thesis is limited to biomass and coal feedstock only.
By comparing the four variations of the BB1PI (Biomass - direct technology), BB2P1 (Coal - direct technology), BB1P2 (Biomass - indirect technology), BB2P2 (Coal - indirect technology), with base DME production capacity of 5,000 tons / day (351 operational days) with price USD 1,000/MT DME or USD 907.220/ ton DME, obtained lowest CAPEX and OPEX values USD 3,203,965,095.66 and USD 373,546,794.34 respectively, with the highest value of IRR 38% and the lowest value of PBP (Payback Period) 2.63 years for BB2P1 variation (Coal - Direct Technology). Therefore, by comparing the four variations of the above it is concluded that the raw materials and process technologies are considered the most economical in its application is BB2P1 (Coal-direct technology).
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
T41517
UI - Tesis Membership  Universitas Indonesia Library
cover
Leonardus Wijaya Muslim
"Biofuel generasi kedua berbahan dasar limbah tandan kosong kelapa sawit menjadi isu yang menarik untuk mengatasi kelangkaan energi, namun proses pemurnian etanol ? air menjadi kendala utama sebab keduanya membentuk campuran azeotropik. Pemisahan etanol - air dengan teknologi membran merupakan teknologi separasi yang sedang dikembangkan karena hemat energi, efisien dan efektif untuk diaplikasikan dalam skala besar. Membran yang digunakan dalam penelitian ini adalah membran GVHP, PBTK, LSW, dan GSWP yang diproduksi Merck Millipore dengan variasi kondisi operasi yaitu volume permeate, suhu, tekanan, dan konsentrasi.
Dari penelitian ini membran GVHP menunjukkan hasil terbaik dengan faktor separasi sebesar 3,03 dan permeabilitas 0,015 g cm-2 s-1 pada kondisi operasivolume permeate 10 mL, suhu 75°C, tekanan 60 psi, dan konsentrasi etanol 20% v/v. Penerapan membran GVHP untuk separasi bioetanol dari TKKS menunjukkan faktor separasi terhadap etanol sebesar 3,66, namun dengan faktor separasi terbesar ditunjukkan terhadap propanol 5,44 serta rejection asam asetat sebesar 96,66%. Berdasarkan analisis FE SEM membran GVHP menunjukkan degree of swelling terkecil sehingga teknologi membran GVHP ini efektif untuk memisahkan suspensi Saccharomyces cerevisiae hasil fermentasi tandan kosong kelapa sawit.

Second Generation of Biofuel based on empty fruit buncheshas been interesting issue to be developed in order to overcome the extinction of non-renewable energy, however the purification of ethanol ? water becomes the main problem since both of them form azeotrope. Separation ethanol ? water using membrane technology is in demand separation technology due to the low energy requirement, effectiveness, and efficiency to be applicable in industrial scale. Membranes that are used in this research are GVHP, PBTK, LSW, and GSWP which are produced by Merck Millipore with variation of operation conditions such as permeate volume, temperature, pressure, and concentration.
The best result of ethanol - water separation is shown by GVHP membrane with separation factor 3.03 and permeability 0,015 g cm-2 s-1in the condition operation permeate volume 10 mL, temperature 75°C, pressure 60 psi, andethanolconcentration 20% v/v. Furthermore the usage of GVHP membrane to purify bioethanol from empty bunches results separation factor toward ethanol 3.66 while the biggest separation factor is owned by toward propanol 5.44 so as the rejection factor of acetic acid is 96,66%. Based on the FE SEM analysis to GVHP membrane, GVHP membrane did the least degree of swelling among others hence this technology is effective to separate Saccharomycess cerevisiae suspension from empty fruit bunches fermentation.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54832
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mia Sari Setiawan
"Bioetanol menjadi salah satu solusi dari kekurangan bahan bakar. Namun, bioetanol yang dihasilkan belum dapat dimanfaatkan sebagai biofuel secara ekonomis. Permasalahan yang dihadapi yaitu sulitnya memperoleh bioetanol murni dengan metode hemat energi, mengingat penggunaan proses distilasi dalam separasinya. Pemanfaatan limbah biomassa seperti TKKS berpotensi karena memiliki kandungan selulosa tinggi (46%), namun perlakuan awal serat memakan biaya sehingga dibutuhkan proses separasi yang lebih ekonomis. Metode vapor permeation cukup efektif dalam memisahkan campuran azeotrop air-etanol dalam bentuk fasa uap menggunakan membran keramik NaA-Ze yang selektif terhadap air.
Hasil simulasi menggunakan software Superpro Designer menunjukkan bahwa metode vapor permeation kurang ekonomis dibandingkan dengan metode distilasi adsorpsi. Payback period pada hasil simulasi adalah 3,9 tahun dan 4,3 tahun untuk masing-masing metode distilasi adsorpsi dan vapor permeation dengan masing-masing nilai IRR sebesar 20,23% dan 17,89%. Perbedaan yang cukup nyata adalah pada faktor biaya operasi, dimana dengan jumlah unit yang lebih banyak vapor permeation akan membutuhkan lebih banyak labor dalam pengoperasiannya.

Bioetanol can be a solution of energy deficiency. However, bioethanol produced can?t be utilized as biofuel economically. The constraint is the difficulty in producing pure bioethanol with minimum energy consumed, regarding the usage of distillation series. Utilization of biomass waste such as EPFB is potential because it contains high cellulose (46%), but to pretreat the fiber is quite making cost so it is better to find an economic separation method. Vapor permeation method is quite effective in separating ethanol-water azeotrope mixture in vapor phase using ceramic NaA-Ze membrane which is selective to water.
The simulation using Superpro Designer shows that compared to conventional distillation adsorption method, vapor permeation method is less economic. Payback period for distillation adsorption method and vapor permeation respectively are 3,9 and 4,3 years, with IRR value 20,23% dan 17,89% respectively. The significant difference in the cost is the annual operating cost. The more number of units in vapor permeation method need more labor to operate.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S54851
UI - Skripsi Membership  Universitas Indonesia Library
cover
I Wayan Susila
"The performance test of CI engine which uses biodiesel fuel from vegetable oils and its blends with diesel fuel is essential to be carried out. This research investigates the quality of rubber seed oil methyl ester (RSOME) which is produced via catalytic method dry wash system which uses magnesol (magnesium silicate) as absorbent based on Indonesian Biodiesel Forum (FBI) standard in 2005 and the performance of CI engine, which uses its blends with diesel fuel (B-10, B-20, and B-30). The best engine performance is then compared with RSOME which is produced via non-catalytic method, namely, superheated methanol high temperature atmospheric pressure and diesel fuel (B-0). The engine test shows that B-20 produces the best engine performance at 2550 rpm. Compared to RSOME non-catalytic method and diesel fuel, RSOME catalytic method and non-catalytic method yield the same effective power, whereas diesel fuel is lower than both methods. The engine which uses RSOME non-catalytic method needs the same specific fuel consumption as diesel fuel, but a bit more than catalytic method. The thermal efficiency of RSOME non-catalytic method is higher than catalytic method and diesel fuel, but catalytic method has lower efficiency than diesel fuel. The emission of non-catalytic method is the most eco-friendly, catalytic method is the next, and diesel fuel is the one with the highest emission levels."
Depok: Faculty of Engineering, Universitas Indonesia, 2012
UI-IJTECH 3:1 (2012)
Artikel Jurnal  Universitas Indonesia Library
cover
Muhammad Khaliq Fikri
"Dalam konversi minyak kelapa sawit menjadi biodisel, minyak kelapa sawit melalui proses transesterifikasi dengan methanol untuk membnentuk biodisel dan gliserol. Namun utilitas gliserol tidak dapat dimaksimalkan dikarenakan gliserol memiliki sedikit kegunaan dibandingkan dengan biodisel. Gliserol dapat di sintesis untuk meningkatkan nilai ekonomisnya membentuk Gliserol Monostearat (GMS) sebagai agen pengemulsi. Dalam proses esterifikasi gliserol, terdapat beberapa variabel yang mempengaruhi hasil akhir seperti temperatur, dan jenis katalis yang digunakan yaitu NaOH. Riset ini dilaksanakan nutuk memahami pengaruh temperature dan jumlah katalis untuk memproduksi produk GMS dan kemampuannya untuk mengemulsi. Proses sintesis dimulai dengan mereaksikan gliserol dengan asam stearat menggunakan NaOH sebagai katalis dan variasinya jumlah 4%, 7%, dan 9%. Temperatur yang digunakan untuk reaksi menggunakan variasi 210⁰C, 220⁰C, dan 230⁰C. Untuk uji performa, produk GMS akan di bandingkan dengan agen pengemulsi komersil yaitu lecithin dan uji performa dinilai berdasarkan variasi jumlah 1.0, 2.0, dan 3.0 grams per agen pengemulsi untuk mencampurkan air dan minyak dan waktu yang dibutuhkan untuk kedua fasa terpisah Kembali. Dari riset ini dapat di konklusikan bahwa GMS dapat disintesiskan melalui observasi proses esterifikasi, membandingkan hasil FTIR, dan properti fisik produk. Hasil GMS secara kualitatif dan quantitatif dapat terbaik ditemukan pada temperature 220⁰C dan jumlah katalis NaOH 7%. GMS juga dapat mengemulsi air dan minyak, dan dibandingkan dengan lecithin, GMS dapat mengemulsi campuran air dan minyak dari lemak hewan lebih baik.

In the reaction to convert crude palm oil into biodiesel, it undergoes the process of transesterification of the triglycerides with methanol to form biodiesel and glycerol. The utility of glycerol is not maximized since glycerol itself is considered to have less use than its primary product of biodiesel. Glycerol itself can be synthesized further to increase its economic value, to the form of Glycerol Monostearate (GMS) as an emulsifying agent. Through the process of esterification of glycerol, there are many variables at play including the operating condition of temperature, and using the catalyst of NaOH. This research is conducted to understand the effect of temperature and amount of catalyst on the production of GMS product and its ability as an emulsifier. The process of synthesis occurs with reacting glycerol and stearic acid using NaOH as a catalyst with the variation amount of 4%, 7%, and 9%. The temperature for the operating system occurs with the variation of 210⁰C, 220⁰C, and 230⁰C. For the performance test, the GMS product is compared with a commercial emulsifier, lecithin and is tested based on the amount of 1.0, 2.0, and 3.0 grams per emulsifier used to the time after oil and water mix and how long will it take until both phases separate. From this research, the conclusion of the synthesis for GMS can be done through observation of the process, the comparison of FTIR analysis, and the product physical properties. The temperature at 220°C and amount of 7% catalyst gives the highest yield, low temperature and amount of NaOH will affect the quality of the yield and high temperature and amount of NaOH will affect the quality and quantity of the yield. The product GMS can emulsify water and oil, and in comparison, with lecithin, the product itself is better at the emulsification of water to animal fat oil."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sari Dafinah Ramadhani
"Sintesis biodiesel dengan Reaktor Plasma DBD Dielectric Barrier Discharge Non-Thermal telah berhasil diteliti dan sangatlah menjanjikan. Penelitian ini bertujuan untuk menginvestigasi kinerja purwarupa reaktor plasma DBD Non-Thermal dan mendapatkan kondisi ope rasi yang optimum dalam memproduksi metil ester. Bahan baku penelitian adalah minyak jarak pagar dan metanol. Sedangkan gas argon berfungsi sebagai carrier pada pembentukan pijar plasma.Variasi yang digunakan untuk melakukan uji kinerja reaktor adalah mode pembangkit plasma dan sistem sirkulasi cairan. Produksi metil ester terbaik dengan bahan baku minyak jarak pagar adalah 10,84. Proses ini dicapai pada kondisi rasio molar minyak : metanol 1:1, P dan T ambien, laju alir umpan cairan 2,2 ml/sekon, laju alir gas 41,67 ml/s, tegangan tinggi regulator 220 Volt dan waktu reaksi 6 jam. Reaktor DBD plasma Non-Thermal sangat potensial karena mampu mensintesis biodiesel tanpa menggunakan katalis, membutuhkan metanol yang sedikit, energi yang relatif rendah, dan tidak menghasilkan gliserol sebagai poduk samping.

Synthesis of biodiesel with DBD Dielectric Barrier Discharge Non Thermal Reactor has been successfully researched and very promising. This study is to describe alternative and innovative methodologies for converting jatropha oil into biodiesel. The aim of present experiment is to design DBD non thermal plasma reactor coaxial pipe type and to do its performance test in converting biodiesel The raw materials are jatropha oil, methanol, with carrier of plasma argon gases. The variations used to perform the reactor are plasma generator mode and liquid circulation system. The best methyl ester production with castor oil was 10.84. with total reaction 6 hours. The operating conditions used were molar methanol to oil molar ratio 1 1, ambient temperature and pressure feed flow and gas flow rate reactors is 1.64 ml s and 41.67 ml s. Therefore, this plasma electro catalysis system was promising for biodiesel synthesis from vegetable oils due to no need a catalyst, no soap formation, required less methanol and no glycerol by product."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>