Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 139987 dokumen yang sesuai dengan query
cover
Muhamad Fahlan Gusliawan
"Sebagai negara yang memproduksi dan mengkonsumsi beras dalam jumlah besar, instrumen untuk mengidentifikasi kualitas mutu dan varietas cukup dibutuhkan di Indonesia. Varietas dan kualitas dari suatu beras sangat mempengaruhi harga jual beras tersebut. Sulitnya proses identifikasi varietas dan kualitas dapat menimbulkan kecurangan dalam proses jual beli. Salah satu metode yang cukup modern untuk melakukan identifikasi adalah menggunakan pencitraan hiperspektral yang digabungkan dengan pembelajaran mesin. Pada penelitian ini dibuat sebuah sistem klasifikasi multi-output untuk mengidentifikasi varietas dan kualitas beras secara bersamaan. Sistem ini menerima citra hiperspektral dengan 224 band pada rentang 400-1000 nm. Bagian tengah citra akan disegmentasi dan dijadikan input model klasifikasi. Keluaran dari model ini berupa hasil prediksi varietas dan kualitas mutu dari sampel beras tersebut. Sistem dibuat untuk mengklasifikasikan 8 varietas beras, yaitu pandan wangi, IR64, IR42, rojolele, menthik wangi, menthik susu, C4 dan ciherang serta 2 buah kualitas yaitu premium dan medium. Model klasifikasi dibuat dengan menggunakan 3 buah arsitektur yang berbeda. Sistem dengan arsitektur InceptionV3 menghasilkan akurasi validasi sebesar 97.57% dan 91.30%. Sistem dengan arsitektur Xception menghasilkan akurasi validasi sebesar 95.83% dan 86.74%. Sistem dengan arsitektur HybridSN menghasilkan akurasi validasi terbaik yaitu sebesar 99.39% dan 97.09%. Berdasarkan hasil akurasi tersebut terlihat bahwa sistem klasifikasi multi-output CNN dapat bekerja dengan cukup baik.

As a country that produces and consumes large amounts of rice, instruments to identify quality and varieties are quite needed in Indonesia. The variety and quality of a rice greatly affects the selling price of the rice. The difficulty of the process to identifying varieties and qualities can lead to fraud in the buying and selling process. One fairly modern method of performing identification is to use hyperspectral imaging combined with machine learning. In this study, a multi-output classification system was created to identify the variety and quality of rice simultaneously. The system receives hyperspectral image with 224 bands in the range of 400- 1000 nm. The middle part of the image will be segmented and inputted into the classification model. The output of this model is in the form of predictions of varieties and quality of the rice sample. The system was made to classify 8 varieties of rice, namely pandan wangi, IR64, IR42, rojolele, menthik wangi, menthik susu, C4, ciherang and 2 class of quality, namely premium and medium. The system was made using 3 different architectures. Systems with the InceptionV3 produce validation accuracy of 97.57% and 91.30%. Systems with the Xception resulted in validation accuracy of 95.83% and 86.74%. Systems with HybridSN architecture produce the best validation accuracy of 99.39% and 97.09%. From the results of such accuracy, it can be seen that the multi-output classification system can work quite well."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Shinta Aprilia Safitri
"Pola konsumsi pangan masyarakat Indonesia saat ini telah beralih dari sekedar pemenuhan kebutuhan dasar menjadi pola konsumsi makanan sehat yang disebut sebagai pangan fungsional. Beras berpigmen masuk kedalam jenis makanan fungsional karena mengandung banyak antioksidan yang berasal dari antosianin. Namun beras berpigmen dinilai mudah apek jika disimpan terlalu lama. Teknologi iradiasi dapat digunakan untuk mengawetkan makanan secara aman dan efektif sehingga dapat memperpanjang umur simpannya. Penyinaran radiasi gamma dengan dosis tertentu dapat menyebabkan terjadinya perubahan komposisi nutrisi yang terkandung dalam beras. Sehingga perlu dilakukan pengukuran kandungan nutrisi beras berpigmen pasca iradiasi untuk menjamin kesesuaian gizi pada beras tersebut.  Penelitian ini dilakukan untuk membangun sistem multi-output yang mampu memprediksi kadar total antosianin dan kadar air pada beras berpigmen teriradiasi berbasis pencitraan hiperspektral. Evaluasi model dilakukan dengan menghitung nilai root mean square error (RMSE) dan koefisien determinasi R2 dari model multi-output dan membandingkan performanya dengan model single-output. Hasilnya didapatkan bahwa model multi-output Spectral Xception mampu melakukan prediksi yang sangat baik dengan performa pengujian kadar total antosianin menghasilkan nilai RMSE sebesar 0,9105 dan R2 sebesar 0,9963, serta pengujian kadar air bernilai RMSE sebesar 0,2529 dan R2 sebesar 0,9784. Selain itu, model multi-output secara umum lebih efisien dibandingkan single-output karena proses pelatihannya 48% lebih cepat. Pada penelitian ini juga dilakukan evaluasi performa model multi-output Spectral Xception saat menggunakan dataset yang berbeda.

Food consumption pattern of the Indonesian people has shifted from merely fulfilling basic needs to becoming a healthy food consumption which is referred to functional food. Pigmented rice can be categorized as a type of functional food because it contains antioxidants derived from anthocyanins. However, pigmented rice is considered to be easily stale when stored for too long. Irradiation technology can be used to safely and effectively preserve food to extend its shelf life. Utilization of gamma radiation irradiation with certain doses can cause changes in the composition of the nutrients contained therein. So it is necessary to measure the nutritional content of post-irradiation pigmented rice to ensure the nutritional suitability of the rice. This research was conducted to develop a multi-output system to predict total anthocyanin content and water content in irradiated pigmented rice based on hyperspectral imaging. Model evaluation has been carried out by calculating the root mean square error (RMSE) value and the coefficient of determination R2 of the multi-output model and comparing its performance with the single-output model. The results showed that the multi-output spectral xception model was able to make very good predictions with test performance at total anthocyanin content RMSE values of 0.9105 and R2 0.9963, as well as testing for water content RMSE values of 0.2529 and R2 0.9784. In addition, the multi-output model is generally more efficient than the single-output model because the training process is 48% faster. This research also evaluates the performance of the multi-output spectral exception model when using different datasets."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ratmi Nur Isnaini
"Beras merupakan bahan pangan pokok bagi masyarakat Indonesia. Biasanya masyarakat Indonesia memilih beras berdasarkan varietas karena masing-masing varietas memiliki karakteristik cita rasa, tekstur, dan aroma yang berbeda-beda. Pada aspek kesehatan, masyarakat dapat memilih beras berdasarkan teknik budi daya, yaitu organik atau anorganik. Namun, pada saat ini belum ada instrumen yang mampu mengidentifikasi varietas dan teknik budi daya beras. Penelitian ini dirancang untuk membuat sistem pengenalan varietas dan teknik budi daya beras berbasis citra hiperspektral dengan rentang panjang gelombang 400 – 1000 nm. Sistem dirancang menggunakan multi-output multi-class dengan arsitektur AlexNet. Dalam proses pembangunan sistem, citra yang masuk ke dalam sistem disegmentasi menjadi bagian kecil yang disebut sebagai region of interest (ROI). Penelitian ini melakukan eksperimen variasi ukuran ROI sebesar 32x32, 36x36, dan 40x40. Hasil akurasi pengujian yang cukup baik diperoleh dari model multi-output dengan ukuran ROI 40x40. Hasil akurasi pengujian yang diperoleh adalah sebesar 95,14% untuk output varietas dan 96,43% untuk output teknik budi daya. Melalui eksperimen ini, sistem multi-output multi-class berbasis citra hiperspektral terbukti mampu mengidentifikasi varietas dan teknik budi daya beras sekaligus.

Rice is a staple food for Indonesian people. Usually, they choose rice based on varieties because each variety has different characteristics of taste, texture, and aroma. In health aspect, they can choose rice based on cultivation techniques such as organic or conventional. However, at this time there is no instrument that can identify variety and cultivation technique of rice. This research is designed to create a recognition system of both variety and cultivation technique based on hyperspectral image with a wavelength range of 400 – 1000 nm. The system is designed using multi-output multi-class with AlexNet architecture. In the system development process, the images that enter the system are segmented into small parts called region of interest (ROI). This study conducted an experiment with ROI variation size of 32x32, 36x36, and 40x40. A good test results are obtained from ROI size of 40x40. The test accuracy results are 95.14% for variety ouput and 96.43% for cultivation technique output. Through this experiment, a multi-output multi-class system based on hyperspectral image was proven to be able to identify variety and cultivation technique of rice at the same time."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Jennifer Santoso
"Beras merupakan salah satu bahan pangan yang memiliki peran penting dalam kehidupan masyarakat Indonesia. Berbagai penelitian dan eksperimen dilakukan untuk mengembangkan kualitas beras salah satunya ada iradiasi beras. Pemanfaatan radiasi pada beras memiliki batasan dosis radiasinya sehingga diperlukan suatu instrumen yang dapat mengukur kadar dosis radiasi pada beras. Penelitian ini bertujuan untuk menganalisis performa tiga model deep learning, yaitu VGG16, AlexNet, dan ResNet34, dalam mengestimasi intensitas dosis radiasi pada sampel beras berwarna putih, merah, dan hitam. Data latihan, validasi, dan pengujian yang terdiri dari sampel-sampel berwarna putih, merah, dan hitam telah digunakan untuk melatih dan menguji model-model tersebut. Hasil penelitian menunjukkan bahwa performa model bervariasi tergantung pada ROI yang digunakan. Dalam hal akurasi pengenalan sampel pada data validasi dan pengujian, VGG16 ROI 20 menunjukkan hasil terbaik dengan akurasi mencapai 73% pada validasi dan 71% pada pengujian. Meskipun AlexNet juga menghasilkan performa yang kompetitif, dengan akurasi validasi dan pengujian mencapai 72%, waktu pelatihan yang lebih singkat dimiliki oleh AlexNet menjadi keunggulan yang signifikan. Namun, perlu diketahui bahwa ResNet34 menghasilkan performa yang lebih rendah dibandingkan dengan VGG16 dan AlexNet. Meskipun memiliki waktu pelatihan yang lebih lama, ResNet34 tidak mencapai tingkat akurasi yang sama dengan kedua model lainnya. Hasil penelitian ini memberikan wawasan penting dalam memilih model deep learning yang sesuai untuk pengenalan sampel berwarna putih, merah, dan hitam pada ROI dengan ukuran berbeda. Faktor-faktor seperti akurasi, waktu pelatihan, dan kebutuhan komputasi harus dipertimbangkan secara holistik dalam pemilihan model terbaik. Penelitian selanjutnya dapat menguji model-model ini pada dataset yang lebih luas dan dalam konteks aplikasi yang lebih kompleks untuk memvalidasi temuan ini secara lebih mendalam.

Rice is one of the staple foods that plays a crucial role in the lives of Indonesian people. Various research and experiments have been conducted to improve the quality of rice, including the use of rice irradiation. The utilization of radiation on rice has a specific dosage limit, thus requiring an instrument capable of measuring the radiation dose level in rice. This study aims to analyze the performance of three deep learning models, namely VGG16, AlexNet, and ResNet34, in estimating the intensity of radiation dose in white, red, and black rice samples. Training, validation, and testing data consisting of white, red, and black rice samples were used to train and evaluate these models. The results of the study showed that the performance of the models varied depending on the Region of Interest (ROI) used. In terms of sample recognition accuracy in the validation and testing data, VGG16 ROI 20 demonstrated the best performance with an accuracy of 73% in validation and 71% in testing. Although AlexNet also achieved competitive performance, with validation and testing accuracies reaching 72%, the advantage of shorter training time in AlexNet was significant. However, it should be noted that ResNet34 yielded lower performance compared to VGG16 and AlexNet. Despite having a longer training time, ResNet34 did not achieve the same level of accuracy as the other two models. These research findings provide valuable insights for selecting the appropriate deep learning model for recognizing white, red, and black rice samples in different ROIs. Factors such as accuracy, training time, and computational requirements need to be considered holistically in choosing the best model. Further research can test these models on larger datasets and in more complex application contexts to validate these findings more comprehensively."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Nurhuda
"

Tanaman Padi merupakan salah satu tanaman pertanian utama di dunia. Mayoritas sekitar 98% penduduk Indonesia juga mengkonsumsi beras sebagai makanan pokoknya. Sehingga perlu dilakukan pemantauan pertumbuhan tanaman padi secara efektif untuk mengontrol ketahanan pangan nasional. Tujuan dalam penelitian ini adalah untuk menganalisis karakteristik dan pola spasial fase tumbuh serta varietas padi secara spasial temporal di Kecamatan Ciasem, Kabupaten Subang. Data citra radar Sentinel-1A digunakan berdasarkan nilai backscatter polarisasi VH pada periode tanam 2018-2019. Hasil penelitian menunjukkan bahwa karakteristik fase tumbuh padi menghasilkan tren nilai backscatter yang meningkat pada fase vegetatif hingga fase pematangan. Pada periode tanam I nilai rata-rata backscatter lebih tinggi dibandingkan dengan periode tanam II karena terjadi anomali pengairan dan kekeringan berkepanjangan. Karakteristik varietas PB 42 memiliki variasi nilai rata-rata backscatter yang paling tinggi dan beragam dibandingkan varietas lain. Sementara itu, pola spasial fase tumbuh padi periode tanam I dimulai dari arah utara dan periode tanam II dimulai dari arah selatan. Pola spasial varietas padi periode tanam I dan II termasuk kedalam kategori random (uji z NNA = 0,68) dengan dominasi varietas Inpari 42, Ciherang, dan Mekongga. Sedangkan varietas Inpari 33 dan PB 42 hanya tersebar di beberapa bagian wilayah Kecamatan Ciasem. 


Rice plants are one of the main agricultural crops in the world. The majority of about 98% of Indonesia's population also consume rice as their staple food. Therefore, it is necessary to observe the growth of rice plants effectively to control national food tenacity. The purpose of this study is to analyze the spatial characteristics and patterns of growth phases and rice varieties in a spatially temporal in Ciasem District, Subang Regency. Sentinel-1A radar image data is used based on the VH polarization backscatter value in the 2018-2019 planting period. The results showed that the characteristics of the rice growing phase resulted in an increasing backscatter value trend in the vegetative phase to the maturation phase. In 1st period of planting the backscatter average value was higher than in the 2nd period due to irrigation anomalies and prolonged drought. The characteristics of PB 42’s variety have the highest and most average variation in the mean backscatter compared to other varieties. Meanwhile, the spatial pattern of the rice growth phase for 1st period of planting started from the north and 2nd period started from the south. The spatial patterns of rice varieties in the first and second planting periods were categorized as random (test z NNA = 0.68) with the dominance of Inpari 42, Ciherang, and Mekongga varieties. Meanwhile, the Inpari 33 and PB 42 varieties were only scattered in several parts of the Ciasem District.

"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"The objectives of this research were to study the effects of SRI method on the decrease of Fe-available (Fe2+) and its relation to soil nutrient status and rice yeild which planed in newly opened ricefiled....."
Artikel Jurnal  Universitas Indonesia Library
cover
cover
"The research of growth and yield of rice at various hill spacing and seedling number per hill on the system of rice intensification method was conducted at land field Agricultural Faculty Andalas University Limau Manis Padang....."
Artikel Jurnal  Universitas Indonesia Library
cover
cover
<<   1 2 3 4 5 6 7 8 9 10   >>