Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 194027 dokumen yang sesuai dengan query
cover
Miftahur Roziqiin
"Sistem pengendalian merupakan suatu sistem yang banyak ditemukan dan berhubungan dengan beragam jenis proses yang ada pada berbagai bidang, terutama bidang industri. Proses pengendalian yang umum ditemukan dalam industri adalah proses thermal mixing. Salah satu contoh proses thermal mixing yang cukup sederhana adalah proses pencampuran air panas dan air dingin atau water thermal mixing, dengan tujuan untuk mencapai temperatur campuran yang diinginkan, tetapi tetap menjaga ketinggian air agar tidak melebihi kapasitas wadah. Nilai temperatur tersebut dapat dicapai dengan cara mengatur debit aliran air yang masuk ke dalam wadah pencampuran. Pada penelitian ini, diimplementasikan sistem pengendalian menggunakan Reinforcement Learning dengan algoritma Soft Actor-Critic pada simulasi pengendalian ketinggian dan temperatur air pada proses water thermal mixing menggunakan Simulink pada MATLAB. Agent dilatih agar dapat mengendalikan sistem secara cepat dan tepat dalam menentukan action berupa nilai untuk mengatur valve menghasilkan debit aliran air yang diperlukan. Hasil dari penelitian ini menunjukkan bahwa algoritma SAC dapat digunakan untuk mengendalikan sistem dengan baik, dengan nilai overshoot terbesar yaitu 1.33% untuk pengendalian ketinggian air dan steady-state error terbesar yaitu 0.33℃ saat mengendalikan temperatur campuran, dan nilai settling time terbesar yaitu 160 sekon saat terjadi perubahan set point untuk ketinggian air dari 2.5 dm menjadi 5 dm, serta mampu mengendalikan kestabilan sistem ketika mengalami gangguan dalam waktu 93 sekon.

The control system is a system that is widely found and relates to various types of processes that exist in various sector, especially the industrial sector. The control process commonly found in industry is the thermal mixing. One of the thermal mixing processes is the process of mixing hot and cold water or water thermal mixing, with the aim of reaching the desired temperature, but still maintaining the water level, so that it does not exceed the capacity of the container. This temperature value can be reached by adjusting the flow of water entering the mixing container. In this study, a control system was implemented using Reinforcement Learning with Soft Actor-Critic algorithm on a simulation of controlling water level and temperature in the water thermal mixing using Simulink in MATLAB. Agents are trained to be able to control the system quickly and precisely in determining the action in the form of a value to adjust the valve to produce the required water flow rate. The results of this study indicate that the SAC algorithm can be used to control the system properly, with the biggest overshoot of 1.33% for controlling water level and steady-state error of 0.33℃ when controlling the temperature of the mixture, and the settling time of 160 seconds when the set point value change for the water level from 2.5 dm to 5 dm, as well as being able to control the stability of the system when experiencing disturbances within 93 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Deden Ari Ramdhani
"Sistem pengendalian temperatur campuran dan ketinggian air merupakan pengaplikasian yang umum ditemukan dalam bidang industri. Salah satu proses yang menggunakan sistem pengendalian tersebut adalah proses water thermal mixing. Proses tersebut bertujuan untuk menjaga nilai temperatur dan ketinggian air pada nilai yang diinginkan. Hal tersebut dapat diicapai dengan cara mengatur flow input air panas dan air dingin serta mengatur flow out dengan nilai konstan. Pada penelitian ini, diterapkan Reinforcement Learning (RL) dengan Deep Deterministic Policy Gradient (DDPG) Agent untuk melakukan simulasi proses tersebut pada Matlab dan Simulink. Proses training diperlukan untuk memberikan agent pengalaman dalam mengendalikan proses tersebut. Performa dari pengendali RL akan dilihat dari beberapa parameter seperti rise time, settling time, overshoot, dan steady-state error sebagai data kualitatif. Berdasarkan hasil pengendalian, didapatkan nilai overshoot dan steady-state error yang cukup kecil yaitu 1.3% dan 1.76%.

Mixture temperature and water level control systems are common applications in industrial field. One of the process that uses the control system is water thermal mixing process. The goal of the process is to maintain a temperature and water level at expected value. The goal can be achieved by adjusting the input flow of hot and cold water plus adjust flow out on a constant value. In this study, Reinforcement Learning (RL) with Deep Deterministic Policy Gradient (DDPG) agent was applied to simulate the process in Matlab and Simulink. The training process is needed to give agents experience in controlling the process. The performance of the RL controller will be seen from several parameters such as rise time, settling time, overshoot, and steady-state error as qualitative data. Based on the control results, the overshoot and steady-state error values are quite small, namely 1.3% and 1.76%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Ranya Andjani Khairunnisa Johan
"Proses industri banyak melibatkan penggunaan coupled tank, salah satu proses yang dilakukan adalah pengendalian ketinggian cairan. Pada penelitian ini dilakukan pengendalian ketinggian air pada sistem coupled tank menggunakan Reinforcement Learning berbasis algoritma Soft Actor Critic (SAC) menggunakan MATLAB dan Simulink. Sebelum diimplementasikan ke dalam sistem coupled tank dilakukan serangkaian proses training pada algoritma SAC. Hasil dari proses training ini merupakan action dalam bentuk besar bukaan control valve. Kinerja pengendali dievaluasi menggunakan nilai rise time, settling time, overshoot, dan steady state error. Berdasarkan parameter ini, algoritma SAC dapat mengendalikan sistem dengan baik dengan rise time kurang dari 47 sekon, settling time kurang dari 62 sekon, overshoot dibawah 10%, dan steady state error kurang dari 1%. Ketika diberikan gangguan algoritma SAC dapat kembali ke keadaan stabil dalam waktu kurang dari 45 sekon.

A lot of industrial processes utilize the use of coupled tanks, with one of the processes being liquid level control. In this study, Reinforcement Learning is implemented to control the water level in the coupled tank system using Soft Actor Critic (SAC) algorithm through MATLAB and Simulink. Before being implemented into the coupled tank system, the SAC algorithm went through a series of training processes. The result of this training process is an action in the form of adjusting control valve opening percentage. The controller performance is evaluated using parameters such as rise time, settling time, overshoot, and steady state error. Based on these parameters, the SAC algorithm manages to perform well in controlling the system with a rise time of less than 47 seconds, a settling time of less than 62 seconds, overshoot of less than 10%, and steady state error below 1%. When the system received a disturbance the SAC algorithm can return to a steady state in less than 45 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa Khoirul Mumtaza
"Sistem coupled tank merupakan salah contoh penerapan sistem kontrol level industri yang memiliki karakteristik yang kompleks dengan non linieritas yang tinggi. Pemilihan metode pengendalian yang tepat perlu dilakukan untuk dapat diterapkan dalam sistem coupled tank agar dapat memberikan kinerja dengan presisi tinggi. Sejak awal kemunculannya, Reinforcement Learning (RL) telah menarik minat dan perhatian yang besar dari para peneliti dalam beberapa tahun terakhir. Akan tetapi teknologi ini masih belum banyak diterapkan secara praktis dalam kontrol proses industri. Pada penelitian ini, akan dibuat sebuah sistem pengendalian level pada sistem coupled tank dengan menggunakan Reinforcement Learning dengan menggunakan algoritma Twin Delayed Deep Deterministic Policy Gradient (TD3). Reinforcement Learning memiliki fungsi reward yang dirancang dengan sempurna yang diperlukan untuk proses training agent dan fungsi reward tersebut perlu diuji terlebih dahulu melalui trial and error. Performa hasil pengendalian ketinggian air pada sistem coupled tank dengan algoritma TD3 mampu menghasilkan pengendalian yang memiliki keunggulan pada rise time, settling time, dan peak time yang cepat serta nilai steady state eror sangat kecil dan mendekati 0%.

The coupled tank system is an example of the application of an industrial level control system that has complex characteristics with high non-linearity. It is necessary to select an appropriate control method to be applied in coupled tank systems in order to provide high-precision performance. Since its inception, Reinforcement Learning (RL) has attracted great interest and attention from researchers in recent years. However, this technology is still not widely applied practically in industrial process control. In this research, a level control system in a coupled tank system will be made using Reinforcement Learning using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm. Reinforcement Learning has a perfectly designed reward function that is required for the agent training process and the reward function needs to be tested first through trial and error. The performance of the results of controlling the water level in the coupled tank system with the TD3 algorithm is able to produce controls that have advantages in rise time, settling time, and peak time which are fast and the steady state error value is very small and close to 0%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Annisa Khoirul Mumtaza
"Sistem coupled tank merupakan salah contoh penerapan sistem kontrol level industri yang memiliki karakteristik yang kompleks dengan non linieritas yang tinggi. Pemilihan metode pengendalian yang tepat perlu dilakukan untuk dapat diterapkan dalam sistem coupled tank agar dapat memberikan kinerja dengan presisi tinggi. Sejak awal kemunculannya, Reinforcement Learning (RL) telah menarik minat dan perhatian yang besar dari para peneliti dalam beberapa tahun terakhir. Akan tetapi teknologi ini masih belum banyak diterapkan secara praktis dalam kontrol proses industri. Pada penelitian ini, akan dibuat sebuah sistem pengendalian level pada sistem coupled tank dengan menggunakan Reinforcement Learning dengan menggunakan algoritma Twin Delayed Deep Deterministic Policy Gradient (TD3). Reinforcement Learning memiliki fungsi reward yang dirancang dengan sempurna yang diperlukan untuk proses training agent dan fungsi reward tersebut perlu diuji terlebih dahulu melalui trial and error. Performa hasil pengendalian ketinggian air pada sistem coupled tank dengan algoritma TD3 mampu menghasilkan pengendalian yang memiliki keunggulan pada rise time, settling time, dan peak time yang cepat serta nilai steady state eror sama dengan 0%.

The coupled tank system is an example of the application of an industrial level control system that has complex characteristics with high non-linearity. It is necessary to select an appropriate control method to be applied in the coupled tank system in order to provide high-precision performance. Since its inception, Reinforcement Learning (RL) has attracted great interest and attention from researchers in recent years. However, this technology is still not widely applied practically in industrial process control. In this research, a level control system in a coupled tank system will be created using Reinforcement Learning using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm. Reinforcement Learning has a perfectly designed reward function that is required for the agent training process and the reward function needs to be tested first through trial and error. The performance of the results of controlling the water level in the coupled tank system with the TD3 algorithm is able to produce controls that have advantages in rise time, settling time, and peak time which are fast and the steady state error value is equal to 0%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dito Tunjung Parahyta
"Proses Thermal Mixing adalah jenis dari proses pencampuran yang penting di berbagai industri, seperti industri pangan, pupuk, farmasi, material sampai petrochemical. Proses Thermal Mixing merupakan proses Multi input multi ouput (MIMO), karena bekerja dengan mengendalikan dua flow air panas dan air dingin untuk mengendalikan temperatur dan level campuran. Meskipun memiliki respon yang kurang baik untuk mengendalikan MIMO, namun PID masih banyak digunakan karena kesederhanaannya. Algoritma non konvensional yang lebih baik seperti fuzzy control memiliki kerumitan yang tinggi dibanding PID. Algoritma Adaptive Fuzzy PID Controller (AFPIDC) merupakan gabungan dari keduanya, memiliki basis PID yang cukup sederhana namun ditambahkan aspek Fuzzy untuk mempercepat pengendalian dengan cara mengubah konstanta PID secara real-time (on the fly). Algoritma AFPIDC ini diterapkan pada simulasi sistem pengendalian temperatur dan level air pada proses water Thermal Mixing dan dilakukan pada program MATLAB/SIMULINK di PC. Fuzzy yang digunakan memiliki dua input berupa error dan perubahan error, dan memiliki tiga output berupa perubahan nilai konstanta PID. Pengujian sistem dilakukan dengan simulasi perubahan setpoint dan gangguan berupa kebocoran flow. Dari hasil pengujian sistem, pengendali AFPIDC memiliki performa yang lebih baik dari PID dalam mengendalikan temperatur dan level pada sistem. Dalam pengendalian temperatur, didapatkan nilai settling time PID sebesar 830 detik, AFPIDC sebesar 328 detik dan untuk nilai overshoot PID 6,3% dan AFPIDC 0%. Untuk pengendalian level didapatkan settling time PID 3221 detik dan AFPIDC 235 detik dengan nilai overshoot PID 10,5% dan AFPIDC 0%. Dari pengujian sistem terhadap gangguan kebocoran, pengendali temperatur membutuhkan waktu untuk kembali stabil pada PID 780 detik, AFPIDC 250 detik. Sedangkan untuk pengendalian level untuk kembali stabil membutuhkan waktu PID 4510 detik, AFPIDC 225 detik.

The Thermal Mixing Process is a type of mixing process that is important in various industries, such as the food, fertilizer, pharmaceutical, material to petrochemical industries. The Thermal Mixing Process is a multiple-input multiple-output process (MIMO), because it works by controlling hot water and cold-water flows to control the temperature and level of the mixture. Although it has a poor response to control MIMO system, PID is still widely used because of its simplicity. There are some better control algorithm, such as fuzzy control, but have higher complexity than PID. The Adaptive Fuzzy PID Control (AFPIDC) algorithm is a combination of the two, has a simple PID basis with added Fuzzy aspects to speed up control by changing the PID constant in realtime. The AFPIDC algorithm is applied to the simulation of temperature and water level control systems in the process of water Thermal Mixing and is done on the MATLAB/SIMULINK program on a PC. The fuzzy algorithm uses two inputs in the form of errors and changes in errors and has three outputs in the form of changes in the value of the PID constant. System testing is done by simulating setpoint changes and disruption in the form of leakage flow. From the results of system testing, AFPIDC controllers have better performance than PID in controlling temperature and level in the system. In temperature control, the PID settling time is 830 seconds, AFPIDC is 328 seconds and the PID overshoot is 6,3% and AFPIDC is 0%. In level control, the settling time of PID is 3221 seconds while AFPIDC is 235 seconds with PID overshoot is 10,5% while AFPIDC 0%. From testing the system with leakage disturbance, the temperature controller needs time to regain stability at PID 780 seconds, AFPIDC 250 seconds. Meanwhile the level controlling stabilizes at PID 4510 seconds, and AFPIDC at 225 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dandung Sektian
"Pengendalian ketinggian atau biasa disebut Level Controller adalah hal yang penting di berbagai bidang industri, termasuk industri kimia, industri minyak bumi, industri pupuk, industri otomatif dan lain-lainnya. Pada penelitian ini, dirancang sebuah pengendali non-konvesional menggunakan Reinforcement Learning dengan Twin Delayed Deep Deterministic Polic Gradient (TD3). Agent ini diterapkan pada sebuah miniature plant yang berisi air sebagai fluidanya. Miniature plant ini disusun dengan berbagai komponen yaitu flow transmitter, level transmitter, ball-valve, control valve, PLC, dan pompa air. Kontroler agent TD3 dirancang menggunakan SIMULINK Matlab di computer. Data laju aliran dan ketinggian air diambil melalui flow transmitter dan level transmitter yang dikoneksikan dengan OPC sebagai penghubung antara Matlab ke SIMULINK. Penerapan agent TD3 pada sistem pengendalian ketinggian air digunakan pada dua kondisi yaitu secara riil plant dan simulasi. Dari penelitian ini didapatkan, bahwa kontroler agent TD3 dapat mengendalikan sistem dengan baik. overshoot yang didapatkan kecil yaitu 0,57 secara simulasi dan 0,97 secara riil plant.

In this study, the level controller is the most important in many industry fields, such as chemical industry, petroleum industry, automotive industry, etc., a non-conventional controller using Reinforcement Learning with Twin Delayed Deep Deterministic Policy Gradient (TD3) agent was designed. This agent was implemented in water contain the miniature plant. This miniature plant consists of many components: flow transmitter, level transmitter, ball-valve, control valve, PLC, and water pump. Agent controller was designed using SIMULINK Matlab on a computer, which obtained flow rate and height information comes from flow transmitter and level transmitter connected to OPC that link between Matlab to SIMULINK. Implementation of TD3 to control water level system used two conditions, in real plant and simulation. In this study, we obtain that the TD3 agent controller can control the designs with a slight overshoot value, namely 0,57 in the simulation and 0,97 in the real plant."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nur Fadilah Yuliandini
"Sistem Coupled tank umum digunakan pada bidang industri otomatis, salah satu pengendalian yang umum terjadi pada coupled tank adalah pengendalian ketinggian air. Sistem pengendalian tersebut bertujuan untuk menjaga ketinggian air yang berada pada tangki. Penelitian ini melakukan simulasi pengendalian ketinggian air pada coupled tank dengan menerapkan Reinforcement Learning (RL) dengan algoritma Deep Deterministic Policy Gradient (DDPG). Proses simulasi tersebut dilakukan menggunakan simulink pada MATLAB. Algoritma DDPG melalui serangkaian training sebelum diimplementasikan pada sistem coupled tank. Kemudian pengujian algoritma DDPG dilakukan dengan memvariasikan nilai set point dari ketinggian air dan sistem diberikan gangguan berupa bertambahnya flow in dari control valve lain. Performa dari algorima DDPG dalam sistem pengendalian dilihat dari beberapa parameter seperti overshoot, rise time, settling time, dan steady state error. Hasil yang diperoleh pada penelitian ini bahwa algoritma DDPG memperoleh nilai settling time terbesar sebesar 109 detik, nilai steady state error terbesar sebesar 0.067%. Algoritma DDPG juga mampu mengatasi gangguan dengan waktu terbesar sebesar 97 detik untuk membuat sistem kembali stabil.

The Coupled Tank system is commonly used in the field of industrial automation, and one of the common controls implemented in this system is water level control. The purpose of this study is to simulate water level control in a coupled tank using Reinforcement Learning (RL) with the Deep Deterministic Policy Gradient (DDPG) algorithm. The simulation process is performed using Simulink in MATLAB. The DDPG algorithm undergoes a series of training sessions before being implemented in the coupled tank system. Subsequently, the DDPG algorithm is tested by varying the set point values of the water level and introducing disturbances in the form of increased flow from another control valve. The performance of the DDPG algorithm in the control system is evaluated based on parameters such as overshoot, rise time, settling time, and steady-state error. The results obtained in this study show that the DDPG algorithm achieves a maximum settling time of 109 seconds and a maximum steady-state error of 0.067%. The DDPG algorithm is also capable of overcoming disturbances, with the longest recovery time of 97 seconds to restore system stability."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hans Budiman Yusuf
"Sistem pengendalian temperatur dan kelembaban merupakan bagian dari sistem HVAC (Heating, Ventilation, and Air Conditioning) yang merupakan salah satu contoh sistem pengendalian yang banyak digunakan dalam berbagai sektor industri. Pengaturan temperatur dan kelembaban tersebut mempengaruhi kondisi ruangan yang umumnya dalam sektor industri digunakan sebagai tempat penyimpanan. Pengendalian temperatur dan kelembaban yang baik akan menjaga kualitas dari objek yang disimpan. Namun penggunaan sistem HVAC juga memberikan tanggungan biaya yang cukup besar untuk dapat beroperasi, sehingga dibutuhkan suatu sistem yang mempunyai kinerja yang lebih baik dan dapat meminimalisir biaya yang dikeluarkan untuk pengoperasian sistem. Penelitian ini bertujuan untuk melakukan pengendalian temperatur dan kelembaban yang baik dengan menggunakan Agent Reinforcement Learning dengan algoritma Deep Determinisitic Policy Gradient (DDPG) pada perangkat lunak MATLAB dan SIMULINK serta membandingkan hasil pengendalian berupa respon transiennya terhadap pengendalian berbasis pengendali PI. Hasil penelitian ini menunjukan bahwa sistem HVAC dapat dikendalikan lebih baik oleh Agent RL DPPG dibandingkan dengan pengendali PI yang ditandai dengan respon transien seperti settling time yang lebih unggul 55,84% untuk pengendalian temperatur dan 96,49% untuk pengendalian kelembaban. Kemudian rise time yang lebih cepat mencapai < 3 detik untuk mencapai nilai set point temperatur dan kelembaban.

The temperature and humidity control system is a part of the HVAC (Heating, Ventilation, and Air Conditioning) system, which is an example of a control system widely used in various industrial sectors. The regulation of temperature and humidity significantly affects the conditions of indoor spaces commonly utilized as storage areas in industrial settings. Proper temperature and humidity control are essential to maintain the quality of stored objects. However, the use of HVAC systems also comes with substantial operational costs, necessitating the development of a more efficient system that can minimize operational expenses. This research aims to achieve effective temperature and humidity control using the Agent Reinforcement Learning approach with the Deep Deterministic Policy Gradient (DDPG) algorithm implemented in MATLAB and SIMULINK software. The study also compares the control results, particularly the transient response, with those obtained from the Proportional-Integral (PI) controller-based system. The research findings demonstrate that the HVAC system can be better controlled by the Agent RL DPPG, as evidenced by superior transient responses, with a 55.84% improvement in settling time for temperature control and a 96.49% improvement for humidity control. Additionally, the rise time achieved is less than 3 seconds to reach the set point for both temperature and humidity."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>