Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 143030 dokumen yang sesuai dengan query
cover
Muhammad Feriansyah Raihan Taufiq
"Citra hiperspektral memiliki jumlah spektral dari suatu objek dengan rentang spektrum yang lebih luas dibandingkan dengan citra RGB. Suatu citra hiperspektral memberikan informasi yang jauh lebih banyak kegunaannya sebagai analisa suatu kasus dibandingkan dengan citra RGB. Salah satu pengaplikasian dengan menggunakan citra hiperspektral yaitu pengukuran suatu kadar tertentu dalam suatu objek. Namun, citra hiperspektral sulit diperoleh dikarenakan memiliki sistem akuisisi yang tidak sederhana. Faktor tersebut dikarenakan pencitraan berbasis citra hiperspektral menggunakan kamera yang mahal, perangkat keras pendukung sistem akuisisi yang kompleks, beserta ukuran citra yang lebih besar dibandingkan dengan citra RGB. Oleh karena itu, penelitian ini melakukan rekonstruksi citra hiperspektral dari citra RGB menggunakan algoritma convolutional neural network dengan arsitektur dense block untuk studi kasus sistem prediksi kadar karotenoid pada daun bisbul. Penelitian ini menghasilkan citra hiperspektral rekonstruksi dari citra RGB yang diperoleh dari proses konversi, beserta citra RGB yang diperoleh dari kamera RGB. Citra hiperspektral yang direkonstruksi pada penelitian ini yaitu berada pada rentang target panjang gelombang 400 nm hingga 1000 nm dengan target jumlah bands sebanyak 112. Algoritma rekonstruksi yang digunakan pada penelitian ini yaitu convolutional neural network dengan arsitektur dense blocks. Pembangunan model rekonstruksi citra pada penelitian ini, yaitu dengan memvariasikan jumlah dense block beserta target rentang dan jumlah panjang gelombang yang akan direkonstruksi. Variasi ini bertujuan untuk mencari model rekonstruksi citra yang optimal untuk merekonstruksi citra hiperspektral dari citra RGB. Lalu, citra hiperspektral rekonstruksi akan digunakan untuk membangun model prediksi kadar karotenoid pada daun bisbul berbasis algoritma machine learning XGBoost, kemudian model prediksi kadar karotenoid berbasis citra hiperspektral rekonstruksi akan dibandingkan dengan model prediksi kadar karotenoid berbasis citra hiperspektral asli. Hasil eksperimen memaparkan bahwa model rekonstruksi citra dengan jumlah dense block sebanyak 30 memiliki performa terbaik, dengan target rentang panjang gelombang 400 nm hingga 1000 nm dan target jumlah bands sebanyak 112. Performa model rekonstruksi citra dengan variasi tersebut memiliki RMSE sebesar 0,0743 dan MRAE sebesar 0,0910. Lalu, performa model prediksi kadar berbasis citra hiperspektral rekonstruksi memiliki RMSE sebesar 0,0565 dan MRAE sebesar 0,0963. Evaluasi kualitatif citra hiperspektral rekonstruksi memiliki pola signatur spektral yang sama dengan citra hiperspektral asli.

Hyperspectral image has the spectral number of an object with a wider spectrum range than RGB image. As a some case analysis, a hyperspectral image is far more useful than RGB image. The measurement of contents in an object is one of the applications of the hyperspectral imagery. However, hyperspectral image is difficult to obtain due to a complicated acquisition system. This is down to the fact that hyperspectral imaging requires more expensive cameras, complex system support devices and have a larger size than RGB images. Therefore, this study reconstruct hyperspectral image using RGB images using a convolutional neural network with dense blocks architecture for a case study of a carotenoid content prediction in (Diospyros discolor Willd.) leaves. This research produces a reconstructed hyperspectral image from the RGB image obtained from the conversion process, and an RGB image obtained from the RGB camera. This study’s reconstructed hyperspectral image has a wavelength target from 400 nm to 1000 nm and a number of bands up to 112. This study’s reconstruction algorithm is a convolutional neural network with dense blocks architecture. In this study, an image reconstruction model is built by varying the number of dense block, target range and number of wavelengths to be reconstructed. The purpose of this variation is to find the best image reconstruction model for constructing hyperspectral images from RGB images. The reconstructed hyperspectral images will then be used to build a prediction model of carotenoid levels in (Diospyros discolor Willd.) leaves using the XGBoost machine learning algorithm, and this model will be compared to the original hyperspectral image based on carotenoid content prediction model. The experimental results indicate that the image reconstruction model with a dense block of 30 and a target wavelength range from 400 nm to 1000 nm with band number consist of 112 performs the best. The image reconstruction model performs well with these variations, with an RMSE of 0,0743 and an MRAE of 0,0910. The RMSE and MRAE of the reconstructed hyperspectral image for carotenoid content prediction model are 0,0565 and 0,0963, respectively. The qualitative evaluation of the reconstructed hyperspectral image has the same spectral signatur pattern as the original hyperspectral image."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ali Muhammad Ali
"Citra hiperspektral memiliki informasi dalam rentang spektrum yang luas melebihi rentang spektrum yang ada pada citra RGB sebagai citra yang umum digunakan sehari-hari saat ini. Informasi tersebut dapat dimanfaatkan dalam berbagai macam bidang; salah satunya adalah pengukuran kadar tertentu dalam suatu objek. Namun, kamera hiperspektral sebagai alat akuisisi citra memiliki kekurangan yaitu harganya yang mahal, tidak mudah dioperasikan, ukuran hasil citra yang besar, serta memerlukan teknik dan perangkat khusus saat mengakuisisi citra. Hal tersebut berbeda dengan kamera RGB yang memiliki harga yang jauh lebih murah, hasil citra berukuran kecil, serta mudah dioperasikan. Penelitian ini melakukan implementasi sistem rekonstruksi citra hiperspektral dari citra RGB berbasis convolutional neural network ResNet pada sistem prediksi kadar fenolik daun bisbul. Terdapat proses rekonstruksi citra hiperspektral dengan target jumlah bands sebanyak 224 pada rentang panjang gelombang 400 sampai 1000 nm. Penelitian ini menggunakan algoritma model ResNet untuk model rekonstruksi citra, serta algoritma model XGBoost untuk model prediksi kadar. Performa model yang dihasilkan dalam penelitian ini adalah RMSE sebesar 0,1129 dan MRAE sebesar 0,3187 untuk model rekonstruksi citra, serta RMSE sebesar 0,5798 dan MRAE sebesar 0,1431 untuk model prediksi kadar. Citra hiperspektral hasil rekonstruksi mampu menghasilkan pola spectral signature yang serupa dengan citra hiperspektral asli.

Hyperspectral images have much information within their large spectrum area; larger than RGB images which are used daily nowadays. The information can be used in many applications; one of them is content measurement of an object. However, hyperspectral cameras as an image acquisition instrument have disadvantages, such as high cost, not easy to operate, large image results, and require additional equipment in its image acquisition. This is different from RGB cameras which have cheaper price, smaller in image size, and easier to operate. This study implemented a hyperspectral image reconstruction system from RGB images based on the ResNet convolutional neural network on the velvet apple leaf’s phenolic content prediction system. This study reconstructs hyperspectral images with a total target of 224 bands in the wavelength range of 400 to 1000 nm. This study uses the ResNet model algorithm for the image reconstruction model, and the XGBoost model algorithm for the content prediction. The performance of the model produced in this study is RMSE of 0.1129 and MRAE of 0.3187 for the image reconstruction model, as well as RMSE of 0.5798 and MRAE of 0.1431 for the content prediction model. The reconstructed hyperspectral image can produce the same spectral signature pattern as the original hyperspectral image."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Putri Azizah Hana Rosa
"Pencitraan hiperspektral dapat diaplikasikan pada berbagai bidang. Salah satunya adalah pengukuran kadar suatu zat yang terkandung dalam suatu objek. Namun, pencitraan berbasis kamera hipespektral mempunyai kelemahan, yaitu mahal, besar, memerlukan perangkat keras tambahan yang kompleks, dan ukuran data citranya yang besar. Sebaliknya citra RGB memiliki perangkat yang jauh lebih sederhana, harga kamera yang lebih murah, dan ukuran data yang lebih kecil. Oleh karena itu, penelitian ini mengusulkan sistem prediksi kadar flavonoid dalam daun Bisbul (Diospyros discolor Willd.) menggunakan citra RGB yang direkonstruksi menjadi citra hiperspektral. Arsitektur model rekonstruksi yang diusulkan pada penelitian ini adalah U-ResNet, penggabungan arsitektur U-Net dengan Res-Net. Penelitian ini mencari arsiktektur rekonstruksi dan ukuran target yang optimal untuk melakukan rekonstruksi citra hiperspektral dan prediksi kadar. Setelah didapatkan arsitektur yang optimal, prediksi kadar flavonoid dilakukan menggunakan algoritma XGBoost dengan memvariasikan ukuran input sesuai hasil rekonstruksi. Hasil penelitian menunjukkan jumlah band sebanyak 224 dan rentang panjang gelombang 400-1000nm merupakan target rekontruksi yang optimal untuk sistem prediksi kadar flavonoid berbasis citra RGB. Sistem yang disarankan memiliki performa rekonstruksi RMSE sebesar 0,0961 dan MRAE sebesar 0,1955, serta performa prediksi kadar RMSE sebesar 29,818 dan MRAE sebesar 0,1080. Kesimpulannya, pengukuran kadar flavonoid dapat dilakukan menggunakan citra hiperspektral hasil rekonstruksi untuk menggantikan kamera hiperspektral.

Hyperspectral imaging can be applied in various fields. One of them is the content measurement of a substance contained in an object. However, hyperspectral camera-based imaging has disadvantages, namely expensive, large, requires complex additional hardware, and large image data size. In contrast, RGB images have much simpler tools, cheaper cameras, and smaller data sizes. Therefore, this study proposes a prediction system for flavonoid content in Bisbul (Diospyros discolor Willd.) leaves using an RGB image reconstructed into a hyperspectral image. The architecture of the reconstruction model proposed in this research is U-ResNet, combining U-Net architecture with Res-Net. This research is looking for optimal reconstruction architecture and target size for hyperspectral image reconstruction and flavonoid content prediction. After obtaining the optimal architecture, the prediction of flavonoid content was carried out using the XGBoost algorithm by varying the input size according to the reconstruction results. The results showed that reconstruction target with 224 bands within of 400-1000nm wavelength range was the optimal reconstruction target for the RGB image-based flavonoid content prediction system. The recommended system has an RMSE reconstruction performance of 0.0961 and an MRAE of 0.1955, and an RMSE content prediction performance of 29.818 and an MRAE of 0.180. In conclusion, measurement of flavonoid content can be carried out using reconstructed hyperspectral images to replace hyperspectral cameras."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eufrat Tsaqib Qasthari
"Sistem prediksi berbasis citra hiperspektral dapat diimplementasi dengan algoritma deep neural networks (DNN). Di penelitian ini, daun bisbul (Diospyros discolor Willd.) digunakan sebagai sampel dengan citra dari daun yang diakuisisi pada rentang gelombang 400-1000nm. Model pada penelitian ini bekerja dengan melakukan klasifikasi daun bisbul dan prediksi kadar polifenol pada daun bisbul. Sistem klasifikasi pada penelitian ini menggunakan algoritma DNN untuk membagi kelas menjadi daun bisbul, bukan daun bisbul dan teflon, model yang digunakan adalah model dense dan Stacked Auto Encoder (SAE) yang menggunakan fungsi loss categorical cross-entropy. Kedua sistem klasifikasi tersebut mampu meraih performa maksimum dengan akurasi 100%. Pada sistem prediksi kandungan polifenol dibagi menjadi dua yaitu senyawa flavonoid dan fenolik. Menggunakan model DNN yang belum teroptimasi dan masih dangkal model dapat memprediksi senyawa flavonoid dengan performa R2 pada 70,47% dan senyawa fenolik dengan performa R2 pada 70,08%. Lalu model tersebut diatur sedemikian rupa sehingga mendapatkan hyperparameter terbaik dan arsitektur yang lebih dalam, model ini dapat memprediksi kadar flavonoid dengan performa R2 pada 94,50% dan kadar senyawa fenolik dengan performa R pada 71,51%.

Prediction system based on hyperspectral imaging can be implemented with deep neural networks (DNN) algorithm. In this research, velvet apple leaves (Diospyros discolor Willd.) are used as a sample with image of leaves that have been acquired within the 400-1000nm wavelength. The working of the model in this research is based on classification of the velvet apple leaf and the prediction of the levels of polyphenol in it. DNN algorithm is used for the classification system to categorize the sample either actual velvet apple leaf, non-velvet apple leaf, and a teflon, with Dense DNN and Stacked Auto Encoder (SAE) as the models with categorical cross-entropy as the loss function. In both classification system are shown to be capable of archieving maximum performance with the accuration of 100%. A prediction system to predict polyphenol content that are divided into flavonoid and fenolic compounds. Using an unoptimized and shallow DNN model, it predict the flavonoid compound with the R2 performance of 70,47% and phenolic compound with the R2 performance of 70,08%. Furthermore, the model are configured so it can get the best hyperparameters and a more deep architecture, this model can predict of flavonoid with a R2 performance of 94,50% and phenolic with a R2 performance of 71,51%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aditya Bariq Ikhsan
"Kandungan total karotenoid dalam tumbuhan umumnya diukur menggunakan analisis spektrofotometri, dengan sifatnya yang merusak sampel terdapat batasan yang bisa dilakukan untuk penelitian selanjutnya. Digunakan pencitraan hiperspektral menggabungkan analissi spektral dan spasial yang bersifat tidak merusak sampel. Timbul masalah terutama pada bagian algoritma untuk membuat sistem prediksi pada citra hiperspektral karena diperlukan algoritma dengan akurasi yang tepat dan cepat. Penelitian ini membahas tentang komparasi algoritma pembelajara mesin metode ensemble dengan menambahkan tuning hyperparameter menggunakan random search dan memanfaatkan seleksi fitur yang dimiliki tiap model untuk meningkatkan performa dan mengurangi waktu latih model prediksi kadar karotenoid pada daun Bisbul. Sistem prediksi menghasilkan performa dasar, random forest dengan semua fitur memiliki RMSE sebesar 38,16, serta R2 sebesar 0,95, dan waktu latih 4,27s, xgboost dengan semua fitur memiliki RMSE sebesar 39,82, serta R2 sebesar 0,95, dan waktu latih 0,83s, lightgbm dengan semua fitur memiliki RMSE sebesar 35,59, serta R2 sebesar 0,96, dan waktu latih 1,73s, catboost dengan semua fitur memiliki RMSE sebesar 31,60, serta R2 sebesar 0,97, dan waktu latih 17,34s. Dengan menggunakan fitur hasil seleksi dan I, performa sistem berhasil ditingkatkan, random forest tuning dengan 30 fitur memiliki RMSE sebesar 34,39, serta R2 sebesar 0,96, dan waktu latih 5,85s, xgboost tuning dengan 120 fitur memiliki RMSE sebesar 33,32, serta R2 sebesar 0,96, dan waktu latih 1,73s, lightgbm tuning dengan 50 fitur memiliki RMSE sebesar 32,24, serta R2 sebesar 0,97, dan waktu latih 0,22s, catboost tuning dengan 40 fitur memiliki RMSE sebesar 28,53, serta R2 sebesar 0,97, dan waktu latih 4,92s. Secara umum Catboot memiliki peningkatan RMSE paling tinggi, lightgbm memiliki peningkatan waktu latih paling tinggi.

The total carotenoid content in plants is generally measured using spectrophotometric analysis, with its destructive to the sample there are limitations that can be done for further research. Hyperspectral imaging combining spectral and spatial analysis is used that is not destructive to the sample. Problems arise, especially in the algorithm section to create a prediction system on hyperspectral images because an algorithm with precise and fast accuracy is required. This study discusses the comparations of machine learning algorithm with the ensemble method by adding hyperparameter tuning using random search and utilizing the feature selection of each model to improve performance and reduce training time for predictive models of carotenoid levels in velvet leaves. The prediction system produces basic performance, random forest with all features has RMSE of 38.16, and R2 of 0.95, and training time of 4.27s, xgboost with all features has RMSE of 39.82, and R2 of 0.95, and training time of 0.83s, lightgbm with all features has an RMSE of 35.59, and R2 of 0.96, and training time of 1.73s, catboost with all features has an RMSE of 31.60, and R2 of 0.97, and training time 17.34s. By using the selected features and I, system performance has been successfully improved, random forest tuning with 30 features has an RMSE of 34.39, and R2 of 0.96, and training time of 5.85s, xgboost tuning with 120 features has an RMSE of 33, 32, and R2 of 0.96, and training time of 1.73s, lightgbm tuning with 50 features has RMSE of 32.24, and R2 of 0.97, and training time of 0.22s, catboost tuning with 40 features has an RMSE of 28.53, and R2 is 0.97, and training time is 4.92s. In general Catboot has the highest increase in RMSE, lightgbm has the highest increase in training time."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Naufal Alharits Sadly
"Sistem prediksi kadar fenolik pada daun Bisbul (Diospyros discolor Willd.) berbasis citra hiperspektral visible and near-infrared (VNIR) terbukti mampu dibuat dan mendapatkan hasil dengan nilai yang baik. Kamera hiperspektral dengan rentang panjang gelombang 400-1000 nm digunakan dalam mengakuisisi citra VNIR pada daun Bisbul. Penelitian ini membahas mengenai komparasi dari beberapa model regresi baru dengan penelitian terdahulu yang diharapkan bisa mendapatkan hasil yang lebih baik dalam memprediksi kadar fenolik pada daun Bisbul. Digunakan tiga model regresi dalam membuat sistem prediksi ini yaitu model Partial Least Square Regression (PLSR), Random Forest, dan XGBoost Regressor. Sistem Prediksi menggunakan PLSR menghasilakan sebesar 3,62 (RMSE test), 0,81 (R2 test), nilai akurasi sebesar 91,3%, dan waktu training 0,27 detik. Sistem Prediksi menggunakan Random Forest tanpa menggunakan seleksi fitur menghasilakan sebesar 4,04 (RMSE test), 0,81 (R2 test), nilai akurasi sebesar 90,86%, dan waktu training 17,81 detik. Sistem Prediksi menggunakan Random Forest dengan seleksi fitur menghasilakan sebesar 3,84 (RMSE test), 0,79 (R2 test), nilai akurasi sebesar 91,31%, dan waktu training 19,05 detik. Sistem Prediksi menggunakan XGBoost Regressor dengan menghasilakan sebesar 3,48 (RMSE test), 0,83 (R2 test), nilai akurasi sebesar 91,1%, dan waktu training 24,9 detik. Performa terbaik dihasilkan oleh model XGBoost Regressor dengan sedikit perbedaan dengan PLSR. Model XGBoost Regressor berhasil meningkatkan performa sebesar 14% pada RMSE dan 2% pada R2 berbanding dengan PLSR.

Phenolic levels prediction system on Bisbul leaves (Diospyros discolor Willld.) Based on visible and near-infrared (VNIR) hyperspectral images proved to be able to be made and get results with good values. Hyperspectral camera with a wavelength range of 400-1000 nm is used in acquiring VNIR images on Bisbul leaves. This study discusses the comparison of several new regression models with previous studies that are expected to get better results in predicting phenolic levels in Bisbul leaves. Three regression models are used in making this prediction system, namely the Partial Least Square Regression (PLSR), Random Forest, and XGBoost Regressor models. The prediction system using PLSR produces 3.62 (RMSE test), 0.81 (R2 test), an accuracy of 91.3%, and a training time of 0.27 seconds. The prediction system uses Random Forest without using the selection feature with results of 4.04 (RMSE test), 0.81 (R2 test), an accuracy of 90.86%, and a training time of 17.81 seconds. The prediction system using Random Forest with feature selection resulted in 3.84 (RMSE test), 0.79 (R2 test), an accuracy of 91.31%, and a training time of 19.05 seconds. The prediction system using the XGBoost Regressor produces 3.48 (RMSE test), 0.83 (R2 test), an accuracy of 91.1%, and training time of 24.9 seconds. The best performance is produced by XGBoost Regressor with a slight difference from PLSR. The XGBoost Regressor model managed to improve performance by 14% on RMSE and 2% on R2 compared to PLSR."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rezika Damayanti
"Jagung (Zea mays L.) merupakan salah satu tanaman serelia atau tanaman biji-bijian yang menjadi bahan pangan utama terpenting setelah padi dan gandum di dunia. Komoditas jagung dinilai sangat penting karena memiliki fungsi multiguna sebagai bahan pangan, bahan baku industri, bahan pakan ternak dan bahan bakar nabati. Seiring dengan kebutuhan jagung yang kian naik dari tahun ke tahunnya, kekurangan produksi dalam pasokan jagung global dan kenaikan harga input jagung menjadi hal yang harus diperhatikan karena memiliki dampak yang serius. Salah satu ancaman utama bagi produksi jagung adalah penyakit daun jagung yang disebabkan oleh jamur, beberapa diantaranya adalah Gray leaf spot, Northern leaf blight, dan Common rust. Gray leaf spot, Northern leaf blight, dan Common rust dapat menyebabkan hilangnya hasil panen sekitar 50%-70% di beberapa daerah penghasil jagung di dunia. Oleh karena itu, salah satu cara yang dapat dilakukan untuk mengurangi resiko kegagalan produksi jagung adalah mengambil langkah-langkah pencegahan dengan pendeteksian dini pada penyakit daun jagung melalui citra digital. Pada penelitian ini, digunakan pendekatan deep learning dengan metode Convolutional Neural Network (CNN) arsitektur ResNet-50 yang merupakan salah satu metode yang paling baik dalam mengolah citra digital. Data yang digunakan adalah Maize or Corn Dataset oleh Smaranjit Ghose dan diambil dari Kaggle yang merupakan online database. Setelah itu, dilakukan tahapan mengolah data citra dengan melakukan preprocessing data yang bertujuan agar meningkatkan akurasi seperti mengubah ukuran dan melakukan flip horizontal kemudian rotasi. Hasil penelitian menunjukkan bahwa Convolutional Neural Network ResNet-50 dengan menggunakan fungsi optimasi Adam dapat mendeteksi penyakit daun jagung dengan sangat baik. Hasil tersebut diperoleh dari 5 kali percobaan simulasi pada setiap skenario kasus yang menghasilkan rata-rata nilai training dan validation accuracy sebesar 98,68% dan 97,86%. Kemudian, rata-rata hasil accuracy testing, recall macro, recall micro, precision macro dan precision micro terbaik diperoleh dengan hasil masing-masing sebesar sebesar 97,49%, 97,13%, 97,53%, 96,69% dan 97,87%.

Maize (Zea Mays L.) is one of the cereal plants or grain crops that become an important food ingredient after rice and wheat in the world. Maize is also considered very important because it has a multi-purpose function as food, industrial raw materials, animal feed ingredients, and biofuels. Along with increasing demand for maize from year to year, lack of production for global maize supply and increase of maize price is one thing that needs more attention because it has a serious impact. One of the main threats to maize production is maize leaf disease that is caused by fungi, some of them are Gray leaf spot, Northern leaf blight, and Common rust. Gray leaf spot, Northern leaf blight, and Common rust can lead to reduced yields of about 50%-70% in some maize-producing areas. Therefore, one method that can be done to reduce the failure of maize production is taking preventive measures by detecting disease using digital images. This study uses deep learning methods by Convolutional Neural Network (CNN) ResNet-50 architecture, which is one of the best methods in processing digital images. The data used in this study is Maize or Corn Dataset by Smaranjit Ghose and taken from Kaggle which is an online database. After that, the stages of processing image data are carried out by preprocessing data to increase accuracies such as resizing and doing horizontal flips and rotations. The results showed that the Convolutional Neural Network ResNet-50 using the Adam optimization function could detect maize leaf disease very well. These results were obtained from 5 simulations experiments in each case scenario which resulted in an average value of training and validation accuracy of 98.68% and 97.86. Then, the average results of the best accuracy testing, recall macro, recall micro, precision macro, and precision micro were obtained with results of 97.49%, 97.13%, 97.53%, 96.69%, and 97,87%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Prasetya
"Berdasarkan dari situs arsip Mahkamah Agung, saat ini terdapat 64 laporan kasus penjualan daging ayam bangkai di Indonesia. Hal ini menjadi persoalan karena bisa jadi masih banyak kasus yang tidak terungkap karena belum memiliki instrumen atau alat ukur untuk mengetahui perbedaan dari daging ayam bangkai ataupun sehat. Salah satu teknik pengukuran yang sedang berkembang dengan menggunakan citra. Teknik pengukuran citra sangatlah efisien untuk melakukan pengukuran karena tidak memerlukan alat dan bahan tambahan serta tidak menghancurkan terlebih dahulu sampelnya. Salah satu pengambilan citra dengan menggunakan hiperspektral merupakan teknik yang cukup baik karena hiperspektral memiliki band yang bervariatif dan dapat melakukan pendeteksian multi parameter. Citra hiperspektral memiliki spektrum yang luas dari spektrum citra RGB. Spektrum tersebut dapat menjadikan informasi yang digunakan dalam melakukan pengukuran kadar dalam suatu objek. Namun, dalam pengukuran menggunakan hiperspektral membutuhkan biaya yang tinggi dan membutuhkan penyimpanan data yang besar. Oleh Karena itu, salah satu metode yang di lakukan adalah melakukan rekonstruksi dari bentuk citra RGB menjadi citra Hiperspektral. Citra RGB dapat digunakan dalam kehidupan sehari – hari dan penyimpanan dari citra RGB lebih kecil ukurannya. Maka, Penelitian ini melakukan Implementasi Dual Dense Convolutional Neural Network  untuk Rekonstruksi citra Visible Nearinfrared dan Klasifikasi Daging Ayam Bangkai. Dual Dense CNN merupakan gabungan dari Dense Block CNN untuk melakukan rekontruksi citra hiperspektral dari RGB dan DenseNet untuk klasifikasi citra hiperspektral. Variasi jumlah band target rekonstruksi dilakukan dengan tujuan memperoleh performa model terbaik pada model rekonstruksi dan klasifikasi. Performa model rekonstruksi terbaik diperoleh pada jumlah band 112 dengan nilai RMSE sebesar 0.0012 dan nilai MAE sebesar 0.0269. Sedangkan performa model klasifikasi terbaik direntang band 224 dengan akurasi training varietas ayam 86,00% dan status daging 97,65% serta memiliki nilai presisi dari varietas 91,00% dan 98,00% untuk status daging. Hasil pengujian dengan sistem klasifikasi dan rekonstruksi arsitektur Dual Dense CNN dapat dilakukan dengan citra RGB.

Until now, Indonesia has reported 64 cases of selling carcass chicken meat. This is a problem because there may still be many cases that are not uncovered because they do not yet have instruments or measuring instruments to find out the difference between carcass and healthy chicken meat. One measurement technique that is being developed is using imagery. Image measurement techniques are very efficient for making measurements because they do not require additional tools and materials and do not destroy the sample first. One of the image capture using Hyperspectral is a fairly good technique because Hyperspectral has varied bands and can perform multi-parameter detection. Hyperspectral image has a broad spectrum of the RGB image spectrum. The spectrum can make information used in measuring levels in an object. However, measurements using hyperspectral require high costs and require large data storage. Therefore, one of the methods used is to perform a reconstruction from the form of an RGB image to a hyperspectral image. RGB images can be used in everyday life and storage of RGB images is smaller in size. So, this research implements the Dual Dense Convolutional Neural Network for Visible Nearinfrared Image Reconstruction and Classification of Carrion Chicken Meat. Dual Dense CNN is a combination of Dense Block CNN to perform hyperspectral image reconstruction from RGB and DenseNet for hyperspectral image classification. Variation of the number of reconstruction target bands was carried out with the aim of obtaining the best model performance in the reconstruction and classification models. The best reconstruction model performance is obtained in the number of bands 112 with an RMSE value of 0.0012 and an MAE value of 0.0269. While the performance of the best classification model spanned band 224 with a training accuracy of 86.00% for chicken varieties and 97.65% for meat status and had a precision value of 91.00% for varieties and 98.00% for meat status. The results of testing the classification modeling and reconstruction of the Dual Dense CNN architecture can be done with RGB images."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Fakhry Arief Fabian
"Tanaman karet berperan sebagai komoditas penting di Indonesia karena menghasilkan karet alami yang memiliki banyak manfaat dan mampu bersaing di pasar internasional. Namun, sejak tahun 2017, produksi karet mengalami hambatan karena timbul serangan penyakit gugur daun baru yang berbeda dari penyakit terdahulu. Penyakit tersebut dapat menyebabkan gugur daun hingga 90% dan penurunan produksi lateks hingga 45%. Setelah ditelusuri, penyakit gugur daun baru ini disebabkan oleh patogen Pestalotiopsis sp. dan diberi nama penyakit gugur daun Pestalotiopsis. Sebagai penyakit baru, perlu dilakukan penelitian lebih lanjut untuk memonitor laju pertumbuhan penyakit ini. Salah satu penelitian ini adalah melakukan klasifikasi indeks atau level keparahan penyakit gugur daun Pestalotiopsis. Keparahan penyakit ini dapat dikelompokkan berdasarkan perubahan warna daun dan lesi khas yang timbul pada permukaan daun tanaman karet. Pada penelitian sebelumnya, pengukuran intensitas keparahan dilakukan dengan observasi secara langsung bercak gejala yang muncul pada daun atau pohon dalam jangka waktu tertentu. Pengamatan secara konvensional ini memerlukan tenaga yang banyak dan waktu yang cukup lama. Diperlukan suatu metode yang mampu melakukan klasifikasi level keparahan ini secara tepat dan cepat terhadap sampel daun yang berjumlah banyak. Saat ini, implementasi Artificial Intelligence (AI) melalui algoritma machine learning dapat menjadi solusi untuk menyelesaikan suatu permasalahan seperti klasifikasi multikelas secara otomatis dan efisien. Penelitian ini memanfaatkan salah satu teknik machine learning, yaitu artificial neural network berupa deep learning dengan arsitektur convolutional neural network (CNN). Dengan mempertimbangkan penelitian sebelumnya, maka penelitian ini mengajukan sebuah pengembangan dari CNN, yaitu arsitektur DenseNet121 sebagai metode untuk melakukan klasifikasi level keparahan penyakit gugur daun Pestalotiopsis menggunakan data citra daun karet. Klasifikasi level keparahan dibagi menjadi lima kelas, yaitu Level 0 (daun sehat atau tidak terinfeksi penyakit gugur daun Pestalotiopsis) dan Level 1-4 (menunjukkan tingkat keparahan penyakit gugur daun Pestalotiopsis). Pada Penelitian ini, digunakan 257 data citra daun karet yang dikumpulkan mahasiswa Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia ketika berkunjung ke Pusat Penelitian Karet Sembawa, Palembang pada tahun 2022. Data citra tersebut melalui preprocessing berupa crop dan resize agar dapat menjadi input yang diterima arsitektur.  Data dipisahkan menjadi data latih dan data uji dengan rasio 80:20. Model dilatih dengan pendekatan 5-fold cross validation sehingga pengujian dilakukan terhadap lima model berbeda. Berdasarkan simulasi, diperoleh rata-rata lima model berupa ccuracy sebesar 56,16% , precision sebesar 54,2% , recall sebesar 55,6%, skor F1 sebesar 51% , dan running time 3,110 detik.

Rubber plant is an essential commodity in Indonesia since natural rubbers from this plant are very beneficial and have high international market potential. Unfortunately, since 2017, a new leaf fall disease has caused massive decline of the rubber production. This disease leads to at most 90% leaf fall percentage and production decline as high as 45%. Subsequently, researchers found that this new leaf fall disease is caused by Pestalotiopsis sp., thus, the name of this disease is Pestalotiopsis leaf fall disease. Studies must be conducted to further investigate the growth and pattern of this new leaf fall disesase. One of these studies is to classify the intensity of the Pestalotiopsis leaf fall disease.The intensity can be measure by observing distinct symptoms and lesion frequency that would appear on the rubber plant’s leave surface. In earlier works, intensity are measured by conventionally taking notes of the symptomps that appear on the leaves or trees and these methods was done on timely basis. These traditional approaches takes a lot of time and requires a handful of people. Hence, there must be new methods to classify this disease’s intensity with less time and resource when the amount of leaf samples increase. Recent studies implement Artificial Intelligence (AI) by using machine learning to solve classification problems efficiently. This study takes a technique of machine learning, that is, deep learning convolutional neural network (CNN) architectures. By comparing previous researches, we propose the architecture DenseNet121 to implement CNN in multiclass classification problem by using leaf image data. The classification consists of five classes, which are the intensity of the Pestalotiopsis leaf fall disease from level 0 to level 4. Level 0 corresponds to healthy leaves or leaves with other diseases whereas Level 1-4 refer to leaves with the intensity of lesion and discoloration caused by Pestalotiopsis leaf fall disease. This study uses 257 image data that was taken by students of the Math and Science Faculty from Universitas Indonesia when they visited Rubber Research Center, Sembawa in 2022. The data is split into train and test data with 80:20 ratio. Models are trained with 5-fold cross validation approach so the that each model will be trained and tested towards 5 folds of data. Then, five different models are tested by evaluating their predictions to the test data. The result of this simulation shows the average performance from five models, they are an accuracy of 56,16%, a precision of 54,2%, a recall of 55,6%, an F1-score of 51% , and an average running time of 3,110 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Krisna Aditya
"ABSTRACT
Sistem prediksi berbasis citra VNIR telah teruji kemampuannya untuk memprediksi parameter tertentu pada objek, terlebih pada parameter yang sulit diamati secara visual oleh manusia. Kemampuan tersebut tidak lepas dari jumlah fitur yang besar >100 fitur . Namun, jumlah tersebut memberikan beban komputasi yang lebih. Beban yang diperoleh terkadang tidak sepadan dengan performa akhir dari sistem. Diperlukan pemilihan atas fitur-fitur yang digunakan pada sistem. Studi ini membahas pemanfaatan seleksi fitur pada kasus pengukuran kadar karotenoid daun bayam Amaranthus tricolor L. Pengukuran kadar karotenoid dilakukan dengan metode Sims-Gamon. Citra daun bayam diakuisisi pada panjang gelombang 400-1000nm. Citra melalui proses koreksi, segmentasi, dan ekstraksi sebelum digunakan sebagi input. Sistem prediksi memiliki performa dasar PLSR sebesar 0,584 pada R2 , 0,0169 pada RMSE, dan 1,94 pada RPD untuk daun bayam hijau, serta 0,815 pada R2 , 0,013 pada RMSE, dan 2,44 pada RPD untuk daun bayam merah. Penggunaan Algoritma Genetika berhasil memilih 89 dan 86 fitur untuk daun bayam hijau dan merah. Performa sistem setelah seleksi fitur menjadi 0,878 pada R2 , 0,01 pada RMSE, dan 3,05 pada RPD untuk daun bayam hijau, serta 0,962 pada R2 , 0,00596 pada RMSE, dan 5,44 pada RPD untuk daun bayam merah.

ABSTRACT
Prediction system based on VNIR image had been tested at various prediction cases, especially at case which is hard to do inspection by human eyesight. This ability is due to lots of available features 100 features . Unfortunately, that features also give a burden to computational load. However, that load is not always worth the prediction system performance. Number of features to be used is needed to be reduce to a lesser number. In this study, feature selection is used to reduce number of features for predicting carotenoid content at Amaranthus tricolor L. Determination of carotenoid content is done by using Sims Gamon method. Image of amaranth leaf acquire at 400 1000nm. Image of amaranth leaf then processed through correction, segmentation, and extraction before being used as input. Base performance by using PLSR at green amaranth are 0.584 for R2, 0.0169 for RMSE, and 1.94 for RPD. Base performance for red amaranth are 0.815 for R2 , 0.013 for RMSE, and 2.44 for RPD. Genetic Algorithm selected 89 and 86 features for green and red amaranth. After feature selection, performance for green amaranth are 0.878 for R2 , 0.01 for RMSE, and 3.05 for RPD. Performance for red amaranth are 0.962 for R2 , 0.00596 for RMSE, and 5.44 for RPD. "
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>