Ditemukan 50424 dokumen yang sesuai dengan query
Farah Nuraiman Hartono
"Brain-Computer Interface (BCI) merupakan sebuah sistem yang mampu menerjemahkan sinyal-sinyal otak menjadi perintah kepada berbagai devais keluaran. Teknologi ini kini sedang berkembang pesat terutama untuk keperluan rehabilitasi gerak bagi orang-orang yang telah kehilangan kemampuan geraknya. Dalam penelitian ini, dirancang sebuah sistem BCI yang mampu menerjemahkan sinyal otak seseorang ketika sedang melakukan pembayangan gerak (motor imagery) untuk gerakan tangan menggenggam dan membuka. Hasil terjemahan tersebut dapat digunakan untuk menggerakkan sebuah antarmuka yang membantu orang tersebut untuk bergerak menggenggam dan membuka tangan secara real-time. Sistem BCI ini menggunakan perangkat akuisisi data yang terdiri dari Raspberry Pi 4 dan ADS1299 Analog-to-Digital Converter. Sistem ini juga dikembangkan dengan menggunakan berbagai algoritma pemrosesan dan klasifikasi data, mulai dari Independent Component Analysis, Support Vector Machine, Linear Discriminant Analysis, k-Nearest Neighbours, dan Random Forest. Akurasi hasil testing klasifikasi yang dilakukan oleh sistem ini bernilai 64,6% untuk mengklasifikasi 3 jenis pembayangan gerak (menggenggam, membuka, dan diam) menggunakan algoritma SVM serta 94,7% untuk klasifikasi 2 jenis pembayangan gerak (menggenggam dan membuka) menggunakan algoritma Random Forest.
Brain-Computer Interface (BCI) is a system which can translate brain signals to command various output devices. This technology had been developing rapidly, especially for movement rehabilitation purposes for people with motoric disabilities. In this research, a BCI system has been developed which can translate one’s brain signals when one is imagining doing hand movement (motor imagery). The translation result can be used to drive an interface in real-time. This BCI system utilize an acquisition device, consisting of Raspberry Pi 4 and ADS1299 Analog-to-Digital Converter. Besides, this system has also been developed using several algorithms for processing and classifying data, namely Independent Component Analysis, Support Vector Machine, Linear Discriminant Analysis, k-Nearest Neighbours, and Random Forest. Testing accuracy for this system yielded a 64.6% for classifying three types of motor imagery (hand grasping, hand opening, and resting) with SVM, and 94.7% for classifying two types of motor imagery (hand grasping and hand opening only) using Random Forest."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Wurangian, Leonardo
"Keterbatasan dalam pengoperasian kursi roda membuat ketidaknyamanan yang besar bagi penggunanya. Salah satu metode yang dapat membantu kaum yang mengalami keterbatasan dalam mengoperasikan kursi roda adalah suatu sistem yang disebut Brain-Computer Interface. Sistem ini menggunakan elektroensefalografi (EEG) sebagai sarana komunikasi antara sinyal otak pengguna dan mekanisme pengendalian kursi roda. Proses akuisisi data melibatkan penggunaan elektroda AgCl 8 kanal, Raspberry Pi 4 Model B, dan ADS1299. Teknik pengolahan sinyal, termasuk bandpass filter, Independent Component Analysis (ICA), dan analisis Power Spectral Density (PSD), diimplementasikan untuk meningkatkan kualitas sinyal EEG yang diperoleh. Tahap klasifikasi menggunakan Support Vector Machine (SVM) untuk menginterpretasikan sinyal yang telah diproses, mencapai akurasi yang mengesankan sebesar 90%, presisi sebesar 91,4%, dan sensitivitas sebesar 90%.
Limitations in wheelchair operation create great inconvenience for users. One method that can help people who experience limitations in operating a wheelchair is a system called Brain-Computer Interface. This system uses electroencephalography (EEG) as a means of communication between the user's brain signals and the wheelchair control mechanism. The data acquisition process involves the use of 8-channel AgCl electrodes, a Raspberry Pi 4 Model B, and an ADS1299. Signal processing techniques, including bandpass filter, Independent Component Analysis (ICA), and Power Spectral Density (PSD) analysis, were implemented to improve the quality of the acquired EEG signals. The classification stage used Support Vector Machine (SVM) to interpret the processed signals, achieving an impressive accuracy of 90%, precision of 91.4%, and sensitivity of 90%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Tabita AMLT
"
ABSTRAKDengan tujuan menghasilkan sebuah sistem klasifikasi gerakan genggaman tangan kanan berbasis alat EEG EMOTIV Epoc+ yang optimal dan mengacu pada elemen-elemen tahapan Brain-Computer Interface (BCI), telah didapatkan kombinasi elemen-elemen tahapan BCI dengan nilai akurasi klasifikasi paling tinggi. Adapun kombinasi elemen-elemen tersebut adalah sebagai berikut: penggunaan Independent Component Analysis (ICA), analisis spektrum oleh Fast Fourier Transform (FFT), fitur power maksimum mu berikut frekuensinya dan fitur power maksimum beta berikut frekuensinya, dan classifier Probabilistic Neural Network (PNN). Nilai akurasi klasifikasi yang didapat yaitu 81,2% untuk training dan 69,5% untuk testing. Perbandingan nilai akurasi dari perpaduan kombinasi, kondisi eksperimen, dan data EEG eksternal disediakan untuk keperluan analisis nilai akurasi klasifikasi.
ABSTRACTHas been obtained combination of elements of BCI stages providing the highest value of classification accuracy with the aim of producing an optimum classification system based on EEG device EMOTIV Epoc+ for right-hand grasp movement, by referring to Brain Computer Interface (BCI) stage element. The combinations of elements are the use of Independent Component Analysis (ICA), spectrum analysis by Fast Fourier Transform (FFT), maximum mu power with its frequency and maximum beta power with its frequency as features, and classifier Probabilistic Neural Network (PNN). The highest values of classification accuracy are 81,2% for training and 69,5% for testing. The comparison of accuracy value from the combination unification, experiment condition, and external EEG data are provided for the purpose of value analysis of classification accuracy."
Depok: Universitas Indonesia, 2016
S62824
UI - Skripsi Membership Universitas Indonesia Library
Reza Darmakusuma
"Analisis Prediksi Gerakan Tangan menggunakan Sinyal Elektroensefalografi. Berbagai pendekatan teknologi telah dikembangkan untuk membantu mereka yang menderita kelumpuhan dalam melakukan aktivitas kesehariannya secara mandiri. Salah satu teknologi tersebut adalah Brain-Computer Interface (BCI). Sistem BCI menggunakan elektro- ensefalografi (EEG) yang dihasilkan dari aktivitas mental seorang subjek sebagai masukan, dan mengubahnya menjadi perintah. Beberapa percobaan sebelumnya telah menunjukkan kemampuan sistem BCI untuk memprediksi gerakan sebelum gerakan tubuh aktual terjadi. Penelitian tersebut memprediksi gerakan yang akan terjadi dengan membedakan data pada kondisi rest, di mana tidak ada intensi gerakan, dengan kondisi pre-movement, di mana terdapat intensi gerakan sebelum gerakan aktual terjadi. Penelitian ini dilakukan untuk melakukan analisis sistem yang dihasilkan dari pembelajaran, yang kemudian diterapkan pada data dengan interval waktu kontinu, antara 3 detik sebelum gerakan terdeteksi sampai 1 detik setelah gerakan sebenarnya terjadi. Hasil percobaan menunjukkan bahwa sistem dapat membedakan kondisi pre- movement dan kondisi rest dengan menggunakan sinyal EEG pada frekuensi 7-30 Hz di mana letak Mu dan ritme Beta dengan nilai rerata true positive rate (TPR) sebesar 0.64 ± 0.11 dan rerata nilai false positive rate (FPR) sebesar 0.17 ± 0.08. Hasil percobaan juga mampu menunjukkan bahwa penggunaan sinyal EEG yang dekat dengan terjadinya gerakan, membuat sistem dapat mendeteksi intensi gerakan dengan nilai TPR atau tingkat deteksi gerakan semakin tinggi.
Various technological approaches have been developed in order to help those people who are unfortunate enough to be afflicted with different types of paralysis which limit them in performing their daily life activities independently. One of the proposed technologies is the Brain-Computer Interface (BCI). The BCI system uses electroencephalography (EEG) which is generated by the subject?s mental activity as input, and converts it into commands. Some previous experiments have shown the capability of the BCI system to predict the movement intention before the actual movement is onset. Thus research has predicted the movement by discriminating between data in the ?rest? condition, where there is no movement intention, with ?pre-movement? condition, where movement intention is detected before actual movement occurs. This experiment, however, was done to analyze the system for which machine learning was applied to data obtained in a continuous time interval, between 3 seconds before the movement was detected until 1 second after the actual movement was onset. This experiment shows that the system can discriminate the ?pre-movement? condition and ?rest? condition by using the EEG signal in 7-30 Hz where the Mu and Beta rhythm can be discovered with an average True Positive Rate (TPR) value of 0.64 ± 0.11 and an average False Positive Rate (FPR) of 0.17 ± 0.08. This experiment also shows that by using EEG signals obtained nearing the movement onset, the system has higher TPR or a detection rate in predicting the movement intention."
Institut Teknologi Bandung. Department of Electrical Engineering, 2014
pdf
Artikel Jurnal Universitas Indonesia Library
Nida Amala Syawalia Adriant
"
Elektroensefalografi (EEG), sebagai metode rekaman neurofisiologis yang telah dimanfaatkan secara luas, terutama dalam penelitian dasar tentang fungsi otak dan pemantauan pasien dengan gangguan neurologis. serta sistem Brain Computer Interface (BCI) untuk menerjemahkan sinyal menjadi perintah atau fungsi tertentu. Dalam perekaman sinyal EEG, terdapat tantangan interferensi dan noise akibat amplitudo sinyal yang sangat kecil (mikrovolt [
V]) dan frekuensi rendah. Penelitian ini mengeksplorasi pengembangan elektroda aktif sebagai solusi untuk menguatkan sinyal EEG sehingga dapat meminimalisir noise yang mungkin ada. Elektroda aktif dirancang menggunakan filter aktif Sallen & Key orde 2 dengan respon butterworth menggunakan OPA378 sebagai operational amplifier dengan frekuensi cut-off 0 hingga 100 Hz. Untuk meminimalisir jumlah kabel, diterapkan operasi single-supply sehingga hanya 3 kabel yang diperlukan untuk mengoperasikan elektroda aktif. Prototype elektroda aktif diuji menggunakan EEG simulator NETECH MiniSim 330 dan direkam menggunakan ADS1299 PDK sebagai ADC dan Raspberry Pi 4 Model B untuk menyimpan file rekaman. Hasilnya, elektroda aktif mampu melakukan penguatan sinyal sebesar 22 kali dengan cukup stabil pada rentang frekuensi 20 hingga 100 Hz dengan error sebesar 3.53% dari target penguatan yang diinginkan.
Elektroensefalografi (EEG) is a widely used method for recording neurophysiological signals, primarily for research on brain functions and monitoring patients with neurological disorders. The development of active electrodes is being explored as a solution to improve the quality of EEG signals, which are characterized by very low amplitude (microvolts [μV]) and low frequency. The active electrode is designed using Sallen & Key filter or Butterworth filter with OPA378 as the operational amplifier with a cut-off frequency range of 0 Hz to 100 Hz. To minimize the number of wires, single-supply operation is applied, requiring only three wires to operate the active electrode. The prototype of the active electrode was tested using a NETECH MiniSim 330 EEG simulator and recorded using an ADS1299 PDK as an ADC and a Raspberry Pi 4 Model B to save the recorded file. The results show that active electrodes can provide signal attenuation up to 22 times with sufficient stability in the 20 Hz to 100 Hz frequency range, with an error of 3.35% from the expected"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Noto Dwimartutie
"Prevalensi pre-frail tinggi pada usia lanjut dan kondisi tersebut dapat berubah menjadi frail. Kolekalsiferol diduga memiliki potensi untuk memperbaiki sindrom frailty pada usia lanjut. Penelitian ini bertujuan mengkaji pengaruh kolekalsiferol terhadap kekuatan genggam tangan, kecepatan berjalan serta reseptor vitamin D (vitamin D receptor/VDR), interleukin-6 (IL-6), dan insulin-like growth factor-1 (IGF-1) monosit pada usia lanjut dengan pre-frail. Uji klinis acak tersamar ganda dilakukan di Poliklinik Geriatri RSCM pada bulan April–Desember 2021. Sebanyak 120 subjek dirandomisasi menjadi kelompok yang mendapat kolekalsiferol 4.000 IU/hari (60 subjek) serta kelompok yang mendapat plasebo/hari (60 subjek). Seluruh subjek mendapat suplementasi kalsium laktat 500 mg /hari. Pengamatan dilakukan selama 12 minggu. Terdapat 57 subjek pada kelompok kolekalsiferol dan 56 subjek pada kelompok plasebo yang menjalani penelitian hingga selesai. Analisis intention to treat dilakukan untuk mengevaluasi luaran kekuatan genggam tangan dan kecepatan berjalan, sedangkan analisis per protokol untuk mengevaluasi VDR, IL-6 dan IGF-1 monosit. Pada akhir pengamatan, tidak terdapat perbedaan bermakna pada kekuatan genggam tangan (p = 0,228), kecepatan berjalan (p = 0,734), VDR monosit (p = 0,45), IL-6 monosit (p = 0,57) dan IGF-1 monosit (p = 0,72) antara kedua kelompok perlakuan. Tidak ada korelasi antara perubahan VDR, IL-6 dan IGF-1 monosit dengan kekuatan genggam tangan dan kecepatan berjalan. Terdapat peningkatan kadar 25(OH)D yang bermakna pada masing-masing kelompok perlakuan dan peningkatan bermakna pada kelompok kolekalsiferol dibandingkan plasebo. Pemberian kolekalsiferol 4.000 IU pada usia lanjut pre-frail 12 minggu meningkatkan kadar 25(OH)D secara bermakna, namun belum terbukti dapat memperbaiki kekuatan genggam tangan, kecepatan berjalan, meningkatkan VDR dan IGF-1 monosit serta menurunkan IL-6 monosit. Fungsi ginjal memiliki pengaruh terhadap efek kolekalsiferol pada IGF-1 monosit. Kolekalsiferol meningkatkan jumlah monosit dengan IGF-1+ pada eGFR > 90, namun tidak pada eGFR 30–59.
Pre-frail prevalence is higher in the elderly. Frailty status is a dynamic condition. Pre-frail can fall into a frail condition. Cholecalciferol is regarded to have potential effect to improve frailty syndrome in the elderly. This study aimed to determine the effect of cholecalciferol on hand grip strength, walking speed, vitamin D receptors, IL-6, and IGF-1 monocyte in pre-frail elderly. A randomized double-blind clinical trial study at the RSCM Geriatric Polyclinic was conducted from April to December 2021. A total of 120 subjects were randomized into groups receiving 4000 IU cholecalciferol/day (60 subjects) and groups receiving placebo/day (60 subjects). All subjects received calcium lactate supplementation 500 mg/day. Observations were made for 12 weeks. There were 57 subjects in the cholecalciferol group and 56 subjects in the placebo group who completed the study. An intention to treat analysis was performed to evaluate the output of hand grip strength and walking speed, while a per protocol analysis was performed to evaluate monocyte VDR, IL-6 and IGF-1.There were no significant differences in hand grip strength (p = 0,228), walking speed (p = 0,734), VDR monocyte (p = 0,45), IL-6 monocyte (p = 0,57) and IGF-1 monocyte (p = 0,72) between treatment groups. There were no correlation between changes in the VDR, IL-6 and IGF-1 monocytes with changes in hand grip strength and walking speed. There was a significant increase in 25(OH)D levels in each group and a significant difference between groups. Supplementation of cholecalciferol 4.000 IU daily for 12 weeks increased serum 25(OH)D level significantly, however it did not improve hand grip strength and walking speed, and did not affect VDR, IL-6 and IGF-1 monocytes in pre-frail elderly. Kidney function had an influence on the effect of cholecalciferol on monocyte IGF-1. Cholecalciferol increased the number of monocytes with IGF-1+ at eGFR > 90, but not at eGFR 30–59."
Jakarta: Fakultas Kedokteran Universitas Indonesia, 2023
D-pdf
UI - Disertasi Membership Universitas Indonesia Library
Henry Hendarwin
"Sistem akuisisi data Electroencephalography (EEG) telah dikembangkan. menggunakan Analog Front End (AFE) ADS1299 EEGFE-PDK berbasis Raspberry Pi. Sistem ini merupakan kelanjutan dari sistem yang dikembangkan sebelumnya, dengan menambahkan fitur Relative Power Ratio (RPR), komunikasi Local Area Networking (LAN) dan GUI (Graphical User Interface). Fitur RPR perlu dipahami Karakteristik sinyal EEG. ADS 1299 memiliki beberapa keunggulan diantaranya Akuisisi data secara simultan, resolusi 24 bit, membutuhkan daya <0,2 mW dan noise <1 μV. Sistem akuisisi data ini terdiri dari 4 unit AFE yang dikonfigurasi secara daisy rantai. Komunikasi antara AFE dan Raspberry Pi menggunakan periferal serial antarmuka (SPI) dengan format RDATA. Bahasa pemrograman C digunakan untuk komunikasi antara Raspberry dengan AFE dan Matlab digunakan untuk pemrosesan sinyal. Data dari Raspberry ditransfer melalui LAN ke Personal Computer (PC). Kemudian disaring menggunakan Butterworth order 5. Data EEG dan perhitungan RPR ditampilkan secara real-time. Perhitungan dilakukan dengan Fast Fourier Transforms (FFT) dan Power Spectral Density (PSD). Sistem ini telah dievaluasi dengan menggunakan simulator EEG (NETECH Mini-Sim EEG) yang menghasilkan sinyal listrik sinusoidal dengan frekuensi 2 Hz, 5 Hz, dan amplitudo tegangan 30, 50 μV. Dengan perbandingan rata-rata FWHM (Full Width at Half Maximum) didapatkan untuk frekuensi 2Hz di sistem akuisisi tersebut memperoleh nilai 4 Hz, dan dalam Neurostyle 4 Hz. Di frekuensi 5 Hz, rata-rata nilai FWHM yang diperoleh untuk sistem akuisisi yang dibuat adalah 13 Hz dan Neurostyle pada 14 Hz.
The systems have been developed to obtain Electroencephalography (EEG) data using the Raspberry Pi based Analog Front End (AFE) ADS1299 EEGFE-PDK. This system is a continuation of a previously developed system, supported by Relative Power Ratio (RPR) features, Local Area Networking (LAN) and GUI (Graphical User Interface) features. EPR. ADS 1299 has several advantages that can be taken from simultaneous data, 24 bit resolution, requires power <0.2 mW and noise <1 μV. This data acquisition system consists of 4 AFE units completed by daisy chains. Communication between AFE and Raspberry Pi uses a serial peripheral interface (SPI) with RDATA format. C programming language is used for communication between Raspberries and AFE and MATLAB is used for signal implementation. Data from Raspberry is transferred via LAN to Personal Computer (PC). Then filtered using Butterworth order 5. EEG data and realtime calculations. The calculations are carried out by Fast Fourier Transforms (FFT) and Power Spectral Density (PSD). This system has been evaluated using an EEG simulator (NETECH Mini-Sim EEG) which produces sinusoidal electrical signals with a frequency of 2 Hz, 5 Hz, and a amplitude of 30, 50 μV. With the average change in FWHM (Full Width at Half Maximum) obtained for the 2Hz frequency in the acquisition system a value of 4 Hz is obtained, and in Neurostyle it is 4 Hz. At a frequency of 5 Hz, the average FWHM value obtained for the acquisition system is 13 Hz and Neurostyle is 14 Hz."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Irfan Kurnia Pratama
"Penuaan adalah proses alamiah yang dapat dilihat dari penurunan massa otot atau sarkopenia. Sarkopenia merupakan masalah karena terkait dengan peningkatan risiko jatuh. Oleh karena itu, kemampuan fisik orang usia lanjut perlu diketahui sejak awal. Pengukuran kekuatan genggam tangan digunakan untuk mengukur kekuatan otot tangan dan timed up and go test digunakan untuk mengukur mobilitas fungsional. Sampai saat ini korelasi keduanya belum diketahui sehingga korelasi keduanya perlu diteliti di samping mencari rerata keduanya. Penelitian ini dilakukan pada 73 pasien usia lanjut di Poliklinik Geriatri RSCM berupa pengukuran kekuatan genggam tangan dengan dinamometer Jamar dan TUGT dengan pengukur waktu. Uji normalitas data tersebut dilakukan dan diikuti dengan uji korelasi Spearmann. Hasil penelitian menunjukkan bahwa terdapat korelasi yang bermakna dengan hubungan menengah r=-0,568, p=0,000 . Rerata kekuatan genggam tangan dalam mean yang didapatkan adalah sebesar 19,1 kg sedangkan rerata mobilitas fungsional yang didapatkan dalam median adalah sebesar 12,8 5,9-30,9 s.
Aging is a normal process happened and can be viewed from muscle mass reduction or sarcopenia. Sarcopenia is problematic since it is correlated with higher fall risk. Based on that finding, early measurement of physical performance of elderly is a necessary. Hand grip strength can be measured to assess hand muscle strength while timed up and go test TUGT is used to assess functional mobility. However, correlation of both variable hasn rsquo t been clearly explained thus makes this research is needed. This research was also done to measure the average of hand grip strength and functional mobility on elderly patient. This research was done on elderly patient in Geriatric Policlinic of RSCM by measuring hand grip strength using Jamar dynamometer and measuring TUGT using stopwatch. Correlation between two variables are calculated by Spearmann correlation test after being tested their normality using normality test. The result showed there are significantly meaningful moderate correlation between hand grip strength and functional mobility p 0,000, r 0,568 . The average of the hand grip strength is 19,1 kg in mean and the average of the functional mobility is 12,8 5,9 30,9 s in median."
Jakarta: Fakultas Kedokteran Universitas Indonesia, 2016
S70308
UI - Skripsi Membership Universitas Indonesia Library
Wahyu Apriadi
"Electroencephalogram merupakan sebuah alat yang digunakan untuk mengukur aktifitas elektrik pada otak yang digunakan untuk mendeteksi dan menganalisis epilepsi, kejang, analisis tidur, dan penyakit otak lainnya. Penelitian ini membahas rancangan sistem akuisisi sinyal electroencephalogram 32 kanal dengan menggunakan 4 modul ADS1299EEGFE-PDK yang dikonfigurasi melalui protokol SPI mode cascade dan dikendalikan oleh LaunchPad MSP432P401R. Sistem ini dikembangkan menggunakan Energia dengan pengambilan sampel sebanyak 220 SPS dan resolusi 24 bit. Sinyal yang didapat ditampilkan dan disimpan dalam format time domain dan frequency domain menggunakan LabVIEW. Sistem ini diuji menggunakan NETECH MiniSIM EEG Simulator 330 dan dibandingkan dengan EEG komersial Neurostyle EEG-D-1 secara real-time menggunakan jumper tipe 100C dan konverter EASYCAP. Penelitian ini merupakan bagian dari penelitian EEG untuk rehabilitasi stroke.
An Electroencephalogram EEG is a device to obtain electrical activities of the brain, which is used to detect and analyze epilepsy, seizure, sleep analysis, and other brain defects. This paper presents the design of a 32 channels electroencephalogram signal acquisition system using 4 modules of the ADS1299EEGFE PDK configured with SPI cascade mode and controlled by a LaunchPad MSP432P401R. The system was developed using Energia and sampled to 24 bits up to 220 SPS. The acquired signals were displayed and saved in time domain and frequency domain using LabVIEW. These signals were tested to the NETECH MiniSIM EEG Simulator 330 and compared to a commercial EEG of Neurostyle EEG D 1 in real time using jumper 100C and EASECAP converter. This work is part of EEG research for stroke rehabilitation."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S68292
UI - Skripsi Membership Universitas Indonesia Library
Akhmad Aldiya Yusuf
"
ABSTRAKIsu kesehatan mental merupakan sebuah isu yang sangat berkembang pesat pada masa ini. Remaja dan dewasa muda pada usia 16 hingga 30 tahun adalah korban utama yang menjadi penderita penyakit mentalitas. Isu kesehatan mental merupakan isu yang cukup serius dalam bidang medis dan social. Salah satu penyebab dari penyakit pada mentalitas manusia adalah kurangnya kemawasan diri, yang merupakan salah satu kunci dalam menjaga kestabilan mental pada diri seseorang. Sinyal otak merupakan suatu sinyal yang diduga mampu mendekteksi aktifitas otak manusia, dan dari sinyal tersebut, kita mampu membuat suatu sistem klasifikasi kondisi emosional manusia. Pada penelitian ini, EEG Neurostyle dengan 24 kanal digunakan untuk menangkap sinyal kelistrikan dari otak manusia. Metodenya meliputi reaksi seorang subjek terhadap stimulus berupa audio-visual yang berdurasi kurang lebih 5 menit. Subjek terdiri dari 10 orang manusia berumur 18 hingga 22 tahun, dimana tiap subjek menonton sebuah video pada lingkungan yang sama. Ekspresi mimik wajah akan direkam menggunakan kamera sebagai referensi dan konfirmasi agar sesuai dengan emosi yang dideskripsikan oleh subjek. Fitur emosi berupa RPR kemudian diambil untuk kemudian dimasukan kedalam algoritme classifier. Emosi dibagi berdasarkan 4 jenis yaitu: senang, sedih, takut, dan jijik Menggunakan Supervised Machine Learning, kita dapat menggunakan fitur fitur tersebut untuk klasifikasi. Menggunakan k-NN, didapat akurasi diatas 70% dengan menggunakan 4 kelas.
ABSTRACTMental health issues are growing rapidly in these recent years. Teenagers and young adult on age 16-30 years old are the most common victims. Mental health is a really serious issue concerning emotional health. One of the causes on emotional health issues is a lack of self-awareness, which is the key cornerstone on maintaining emotional-state. Brain signals has proven that it can read human emotion, and from there we can use brain waves to classify human emotional-state. In this research study, EEG Neurostyle of 24 channels is used to obtain brain electrical signals. The method involves the subject reaction to a set of audio-visual stimuli of approximately 5 minutes, the subject consists of 10 subjects aged 18-22, with each person watched the video-clips in the same environment. The expressions of the subjects were recorded separately to ensure their emotion accordance with the source (i.e. sad clips resulting sad emotion). Then its feature were extracted. The feature were used to classify the emotion into 4 classes: happy, sad, scared, and disgust. Using Supervised Machine Learning Method, we can use these features to identify a new sample to predict which class it belongs to. Using k-NN algorithm as classifier, an accuracy greater than 70% is obtained with 4 classes."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership Universitas Indonesia Library