Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 22429 dokumen yang sesuai dengan query
cover
Ardian Wahyu Yusufi
"Penerapan Teknologi Informasi dan Komunikasi (TIK) untuk meningkatkan keunggulan kompetitif.tidak hanya dimanfaatkan oleh sektor industri, namun juga sektor pemerintahan. Pemerintah Indonesia sendiri di dalam kaitannya dengan pemanfaatan TIK, telah membangun suatu sistem yang memungkinkan masyarakat untuk melaporkan keluhan dan aspirasinya melalui sistem LAPOR!. Sistem LAPOR! ciptaan pemerintah ini ternyata ditanggapi dengan antusias oleh masyarakat, terbukti dengan banyaknya laporan yang masuk ke pemerintah. Guna membantu kinerja pemerintah, dilakukan penelitian untuk menganalisis data tekstual laporan masyarakat dengan text mining untuk kemudian dilakukan disposisi otomatis ke dalam dua kategori utama LAPOR! yaitu topik dan instansi terkait. Disposisi otomatis dilakukan menggunakan teknik problem transformation pada multilabel classification melalui algoritma klasifikasi support vector machine dan naïve bayes. Hasil penelitian menunjukkan bahwa disposisi otomatis dapat diterapkan ke dalam sistem LAPOR! dan dapat meningkatkan kinerja disposisi laporan. Algoritma yang menghasilkan performa terbaik di dalam penerapannya adalah algoritma support vector machine

The application of Information Technology and Communication (ICT) to escalate the competitive advantage is not only used in the industrial sector, but also in the government as well. The government of the Republic of Indonesia itsef, in the use of ICT, has built a system that enable its citizen to report their grievance and aspiration through LAPOR! system. This system turned out to be accepted with great enthusiasm by the public, as evidenced by the many reports to the government. In order to support the government’s performance, research is conducted to analyze the textual data using text mining, for later automatic disposition into two groups of LAPOR!'s category which is topik and instansi terkait. disposition is done using problem transformation technique in multilabel classification through support vector machine and naïve bayes classification algorithm. The result showed that automatic disposition can be applied into LAPOR! system and improves the report disposition’s performance. Algorithm that produces the best performance in the application is support vector machine. "
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2022
TA-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Sang-goo Lee, editor
"This two volume set LNCS 7238 and LNCS 7239 constitutes the refereed proceedings of the 17th International Conference on Database Systems for Advanced Applications, DASFAA 2012, held in Busan, South Korea, in April 2012.
The 44 revised full papers and 8 short papers presented together with 2 invited keynote papers, 8 industrial papers, 8 demo presentations, 4 tutorials and 1 panel paper were carefully reviewed and selected from a total of 159 submissions. The topics covered are query processing and optimization, data semantics, XML and semi-structured data, data mining and knowledge discovery, privacy and anonymity, data management in the Web, graphs and data mining applications, temporal and spatial data, top-k and skyline query processing, information retrieval and recommendation, indexing and search systems, cloud computing and scalability, memory-based query processing, semantic and decision support systems, social data, data mining."
Berlin: [, Springer-Verlag], 2012
e20410540
eBooks  Universitas Indonesia Library
cover
Sang-goo Lee, editor
"This two volume set LNCS 7238 and LNCS 7239 constitutes the refereed proceedings of the 17th International Conference on Database Systems for Advanced Applications, DASFAA 2012, held in Busan, South Korea, in April 2012.
The 44 revised full papers and 8 short papers presented together with 2 invited keynote papers, 8 industrial papers, 8 demo presentations, 4 tutorials and 1 panel paper were carefully reviewed and selected from a total of 159 submissions. The topics covered are query processing and optimization, data semantics, XML and semi-structured data, data mining and knowledge discovery, privacy and anonymity, data management in the Web, graphs and data mining applications, temporal and spatial data, top-k and skyline query processing, information retrieval and recommendation, indexing and search systems, cloud computing and scalability, memory-based query processing, semantic and decision support systems, social data, data mining."
Berlin: [, Springer-Verlag], 2012
e20410541
eBooks  Universitas Indonesia Library
cover
Aggarwal, Charu C., editor
"This book contains a wide swath in topics across social networks & data mining. Each chapter contains a comprehensive survey including the key research content on the topic, and the future directions of research in the field. There is a special focus on text embedded with heterogeneous and multimedia data which makes the mining process much more challenging. A number of methods have been designed such as transfer learning and cross-lingual mining for such cases.
"
New York: Springer, 2012
e20407655
eBooks  Universitas Indonesia Library
cover
McKnight, William
"Information management ; gaining a competitive advantage with data is about making smart decisions to make the most of company information. Expert author William McKnight develops the value proposition for information in the enterprise and succinctly outlines the numerous forms of data storage. Information Management will enlighten you, challenge your preconceived notions, and help activate information in the enterprise. Get the big picture on managing data so that your team can make smart decisions by understanding how everything from workload allocation to data stores fits together.
The practical, hands-on guidance in this book includes :
Part 1: The importance of information management and analytics to business, and how data warehouses are used.
Part 2: The technologies and data that advance an organization, and extend data warehouses and related functionality.
Part 3: Big Data and NoSQL, and how technologies like Hadoop enable management of new forms of data.
Part 4: Pulls it all together, while addressing topics of agile development, modern business intelligence, and organizational change management."
Waltham, MA: Morgan Kaufmann, 2014
e20427137
eBooks  Universitas Indonesia Library
cover
Petra Perner, editor
"This book constitutes the refereed proceedings of the 12th Industrial Conference on Data Mining, ICDM 2012, held in Berlin, Germany in July 2012. The 22 revised full papers presented were carefully reviewed and selected from 97 submissions. The papers are organized in topical sections on data mining in medicine and biology, data mining for energy industry, data mining in traffic and logistic, data mining in telecommunication, data mining in engineering, theory in data mining, theory in data mining, clustering, theory in data mining, and association rule mining and decision rule mining."
Berlin : Springer-Verlag, 2012
e20406361
eBooks  Universitas Indonesia Library
cover
"The LNCS journal Transactions on Large-Scale Data- and Knowledge-Centered Systems focuses on data management, knowledge discovery, and knowledge processing, which are core and hot topics in computer science. Since the 1990s, the Internet has become the main driving force behind application development in all domains. An increase in the demand for resource sharing across different sites connected through networks has led to an evolution of data- and knowledge-management systems from centralized systems to decentralized systems enabling large-scale distributed applications providing high scalability. Current decentralized systems still focus on data and knowledge as their main resource. Feasibility of these systems relies basically on P2P (peer-to-peer) techniques and the support of agent systems with scaling and decentralized control. Synergy between Grids, P2P systems, and agent technologies is the key to data- and knowledge-centered systems in large-scale environments. This, the fifth issue of Transactions on Large-Scale Data- and Knowledge-Centered Systems, contains nine selected full-length papers, focusing on the topics of query processing, information extraction, management of dataspaces and contents, and mobile applications."
Berlin: Springer-Verlag, 2012
e20410258
eBooks  Universitas Indonesia Library
cover
Iqbal Hadiyan
"PT. Indosat Tbk adalah salah satu perusahaan yang berkembang pada industri telekomunikasi. Namun, PT. Indosat Tbk memiliki permasalahan mengenai customer satisfaction yang cenderung menurun dari tahun ke tahun. Data media sosial, terutama twitter, menawarkan data mengenai opini publik yang sangat padat. Namun data twitter yang masih bersifat unstructured diperlukan proses lebih lanjut untuk dapat menemukan dimensi-dimensi beserta sentimen masyarakat terhadap dimensi tersebut. Latent Dirichlet Allocation (LDA) dengan Generative Statistical modelnya memungkinkan suatu set data pengamatan dapat dijelaskan oleh kelompok yang tidak teramati. Penelitian ini menentukan 30 kelompok kata representatif dari hasil LDA. Hasilnya terdapat 18 dimensi yang paling banyak dibicarakan mengenai Indosat pada linimasa twitter. Dimensidimensi tersebut mewakili 14 dimensi yang sudah ditemukan pada penelitian-penelitian sebelumnya mengenai kepuasan pelanggan pada layanan telekomunikasi, bahkan dengan LDA mendapatkan dimensi lebih detail dan lebih real time. Masing-masing dokumen dalam dimensi tersebut diberi label sentimennya, dan ditentukan akurasinya menggunakan supervised classification, hasilnya adalah 72% akurasi dengan model Naive Bayes Classification. Mengabaikan sentimen netral, sentimen negatif Indosat masih lebih tinggi daripada sentimen positifnya, yaitu dengan 16% sentimen negatif. Persentase negatif tersebut masih didominasi dengan dimensi berkaitan dengan layanan Indosat. Sementara dominasi sentimen positif ada pada dimensi yang berhubungan dengan ketersediaan layanan untuk pengguna.

PT. Indosat Tbk is One of the companies developing in the telecommunications industry. However, PT. Indosat Tbk is very concerned about customer satisfaction which tends to decrease from year to year. Social media media, especially Twitter, offer data about public opinion that is very crowded. However, the twitter data that is still unstructured requires a further process to be able to find the dimensions and sentiments of the community towards that dimension. Latent Dirichlet Allocation (LDA) with the Generative Statistics model allows a monitoring data set to be accessed by unobserved groups. This study determines 30 groups of words that represent the results of the LDA. There are 18 dimensions that are most talked about about Indosat on the Twitter timeline. These dimensions represent the 14 dimensions found in previous studies of customer satisfaction in telecommunications services, even with LDA getting more detailed and more real-time dimensions. Each document in this dimension is labeled sentiment, and its accuracy is determined using a supervised classification, obtained 72% accuracy with the Naive Bayes Classification model. Ignoring the negative sentiment, Indosat's negative sentiment was still higher than the positive sentiment, namely with a 16% negative sentiment. The negative percentage is still a comparison with Indosat services. While the dominance of positive sentiment is in the dimensions associated with service support for users."
2019
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Yosia Rimbo Deantama
"ABSTRAK
Pangan merupakan hak asasi manusia yang harus senantiasa terpenuhi oleh masyarakat dengan daya beli yang sesuai dan mempunyai kualitas pangan yang tinggi dan aman. Hal tersebut mendorong kedaulatan pangan suatu negara, yang secara mandiri memenuhi kebutuhan pangan masyarakatnya berdasarkan sistem pangan yang adil bagi seluruh masyarakat. Peraturan Pemerintah Republik Indonesia Nomor 17 Tahun 2015 yang mewajibkan adanya sistem informasi tentang pangan dan gizi dan teori evolusi e-government 3.0. Oleh karena itu salah satu solusi yang mendukung peraturan tersebut dan pendekatan e-government 3.0 adalah dengan pendekatan text mining. Penelitian ini mengolah data dari LAPOR! dan berita daring mengenai kedaulatan pangan untuk mengekstrak informasi dan menemukan pola-pola yang akan menghasilkan informasi tentang kedaulatan pangan di Indonesia sehingga dapat membantu pengambilan keputusan yang berdasar pada data melalui representasi visualisasi berbasis web. Jenis analisis informasi yang digunakan adalah Klasifikasi Dokumen untuk penyaringan dokumen, Named Entitiy Recognition yang digunakan untuk mengetahui entitas lokasi dan komoditas pangan dari data tekstual, dan Topic Modelling untuk menemukan topik dari sekumpulan teks dokumen berita dan aduan LAPOR!. Algoritma yang dipakai dalam penelitian ini adalah Conditional Random Fields dan Conditional Markov Model untuk implementasi Named Entity Recognition. Latent Dirichlet Allocation dan Non-Negative Matrix Factorization untuk implementasi Topic Modelling. Selain itu Naïve Bayes, Support Vector Machine, dan Logistic Regression digunakan untuk klasifikasi dokumen. Sedangkan pemilihan model ini menggunakan Conditional Random Field dengan nilai F1-score pada entitas lokasi sebesar 83.85 dan entitas komoditas pangan sebesar 90.98 yang digunakan pada data berita daring, pada data aduan LAPOR!, entitas lokasi menggunakan Conditional Markov Model dengan nilai F1-Score sebesar 60.35 dan entitas komoditas pangan sebesar 89.74. Pada klasfikasi dokumen, model Support Vector Machine dengan fitur unigram memiliki nilai presisi sebesar 92.00. Pada Topic Modelling, model Non-Negative Matrix Factorization memiliki nilai coherence yang lebih tinggi daripada Latent Direchlete Allocation pada tiga eksperimen dengan dataset yang berbeda. Di samping itu, dilakukan visualisasi tentang kedaulatan pangan berdasarkan pengolahan data tersebut di atas untuk memudahkan pengambilan kebijakan oleh pimpinan seperti Tim Ahli di Kantor Staf Presiden.

ABSTRACT
Food is a human right that must always be fulfilled by the society with the appropriate purchasing power and high and safe food quality. This encourages food sovereignty of a country, which independently meets the food needs of its people based on a food system that is fair to the entire community. Peraturan Pemerintah Republik Indonesia Nomor 17 Tahun 2015 requires an information system on food and nutrition and the theory of e-government 3.0 evolution. Therefore, one solution that supports these regulations and the e-government 3.0 approach is the text mining approach. This research processes data from LAPOR! and online news on food sovereignty to extract information and find patterns that will produce information on food sovereignty in Indonesia so that it can assist decision-making based on data through web-based visualization representation. The type of information analysis used is Document Classification for document filtering, Named Entity Recognition which is used to find out location entities and food commodities from textual data, and Topic Modeling to find topics from a collection of text news documents and complaints LAPOR !. The algorithm used in this study is Conditional Random Fields and Conditional Markov Models for the implementation of Named Entity Recognition. Latent Dirichlet Allocation and Non-Negative Matrix Factorization for the implementation of Topic Modeling. In addition Naïve Bayes, Support Vector Machine, and Logistic Regression are used for document classification. Whereas the selection of this model uses Conditional Random Field with an F1-score value for location entities of 83.85 and a food commodity entity of 90.98 used in online news data. In the LAPOR! Complaint data, the location entity uses Conditional Markov Model with an F1-Score value of 60.35 and food commodity entities amounting to 89.74. In classifying documents, the Support Vector Machine model with unigram features has a precision value of 92.00. In Topic Modeling, the Non-Negative Matrix Factorization model has a higher coherence value than the Latent Direchlete Allocation in three experiments with different datasets. In addition, visualization of food sovereignty is based on the processing of the data above to facilitate policy making by leaders such as the Expert Team at the Kantor Staf Presiden.

"
2019
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Asep Rinaldo
"ABSTRAK<>br>
Dalam beberapa tahun terakhir, masalah pengukuran kredibilitas informasi di jaringan sosial mendapat perhatian yang cukup besar terutama di bawah situasi darurat. Hal itu merupakan konsekuensi dari membeludaknya informasi, terlebih ketika semua orang bebas berperan sebagai sumber informasi.Penelitian ini menyoroti buramnya dinding pembatas antara fakta dan hoax di Indonesia, sehingga hal itu menyebabkan banyaknya kasus penyebaran hoax di media. Jika dibiarkan hal tersebut dapat berdampak buruk bagi seorang pribadi ataupun organisasi yang diserang isu hoax. Survei yang dilakukan Intelligence Media Management IMM menyatakan terdapat peningkatan tajam di tahun 2016 dari 1572 menjadi 7311 pemberitaan media. Dan berdasarkan hasil survei yang dilakukan masyarakat telematika mastel Indonesia hampir dari seluruh responden 84,5 menyatakan terganggu dengan maraknya berita hoax yang dapat mengganggu kerukunan masyarakat dan menghambat pembangunan nasional.Menurut Menteri Komunikasi dan Informatika Rudiantara, langkah nyata yang bisa dilakukan adalah menyaring informasi menjadi lebih cepat dan tegas. Untuk itu diperlukan tindakan sehingga penyebaran hoax di media dapat diturunkan. Tujuan dilakukannya penelitian ini adalah untuk mengidentifikasi konten di media sosial merupakan suatu hoax atau tidak pada saat konten tersebut beredar. Metodologi yang digunakan di dalam penelitian ini dimulai dengan mengumpulkan tweets yang terindikasi hoax lalu dilakukan proses pengolahan data dengan membuat suatu model text mining yang dapat memprediksi suatu konten berpotensi hoax atau tidak.Hasil dari penelitian ini yaitu didapatkan sebuah model berbasis pembelajaran sendiri menggunakan algoritma LinearSVC dengan akurasi 91 yang dapat memprediksi apakah suatu tweet merupakan berpotensi hoax atau tidak sehingga membantu dalam menyaring suatu informasi yang diharapkan dapat mengurangi penyebaran hoax di Indonesia.

ABSTRACT<>br>
In recent years, the problem of measuring the credibility of information on the social network received considerable attention, especially under emergency situations. This is the consequence of too many information, especially when everyone is free to act as a source of information.The study highlights the blurring of the dividing wall between fact and hoax in Indonesia, so it causes many cases of spread of hoaxes in the media. If left unchecked it can be bad for a person or organization that attacked the issue of hoaxes. Surveys conducted by Intelligence Media Management IMM said there is a sharp increase in 2016 from 1572 content into 7311 content spread in media. And based on the results of a survey conducted by telematics community Mastel Indonesia almost of all respondents 84.5 declared disturbed by the rise of the hoax news that could disturb social harmony and impede national development.According to the Minister of Communications and Information Rudiantara, concrete steps that can be done is to filter information faster and firmer. It required the action so that the spread of hoax in the media can be derived. The purpose of this research is to identify content in social media is a hoax or not when the content is spreading. The methodology used in this research begins with collecting tweets that indicated hoax and then performed data processing by creating a text mining model that can predict a potentially hoax content or not.The result of this research is a machine learning model using LinearSVC algorithm with 91 accuracy which can predict whether tweet potentially hoax or not, thus helping the filtering of information expected to reduce the spread of hoax in Indonesia."
2017
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>