Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 64409 dokumen yang sesuai dengan query
cover
Feriz Kausar
"Industri otomotif terus berkembang di Indonesia, bidang ini terpilih sebagai prioritas lima sektor manufaktur dalam program pemerintah Making Indonesia 4.0. Dengan target menjadi produsen mobil terbesar di ASEAN, berdampak pada pertumbuhan konsumsi listrik sektor otomotif sebesar 6% per tahun pada kuartal IV 2021. Dibutuhkan penambahan kapasitas daya listrik yang selaras dengan komitmen pemerintah untuk beralih ke energi terbarukan. Penerapan Pembangkit Listrik Tenaga Surya (PLTS) terdistribusi di sisi konsumen merupakan salah satu alternatif terbaik untuk penambahan kapasitas daya produsen otomotif yang diharapkan bisa bersaing di kancah internasional sebagai perusahaan berbasis energi bersih. Seperti yang diketahui, investasi PLTS masih menjadi tantangan bagi pelaku industri, maka, model bisnis third-party ownership (TPO) menjadi salah satu solusi alternatif dalam mengatasi masalah tersebut. Tujuan dari penelitian ini adalah menganalisis tekno-ekonomi PLTS terdistribusi dengan odel bisnis TPO dengan tiga skema, yaitu on-grid, stand-alone, dan hybrid, dengan studi kasus pabrik ATPM – S1. Metodologi yang digunakan adalah mendesain kapasitas dan sistem operasi PLTS terdistribusi menggunakan perangkat lunak Homer Pro, lalu menganalisis keekonomian dengan metode cashflow menggunakan 3 skenario tarif (ceiling price setara tarif PLN I-3, variatif, dan floor price yaitu pada saat IRR=WACC), dan performa panel surya. Skema bisnis TPO yang dianalisis dengan solar leasing skema fixed rent (FR) dan performance-based rent (PBR). Hasil penelitian ini menunjukkan bahwa skema on-grid dengan kapasitas PLTS sebesar 204 kWp, beroperasi dari pukul 06.00 s.d. 18.00, dengan nilai investasi sebesar 185.740 USD. Nilai IRR ketiga skenario tarif FR adalah 10,17%, 10,032%, dan 9,24%, sedangkan PBR sebesar 9,305%, 9,168%, dan 8,386%. Skema stand-alone menghasilkan kapasitas PLTS sebesar 1,570 MWp dengan Battery Energy Storage System (BESS) sebesar 9.000 kWh, beroperasi selama 24 jam, dengan nilai investasi 2.803.988 USD. Nilai IRR ketiga skenario tarif FR dan PBR adalah sama sebesar -13,44%, 10,295%, dan 9,24%. Skema hybrid menghasilkan kapasitas PLTS sebesar 800,28 kWp dengan BESS sebesar 4.000 kWh, beroperasi selama 24 jam, dengan nilai investasi 1.376.712 USD. Nilai IRR ketiga skenario FR adalah -3,89%, 10,77%, dan 9,24%, sedangkan PBR sebesar -4,93%, 9%, dan 7,48%. Nilai IRR pada PBR lebih rendah dibandingkan dengan FR, karena pada PBR terdampak degradasi daya panel surya. Skema hybrid dengan skenario 1 memiliki O&M yang selalu di atas pendapatan. Maka, penerapan TPO PLTS terdistrbusi pada ATPM – S1, hanya layak menggunakan skema on-grid solar leasing fixed rent.

The automotive industry continues to grow in Indonesia, this field was chosen as a priority for the five manufacturing sectors in the government's Making Indonesia 4.0 program. With a target to become the largest car manufacturer in ASEAN, it will have an impact on the growth of electricity consumption in the automotive sector by 6% per year in the fourth quarter of 2021. It is necessary to increase electricity capacity in line with the government's commitment to switch to renewable energy. The application of distributed solar photovoltaic (DSPV) on the consumer side is one of the best alternatives to increase the capacity of automotive manufacturers which are expected to compete internationally as clean energy-based companies. As is well known, PV mini-grid investment is still a challenge for industry players, so the third-party ownership (TPO) business model is an alternative solution to overcome this problem. The purpose of this study is to analyze the techno-economy of distributed solar power with a TPO business model with three schemes, namely on-grid, stand-alone, and hybrid, with a case study of the ATPM – S1 factory. The methodology used is to design the capacity and operating system of distributed PV mini-grid using Homer Pro software, then analyze the economy with the cash flow method using 3 tariff scenarios (the ceiling price is equivalent to the PLN I-3 tariff, varied, and the base price is when IRR = WACC), and solar panel performance. The TPO business scheme analyzed by leasing solar fixed rent (FR) and performance-based rent (PBR) schemes. The results of this study indicate that the on-grid scheme with a PLTS capacity of 204 kWp, operates from 06.00 s.d. 18.00, with an investment value of 185,740 USD. The IRR values of the three FR tariff scenarios are 10.17%, 10.032%, and 9.24%, while the PBR are 9.305%, 9.168%, and 8.386%. The stand-alone scheme produces a PLTS capacity of 1,570 MWp with a Battery Energy Storage System (BESS) of 9,000 kWh, operating for 24 hours, with an investment value of 2,803,988 USD. The IRR values for the three FR and PBR tariff scenarios are the same at -13.44%, 10.295%, and 9.24%. The hybrid scheme produces a PLTS capacity of 800.28 kWp with a BESS of 4,000 kWh, operating for 24 hours, with an investment of 1,376,712 USD. The IRR values of the three FR scenarios are -3.89%, 10.77%, and 9.24%, while the PBR are -4.93%, 9%, and 7.48%. The IRR value for PBR is lower than FR, because PBR inhibits the decrease in solar panel power. The hybrid scheme with scenario 1 has O&M always above revenue. So, the application of TPO PLTS distributed to ATPM – S1, is only feasible to use the fixed rent on-grid solar leasing scheme."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Adhi Devawijaya
"Dalam rangka mendorong pencapaian target bauran energi terbarukan nasional, khususnya energi surya, Pemerintah Indonesia menerbitkan Peraturan Menteri Energi dan Sumber Daya Mineral Nomor 21 Tahun 2021 tentang Pembangkit Listrik Tenaga Surya Atap yang Terhubung dengan Jaringan Tenaga Listrik Pemegang Izin Usaha . Peraturan ini memungkinkan konsumen untuk memasang pembangkit listrik tenaga surya di atap. Sehingga saat ini sudah banyak industri yang membangun PLTS di atap pabrik. Namun, investasi PLTS atap masih menjadi tantangan tersendiri bagi industri, sehingga model bisnis kepemilikan pihak ketiga (TPO) menjadi alternatif solusi untuk mengatasi masalah tersebut. Tujuan dari penelitian ini adalah untuk menganalisis tekno-ekonomi pembangkit listrik tenaga surya atap dengan studi kasus pabrik makanan dan minuman. Metodologi yang digunakan adalah merancang PLTS rooftop menggunakan simulasi homer untuk mendapatkan kapasitas optimal kemudian menganalisa keekonomian untuk mendapatkan tarif terendah dengan metode cash flow menggunakan 12 skenario yaitu skenario 1 untuk suku bunga lokal 10%, skenario 2 untuk suku bunga internasional 2,6%, skenario 3 untuk suku bunga lokal 10% dan tanpa kewajiban TKDN, skenario 4 untuk suku bunga internasional 2,6% dan tanpa tanpa kewajiban TKDN, skenario 5 : skenario 3 dan Insentif Tax Holiday, skenario 6 : skenario 4 dan Insentif Tax Holiday. Skema bisnis TPO dianalisis dengan skema leasing solar performance based rent (PBR). Hasil  yang diperoleh adalah modul PV yang digunakan sebesar 2.100 kW, produksi listrik tahunan PLTS atap sebesar 3.005.331 kWh/tahun, biaya investasi sebesar 1.785.246 USD dengan menggunakan modul PV lokal dan 1.341.424 USD dengan Modul PV Impor. Luas atap yang dibutuhkan adalah 1,19 Ha. Tarif yang diperoleh dari perhitungan 6 skenario adalah 10.23 cent USD/kWh untuk skenario 1; 9,86 cent USD/kWh untuk skenario 2, 7,71 cent USD/kWh untuk skenario 3; 7,4 cent USD/kWh untuk skenario 4; 6,98 cent USD/kWh untuk scenario 5 dan 6,44 cent USD/kWh untuk scenario 6. Selama kontrak TPO, penghematan terbesar terjadi pada skenario 6 dengan potensi penghematan 22.840 USD/Tahun. Penerapan TPO hanya layak untuk skenario 5 dan skenario 6 karena tarifnya lebih rendah dari tarif PLN.

In order to encourage the achievement of the national renewable energy mix target, especially solar energy, the Government of Indonesia issued the Minister of Energy and Mineral Resources Regulation Number 21 Year  2021 concerning Rooftop Solar Power Plants Connected to the Electric Power Grid Holders of Business Licenses. This regulation allows consumers to install rooftop solar power plant. So now many industries have built rooftop solar power plant on factory roofs. However, rooftop solar power plant investment is still a challenge for industry, so the third-party ownership (TPO) business model is an alternative solution to overcome this problem. The purpose of this study is to analyze the techno-economy of rooftop solar power plant with in a case study of the food and beverage factory. The methodology used is to design rooftop solar power plant using homer simulation to get the optimal capacity then analyze the economy to get the lowest tariff with the cash flow method using 4 scenarios, namely scenario 1 for Local Interest Rate 10%, scenario 2 for International Interest Rate 2.6%, scenario 3 for Local Interest Rate 10% and without local content, scenario 4 for International Interest Rate 2.6% and without local content, scenario 5: scenario 3 and Incentive Tax Holiday, scenario 6: scenario 4 and Incentive Tax Holiday. The TPO business scheme analyzed by leasing solar performance-based rent (PBR) schemes. The optimization results obtained are the modul PV used is 2,100 kW, annual electricity production of rooftop solar power plant is 3,005,331 kWh/year, investment cost is 1.785.246 USD with using local pv modul and 1.341.424 USD with PV Module Local Content Exemption (Imported PV Module)  and the required area is 1.19 Ha. The tariff obtained from the calculation of 4 scenarios is 10.23 cent USD/kWh for scenario 1; 9.86 cent USD/kWh for scenario 2, 7.71 cent USD/kWh for scenario 3; 7.4 cent USD/kWh for scenario 4; 6.98 cent USD/kWh for scenario 5 and 6.44 cent USD/kWh for scenario 6. During the TPO contract, the biggest savings occurred in scenario 6 with potential savings of 22.840 USD/year. The application of TPO is only feasible for scenario 5 and scenario 6 because the tariff is lower than the PLN tariff."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Suhada Bagus Solihin
"Dengan adanya perangkat lunak simulasi, maka dapat membuat suatu model sistem sel surya atau disebut dengan photovolotaic simulator agar dapat mempelajari kinerja pengisian baterai, tanpa harus selalu memasangkan baterai dengan sel surya. Saat ini sudah banyak PV simulator dengan berbagai varisi metode dan perumusan. Perangkat lunak semacam ini sangat membantu sekali khususnya pada industri-industri automasi maupun laboratorium karena sifatnya yang mempermudah dalam melakukan perancangan maupun analisa suatu masalah. Penelitian mengenai photovoltaic simulator dengan menggunakan dua komponen perangkat lunak (software). Komponen software pertama menggunakan National Instruments (NI) LABVIEW untuk membuat Model Sel Surya, sementara komponen software kedua menggunakan NI Multisim untuk membuat model Semi Konverter Satu Fasa. Pertama-tama, model matematis dari photovoltaic (sel surya) akan dijelaskan terlebih dahulu. Kemudian, setelah didapat model matematis dari sel surya, Photovoltaic Simulator akan direalisasikan ke dalam LABVIEW selanjutnya membuat rangkaian Semi Konverter Satu Fasa menggunakan Multisim. Photovoltaic Simulator akan mengendalikan konverter menggunakan pengendali IP dengan referensi terhadap model photovoltaic. Sinyal kendali dari pengendali IP dipakai untuk menghasilkan sinyal PWM yang mengatur sudut penyalaan konverter. Masukan berupa irradiansi dan suhu diberikan ke Photovoltaic Simulator, kemudian arus dan tegangan dari konverter akan di umpan balik ke Photovoltaic Simulator. Kesimpulan dari penelitian ini adalah arus dan tegangan konverter mengalami kenaikan saat irradiansi dan suhu meningkat.

With the simulation software, it is possible to create a model of a solar cell system or called a photovolotaic simulator in order to study battery charging performance, without having to always install a battery with solar cells. Currently, there are many PV simulators with various methods and formulations. This kind of software is very helpful, especially in automated and laboratory industries because of its nature which makes it easier to design and analyze a problem. Research on photovoltaic simulators using two software components. First, software components use National Instruments (NI) LABVIEW to create the Solar Cell Model, while the second software is NI Multisim to create semi converter single phase circuit model. First, the mathematical model of the solar cell will be explained. Then, this mathematical model realized using LABVIEW. Second, creating semi converter single phase circuit model using Multisim. The Photovoltaic Simulator will control the converter using IP controller in the reference of the photovoltaic model. Control signals from IP controller are used to generate PWM signal, which control the triggering angle of the converter. Irradiance and temperature inputs are given to the Photovoltaic Simulator, then the current and voltage outputs from converter will be used as feedbacks to the Photovoltaic Simulator. The result from this research the Voltage and current increase when the Irradiance and temperature inputs increase."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Telah dilakukan preparasi lapisan tipis p-n junction CulnSe2 - CdS - ZnO multi layer dengan metode RF sputtering dengan penumbuhan kristal CulnSe2 menggunakan metode bridgman pada suhu 600 C. Dari pengamatan XRD memperlihatkan bahwa kristal CulnSe2 memiliki struktur tetragonal khalkopirit dengan parameter kisi a= 5,7727 A dan c= 11,6032 A, sedangkan lapisan tipis CdS mempunyai struktur heksagonal dengan parameter kisi a=4,1439 A dan c=6,72 A. Hasil pengamatan SEM menunjukkan ketebalan CdS sebesar 3,8 x 10 A mampu memberikan efek fotovoltaik optimal dengan tegangan sebesar 101 mV dan arus 0,99 A."
JURFIN 10:29 (2015)
Artikel Jurnal  Universitas Indonesia Library
cover
Nelson, Jenny
London: Imperial College Press, 2010
537.54 NEL p
Buku Teks  Universitas Indonesia Library
cover
Nadia Rachma Yunia
"Listrik adalah salah satu kebutuhan yang sangat mendasar pada zaman ini, perannya sangat besar mulai dari listrik untuk rumah penduduk hingga memenuhi kebutuhan skala besar seperti usaha pabrik dan mendukung instansi pemerintahan. Penggunaan bahan bakar yang paling besar untuk pembangkit listrik di Indonesia saat ini masih menggunakan batu bara, sementara batu bara bukan termasuk energi terbarukan sehingga dapat habis di kemudian hari. Photovoltaic sistem adalah sebuah sistem yang menggunakan energi dari cahaya matahari untuk diubah menjadi energi listrik. Photovoltaic sistem ini menggunakan solar sel yang kemudian dapat dibuat dalam skala lebih besar menjadi solar modul atau solar array. Photovoltaic dapat digunakan secara on-grid ataupun off-grid. Kemudian, agar sistem photovoltaic dapat digunakan sebagai pembangkit, sistem ini dapat dihubungkan dengan kontroler Maximum Power Point Tracker (MPPT) dan converter. Dalam skripsi ini jenis MPPT yang digunakan adalah Perturb and Observation (P&O) dan converter yang digunakan adalah dc-dc converter buck-boost. MPPT P&O digunakan karena algoritmanya yang sederhana sehingga banyak digunakan dan buck-boost converter digunakan agar tegangan output yang dihasilkan dapat disesuaikan dengan beban yang divariasikan.

Electricity is one of the very basic needs of this era, its role is very large ranging from electricity to houses to meet large-scale needs such as factory businesses and supporting government agencies. The use of the largest fuel for electricity generation in Indonesia is currently still using coal, while coal is not included as renewable energy so it can be used up later. Photovoltaic systems are system that uses energy from sunlight to be converted into electrical energy. This photovoltaic system uses solar cells which can then be made on a larger scale into solar modules or solar arrays. Photovoltaic can be used as on-grid or off-grid. Then, so that the photovoltaic system can be used as a generator, this system can be connected to the Maximum Power Point Tracker (MPPT) controller and converter. In this thesis the type of MPPT used is Perturb and Observation (P & O) and the converter used is a dc-dc buck-boost converter. MPPT P & O is used because the its simple algorithm and widely used in othe Solar Power Generation System and the buck-boost converter is used so that the output voltage can be adjusted to the varied load."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adjar Hadiyono
"Biaya pokok produksi (BPP) di sistem ketenagalistrikan Bangka cukup tinggi dikarenakan sebagaian besar pembangkitnya mengunakan PLTD. Salah satu solusi untuk menekan BPP sekaligus mengurangi emisi karbon dari sektor pembangkit listrik adalah dengan menggantikan jam operasi PLTD dengan PLTS. Penelitian ini bertujuan untuk menganalisis tekno ekonomi penggantian jam operasional PLTD dengan PLTS. Kapasitas PLTS dibatasi 20% dari beban puncak sistem di Bangka guna menjaga stabilitas sistem. Berdasarkan data potensi energi matahari, biaya-biaya pengembangan sistem PLTS dan konsumsi bahan bakar PLTD pada sistem Bangka didapat hasil COE PLTS sebesar Rp. 2.305,11/kWh, dan biaya bahan bakar PLTD sebesar Rp. 2.390,88/kWh. Harga energi PLTS lebih kecil dari biaya bahan bakar PLTD. Dengan penerapan PLTS sebagai mengantikan operasi PLTD guna mengurangi konsumsi bahan bakar maka dalam satu tahun terjadi penghematan sebesar Rp. 3.075.543.012 per tahun. Sehingga secara ekonomis penerapan PLTS sebagai pengganti jam operasional PLTD layak diterapkan pada sistem ketenagalistrikan Bangka.

Electricity production cost of Bangka electrical system is considerably high as the system's mainly operates Diesel Power Plants. A possible solution to decrease the production cost and hence reducing the system's carbon emission is to replace operating hours of the Diesel power plants with Solar power plant (PV). This research intends to analyse techno-economic of this replacement. The total capacity of PV shall not exceed 20% of Bangka electrical system's peak load in order to maintain system's stability. Based on the solar energy potential, solar power system costs and fuel consumption of diesel in Bangka, cost of energy for PV is Rp 2,301.11/kWh, while for cost of diesel fuel is Rp 2,390.88/kWh. It is clear that cost of generation from PV is cheaper than that of Diesel fuel. Substituting Diesel power plant with Solar power plant in Bangka electrical system might save as much as Rp. 3,075,543,012 yearly. Therefore, it is feasible to replace Diesel power plants with solar power plants in Bangka electrical system.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
T42384
UI - Tesis Membership  Universitas Indonesia Library
cover
Green, Martin A.
Englewood Cliffs, New Jersey: Prentice-Hall, 1982
521.312 44 GRE s
Buku Teks  Universitas Indonesia Library
cover
Fahmy Miftahurrahman
"Konsumsi listrik pada sektor perumahan di Indonesia cukup tinggi. Salah satu cara yang mungkin untuk mengurangi konsumsinya dengan menerapkan konsep near Zero Energy Building. Strategi retrofit adalah salah satu strategi untuk menggabungkan efisiensi energi dan efektivitas biaya. Pemilihan modul surya berdampak langsung pada daya yang dihasilkan sehingga perlu dioptimalkan. Di sisi lain, pemilihan peralatan listrik juga perlu dioptimalkan untuk efisiensi konsumsi energi. Dalam penelitian ini, meminimalkan biaya retrofit dan menemukan kombinasi biaya optimal, teknologi efisiensi energi dan sistem pembangkit energi terbarukan digabungkan dan diteliti. Pemilihan peralatan untuk memasak, pendinginan ruang, dan jenis peralatan umum diadakan berdasarkan biaya energi per beban dan harga peralatan. Hasil pemodelan matematika dan simulasi adalah kombinasi peralatan penanak nasi Cosmos CRJ-9303, water dispenser Polytron PWC-777, lemari es Panasonic NR-BN209N, pengkondisi udara Gree C3E, televisi SONY KD-43X7500F, pompa air Shimizu PC-260BIT, dan mesin cuci Sharp ES-FL872. Kombinasi ini membutuhkan 5,678 kWh energi pertahun. Modul surya jenis mono-crystalline standar kapasitas 4.5 kWp menghasilkan energi sebesar 5,891 kWh pertahun, memerlukan ruang sebanyak 26.1 m2 pada atap model. Perbandingan energi peralatan listrik dengan modul surya menghasilkan AEMR sebesar 104%, sehingga dapat dinyatakan bahwa model dengan kombinasi tersebut memenuhi persyaratan dalam penerapan konsep nZEB dengan biaya retrofit optimum sebesar Rp 106,076,459.

The power consumption for the residential in Indonesia is quite high. It makes sense to reduce consumption by applying the near Zero Energy Building concept. The retrofit strategy is one strategy for combining energy efficiency and cost-effectiveness. PV system equipment impact directly to generated power, need to be optimized. On the other side, load equipment needs to be optimized for energy consumption efficiency. In this research, minimizing the retrofit cost and find a cost-optimal package, energy efficiency technologies and Renewable energy generation systems be combined and investigated. Equipment selection for cooking, space cooling, and general appliances type held based on cost per load energy and equipment price. The result of mathematical modelling and simulation is combination of appliances; Cosmos CRJ-9303 rice cooker, Polytron PWC-777 water dispenser, Panasonic NR-BN209N refrigerator, Gree C3E air conditioner, SONY KD-43X7500F television, Shimizu PC-260BIT water pump, and Sharp ES-FL872 washing machine. This combination requires 5,678 kWh annual energy. Standard mono-crystalline PV module with 4.5 kWp capacity could generate 5,891 kWh annually, required 26.1 m2 roof space. Comparison between energy consumption and supply is 104%, it can be stated that the model meets the requirements in applying the nZEB concept, with optimum retrofit cost of Rp 106,076,459."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T55330
UI - Tesis Membership  Universitas Indonesia Library
cover
Nasywa Zahrainda Shafana
"Dalam rangka mendukung penandatangan Paris Agreement untuk menurunkan emisi gas rumah kaca sebesar 29% di tahun 2030 serta Rencana Umum Energi Nasional (RUEN) menetapkan porsi energi terbarukan minimal 23% dalam bauran energi pada tahun 2025, dibutuhkan adanya alternatif pergantian bahan bakar fosil. Energi surya merupakan salah satu energi terbarukan yang melimpah di Indonesia dan dapat digunakan sebagai sumber listrik melalui pembangkit listrik tenaga surya (PLTS). PLTS terapung merupakan sistem modul surya yang dipasang di atas media yang mengapung pada berbagai jenis permukaan perairan. Danau Universitas Indonesia memiiki potensi yang besar untuk dibangun PLTS terapung, terlebih dapat memecahkan masalah keterbatasan lahan. Penelitian ini membahas tentang analisis risiko investasi PLTS terapung pada seluruh Danau UI, yaitu Danau Agathis, Danau Kenanga, Danau Puspa, Danau Salam, dan Danau Ulin. Berdasarkan hasil perhitungan keekonomian, seluruh Danau UI memiliki nilai NPV positif, IRR diatas 8%, PBP kurang dari 15 tahun, dan PI lebih dari 1. Nilai LCOE yang dihasilkan untuk seluruh Danau UI masih di bawah harga patokan tertinggi sebesar 60% dari harga pembelian tenaga listrik golongan P-2 yang sebesar 8,915 cent/kWh, yaitu berkisar pada 4 cent/kWh, yakni. Hal ini menandakan bahwa proyek ini dikatakan layak untuk dilaksanakan. Untuk mendukung hasil perhitungan keekonomian, dilakukan analisis risiko dengan menggunakan simulasi Monte Carlo. Terlihat bahwa keenam Danau UI memiliki nilai derajat keyakinan terhadap nilai NPV, IRR, PBP, dan PI diatas 75%. Berdasarkan analisis sensitivitas, terlihat bahwa penjualan daya ke PLN dan LCOE merupakan komponen paling berpengaruh pada penelitian ini.

In order to support the signing of the Paris Agreement to reduce emissions by 29% in 2030, and in alignment with the General Plan for National Energy (RUEN) that sets a minimum of 23% renewable energy in the energy mix by 2025, alternatives are needed to replace fossil fuels. Solar energy is one of the abundant renewable energy sources in Indonesia and can be utilized as an electricity source through photovoltaic solar power plants. Floating solar power plants are systems where solar modules are installed on floating media on various types of water surfaces. The lakes at the University of Indonesia have great potential for the construction of floating solar power plants, especially as a solution to the problem of land scarcity. This study discusses the investment risk analysis of floating solar power plants in all the lakes at UI, namely Lake Agathis, Lake Kenanga, Lake Puspa, Lake Salam, and Lake Ulin. Based on economic feasibility calculations, all of the UI Lakes have a positive NPV, an IRR above 8%, a PBP of less than 15 years, and a PI greater than 1. The resulting LCOE for all UI Lakes are still below the highest price of 60% of the P-2 electricity purchase price of 8.915 cents/kWh, which is around 4 cents/kWh. This indicates that the project is feasible to be implemented. To support the economic feasibility results, a risk analysis was conducted using Monte Carlo simulation. It shows that all of UI Lakes have a degree of freedom above 75% for NPV, IRR, PBP, and PI values. Based on sensitivity analysis, it is evident that power sales to PLN and LCOE are the most influential components in this study."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>