Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 75544 dokumen yang sesuai dengan query
cover
Zeveliano Zidane Barack
"Misalkan G = (V,E) adalah graf dengan V adalah himpunan simpul dan E adalah himpunan busur. Pelabelan tak teratur dari graf G adalah pelabelan-k busur φ : E → {1, 2, · · · , k} dari graf G sedemikian sehingga bobot dari seluruh simpul berbeda. Bobot dari simpul u ∈ V didefinisikan sebagai wtφ(u) = v∈N(u) φ(uv), dengan N(u) adalah himpunan simpul yang bertetangga dengan u. Nilai minimum k sedemikian sehingga graf G memiliki pelabelan tak teratur dengan label paling besar k disebut sebagai kekuatan tak teratur dari graf G. Misalkan G adalah graf dengan order n, pelabelan tak teratur modular dari graf G adalah pelabelan-k busur φ : E → {1, 2, · · · , k} sedemikian sehingga terdapat fungsi bobot yang bijektif wtφ : V → Zn , dengan Zn adalah grup bilangan bulat modulo n. Bobot modular didefinisikan dengan wtφ(u) = v∈N(u) φ(uv). Nilai minimum k sedemikian sehingga graf G memiliki pelabelan tak teratur modular dengan label paling besar k disebut kekuatan tak teratur modular dari graf G. Graf friendship dibangun dari kumpulan graf lingkaran C3 dengan sebuah simpul pusat bersama. Pada penelitian ini, akan dikonstruksi pelabelan tak teratur modular untuk graf friendship dan ditentukan kekuatan tak teratur modular untuk graf friendship.

Let G = (V,E) be a graph with V is the vertex set and E is the edge set of G. Irregular labeling of a graph G is an edge k−labeling φ : E → {1,2,··· ,k} of a graph G such that every weights of the vertices are all different. The weight of vertex u ∈ V is defined by wtφ(u) = v∈N(u) φ(uv), where N(u) denotes the set of all vertices that adjacent to u. The minimum number k such that a graph G has irregular labeling with largest label k is called irregularity strength of G. Let G be a graph with order n, modular irregular labeling of a graph G is an edge k−labeling φ : E → {1,2,··· ,k} such that there exists a bijective weight function wtφ : V → Zn, where Zn is a group of modulo n. The modular weight is defined by wtφ(u) = v∈N(u) φ(uv). The minimum number k such that a graph G has modular irregular labeling with largest label k is called modular irregularity strength of G. The friendship graph is constructed by a set of cycle graphs C3 with a common central vertex. In this research, we construct the modular irregular labeling for friendship graph and determine its modular irregularity strength."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Pakpahan, Regina Natalia
"ABSTRACT
Pelabelan graf merupakan salah satu topik yang menarik dalam teori graf. Ada
beberapa cara untuk melabeli sebuah graf, dan salah satunya yaitu pelabelan graceful.
Misalkan G(V,E) adalah sebuah graf. Pemetaan injektif f : V → {0,1,...,|E|}
disebut graceful jika label dari busurnya w(uv) = | f(u) − f(v)| semuanya memiliki
nilai yang berbeda untuk setiap busur uv. Ada sebuah konjektur terkenal yang
belum terbukti dalam pelabelan graceful. Konjektur tersebut mengatakan bahwa
semua graf pohon adalah graceful. Untuk membuktikan konjektur ini, maka harus
ditunjukan bahwa setiap graf pohon adalah graceful. Terdapat banyak paper penelitian
yang membahas tentang pelabelan graceful untuk kelas-kelas graf pohon yang
berstruktur tinggi atau kelas-kelas graf pohon yang bersyarat. Banyak kelas graf pohon
pun telah dibuktikan adalah graceful dan salah satunya adalah graf Supercaterpillar.
Adapun penelitian sebelumnya telah membuktikan bahwa graf Supercaterpillar
yang memenuhi syarat tertentu adalah graceful. Dalam tesis ini, konsep dari
graf Supercaterpillar diperumum dan ditunjukkan sub-kelas dari graf Supercaterpillar
yang belum dibahas pada penelitian sebelumnya juga merupakan graceful.

ABSTRACT
Graph labeling is one of the interesting topic in graph theory. There are many
way to labeling a graph, and one of them is graceful labeling. Let G(V,E) is a
graph. The injective mapping f : V → {0,1,...,|E|} is called graceful if the weight
of edge w(uv) = | f(u) − f(v)| are all defferent for every edge uv. There is a famous
conjecture in graceful labeling. It said that all trees are graceful. To prove
this conjecture, then we must showing that every trees are graceful. There are numerous
research papers dealing with special cases of highly structured or otherwise
restricted classes. Many classes of trees have been proven are graceful, and one of
them is Supercaterpillar. Previous research had proved that supercaterpillar satisfying
certain conditions are also graceful. In this paper, we generalized the concept
of supercaterpillar and show subclass of supercaterpillar graph that has not been
discussed earlier is also graceful."
2017
T48921
UI - Tesis Membership  Universitas Indonesia Library
cover
Pahrin Wirnadian
"Misalkan 𝐺 adalah graf dengan himpunan simpul 𝑉=𝑉(𝐺) dan himpunan busur 𝐸=𝐸(𝐺). Suatu pemetaan 𝜆 dari 𝑉 ke 𝑍|𝐸| dimana 𝐸(𝐺) ≥ 𝑉(𝐺) disebut pelabelan harmonis jika 𝜆 merupakan pemetaan injektif sedemikian sehingga ketika setiap busur 𝑥𝑦 diberi label dengan 𝑤 𝑥𝑦 =𝜆 𝑥 +𝜆(𝑦) mod 𝐸(𝐺) menghasilkan label yang berbeda. Pada tesis ini, diberikan konstruksi pelabelan harmonis pada kombinasi gabungan graf caterpillar dan graf firecracker teratur. Pertama dibuktikan pelabelan harmonis untuk sembarang graf caterpillar dan gabungan beberapa graf caterpillar. Selanjutnya dibuktikan pelabelan harmonis untuk graf firecracker teratur dan gabungan beberapa graf firecracker teratur. Dengan menggunakan pelabelan yang telah diberikan, ditunjukkan bahwa untuk masing-masing graf caterpillar atau firecracker teratur boleh terdapat dua simpul (sepasang simpul) dengan label yang sama. Selanjutnya ditunjukkan konstruksi pelabelan harmonis pada kombinasi gabungan graf caterpillar dan graf firecracker teratur. Dengan menggunakan pelabelan yang telah diberikan, ditunjukkan boleh terdapat 𝑛 pasang label simpul yang sama untuk kombinasi gabungan dari n graf caterpillar teratur dan graf firecracker teratur.

Let G be a graph with component of vertice V = V (G) and edge E = E (G). A mapping of 𝜆 from the V to the 𝑍|𝐸|, where 𝐸(𝐺) ≥ 𝑉(𝐺) , is called a harmonious labeling if 𝜆 is an injection such that, when each edge 𝑥𝑦 is assigned the label 𝑤 𝑥𝑦 =𝜆 𝑥 +𝜆(𝑦) mod 𝐸(𝐺) , the resulting edges are distinct. In this research, we study how to construct a harmonious labeling to union combination of caterpillar graph and regular firecracker graph. First, construction ways of a harmonious labelling will be presented for caterpillar graphs and combination of some caterpillar graphs. A construction of harmonious labeling will also be presented for firecracker graphs and union of some firecracker graphs. By using the labelling that is assigned, it will be shown that for each caterpillar graph or firecraker can have two edges (a paired of edge) with a same labeling. And a construction ways of harmonious labeling of union combination of caterpillar graph and regular firecrcaker graph will be presented. By using the assigned label, it will be proved that for combination of caterpillar graphs and firecracker graph there are n edges that has the same labeling."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2010
T28833
UI - Tesis Open  Universitas Indonesia Library
cover
Rismayati
"ABSTRAK
Misalkan G-(p,q) adalah sebuah graf dengan p=│V(G)│ dan q=│E(G)│. Graf G disebut harmonis jika terdapat suatu pemetaan injektif f:V(G)→ Zq sedemikian hingga menginduksi pemetaan bijektif f*:E(G)→ Zq dengan f*( uv)=f(u)+f(v) (mod q). Fungsi disebut fungsi pelabelan harmonis dari graf . Graf disebut harmonis ganjil jika terdapat suatu pemetaan injektif f:V(G)→ {0, 1, 2, …, 2q-1} sedemikian hingga menginduksi pemetaan bijektif f*:E(G)→ {1, 3, 5, …, 2q-1} dengan f*(uv)=f(u)+f(v). Fungsi f disebut fungsi pelabelan harmonis ganjil dari graf G. Pada tesis ini diberikan konstruksi dan pelabelan harmonis ganjil pada graf korona, graf matahari, graf hairy cycle HC(n; ri), graf shadow lingkaran D2(Cn) dan graf generalisasi shadow lingkaran Dm(Cn) untuk n = 0 (mod 4) .

ABSTRACT
Let G-(p,q) is a graph with p=│V(G)│and q=│E(G)│ . A graph G is said to be harmonious if there exist an injection f:V(G)→ Zq , such that the induced function f*:E(G)→ Zq defined by f*( uv)=f(u)+f(v) (mod q) is an bijection. A function f is said to be the harmonious labeling of G. A graph G is said to be odd harmonious if there exist an injection f:V(G)→ {0, 1, 2, …, 2q-1} such that the induced function f*:E(G)→ {1, 3, 5, …, 2q-1} defined by f*(uv)=f(u)+f(v) is an bijection. A function is said odd harmonious labeling of . In this thesis is given the proof that corona, sun graph, hairy cycle HC(n; ri), cycle shadow D2(Cn) and generalized of cycle shadow Dm(Cn) for are odd harmonious graphs."
Universitas Indonesia, 2013
T32964
UI - Tesis Membership  Universitas Indonesia Library
cover
Gusti Ayu Saputri
"ABSTRAK
Misalkan G(p,q) adalah suatu graf dengan p dan q masing-masing adalah banyaknya simpul dan busur dari G. Pelabelan harmonis ganjil pada adalah suatu fungsi injektif f : V(G) → {0,1,2,…,2q-1} yang sedemikian sehingga menginduksi fungsi bijektif f*:E(G)→{1,3,5,…, 2q-1} yang didefinisikan oleh f *(uv) = f (u) + f (v). Graf yang memiliki pelabelan harmonis ganjil disebut graf harmonis ganjil. Pada tesis ini diberikan suatu konstruksi pelabelan harmonis ganjil pada kelas graf yang memuat lingkaran yaitu graf tangga, graf dumbbell, graf pohon palem, graf pot bunga, graf generalisasi prisma, dan graf matahari.

ABSTRACT
Let G(p,q) is a graph with p and q be respectively the number of vertices and the number of edges of G. The odd harmonious labeling of is an injection f : V(G) → {0,1,2,…,2q-1} such that the induced function f*:E(G)→{1,3,5,…, 2q-1} defined by f *(uv) = f (u) + f (v) is a bijection. A graph with odd harmonious labeling is called odd harmonious graph. In this thesis is given the construction of the odd harmonious labeling on classes of graphs containing cycle, that are ladder graphs, dumbbell graphs, palm graphs, generalized prism graphs, and sun graphs."
Universitas Indonesia, 2013
T32963
UI - Tesis Membership  Universitas Indonesia Library
cover
I Putu Putra Gemilang Adi Guna
"Misalkan 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) adalah suatu graf dengan order 𝑛, dengan 𝑛 merupakan bilangan bulat. Notasi 𝑉(𝐺) menyatakan himpunan simpul dan notasi 𝐸(𝐺) menyatakan himpunan busur. Pemetaan 𝛾: 𝐸(𝐺) → {1,2, … , 𝑘}, dengan 𝑘 adalah bilangan bulat, adalah pelabelan modular tak teratur dari graf G jika terdapat suatu fungsi bijektif 𝜎: 𝑉(𝐺) → 𝑍𝑛 yang didefinisikan sebagai 𝜎(𝑥) = (∑𝛾(𝑥𝑦)) mod 𝑛 untuk setiap y yang bertetangga dengan x sehingga nilai 𝜎(𝑥) berbeda untuk setiap 𝑥 ∈ 𝑉(𝐺). Nilai ketakteraturan modular dari graf 𝐺 adalah nilai minimum 𝑘 sedemikian sehingga terdapat pelabelan modular tak teratur dapat diterapkan ke graf 𝐺. Graf dodecahedral adalah graf planar 3-terhubung yang berhubungan dengan konektivitas simpul dodekahedron. Terdapat 2 macam simpul pada graf dodecahedral yaitu simpul luar dan simpul dalam dan semua simpul memiliki derajat 3. Graf dodecahedral yang diperumum adalah graf yang dibangun dari graf dodecahedral dengan menambahkan 2 busur pada simpul dalam sedemikian sehingga seluruh simpul dalam memiliki derajat 5. Graf dodecahedral yang diperumum dapat dibentuk dengan order bilangan bulat genap lebih dari atau sama dengan 10. Pada skripsi ini, dibahas pelabelan modular tak teratur pada graf dodecahedral yang diperumum.

Let 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) be a graph of order 𝑛 , with 𝑛 is an integer. Notation 𝑉(𝐺) represents a set of vertices and 𝐸(𝐺) represents a set of edges. A labeling 𝛾: 𝐸(𝐺) → {1,2, … , 𝑘}, with integer 𝑘, is called modular irregular labelling of the graph 𝐺 if there exist a bijective function 𝜎: 𝑉(𝐺) → 𝑍𝑛 defined by 𝜎(𝑥) = (∑𝛾(𝑥𝑦)) mod 𝑛 for every 𝑦 adjacent to 𝑥, such that the weight 𝜎(𝑥) is different for every 𝑥 ∈ 𝑉(𝐺). The minimal 𝑘 for which the graph 𝐺 admits a modular irregular labelling is called modular irregularity strength of graph 𝐺. Dodecahedral graph is the 3-connected planar graph corresponding to the connectivity of the vertices of dodecahedron. There are 2 kinds of vertices in the dodecahedral graph, inner vertices and outer vertices and all of the vertices has degree 3. Generalized Dodecahedral Graph is a graph that is built from dodecahedral graph by adding 2 additionals edge on each of the inner vertice so that all of the inner vertices have degree 5. Generalized dodecahedral graph can be formed with order of even integer greater than or equal to 10. In this skripsi, it will be discussed the modular irregular labelling of generalized dodecahedral graphs."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Malvin Augurius
"Misalkan 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) dengan 𝑉(𝐺) adalah himpunan tak kosong simpul dan 𝐸(𝐺) adalah himpunan busur. Banyaknya simpul di 𝐺 disebut order dari 𝐺. Pelabelan tak teratur modular pada graf 𝐺 adalah pelabelan busur 𝜑: 𝐸(𝐺) → {1,2, … , 𝑘} dan 𝑘 ∈ 𝑍^+ sedemikian sehingga terdapat fungsi bobot bijektif 𝜎: 𝑉(𝐺) → 𝑍_𝑛 dimana 𝑍_𝑛 adalah grup bilangan bulat modulo 𝑛. Bobot modular pada 𝑢 ∈ 𝑉(𝐺) didefinisikan dengan 𝜎(𝑢) = 𝑤𝑡_𝜓(𝑢) = ∑𝑣∈𝑁(𝑢) 𝜓(𝑢𝑣) dengan 𝑁(𝑢) adalah himpunan tetangga dari simpul 𝑢. Nilai minimum 𝑘 dimana graf 𝐺 memiliki pelabelan tak teratur modular disebut kekuatan tak teratur modular dari graf 𝐺 dinotasikan sebagai 𝑚𝑠(𝐺) Graf mahkota yang dinotasikan dengan 𝐻_(𝑚,𝑚) adalah modifikasi dari graf bipartit. Pada penelitian ini diperoleh graf mahkota 𝐻_(𝑚,𝑚) memiliki kekuatan tak teratur modular bernilai 4 untuk 𝑚 genap dan bernilai ∞ untuk 𝑚 ganjil.

Suppose 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) where 𝑉(𝐺) is the non-empty set of vertices and 𝐸(𝐺) is set of edges. The number of vertices in 𝐺 is called the order of 𝐺. Modular irregular labeling on a graph 𝐺 is an edge labeling 𝜑: 𝐸(𝐺) → {1,2, … , 𝑘} and 𝑘 ∈ 𝑍^+ such that there exists a bijective weight function 𝜎: 𝑉(𝐺) → 𝑍_𝑛 where 𝑍_𝑛 is an integer group of modulo 𝑛. The modular weight on 𝑢 ∈ 𝑉(𝐺) is defined by 𝜎(𝑢) = 𝑤𝑡_𝜑(𝑢) = ∑𝑣∈𝑁(𝑢) 𝜓(𝑢𝑣) where 𝑁(𝑢) is set of neighbors of vertex 𝑢. The minimum value of 𝑘 for which a graph 𝐺 has a modular irregular labeling is called the modular irregularity strength of graph 𝐺 denoted as 𝑚𝑠(𝐺). Crown graph denoted by 𝐻_(𝑚,𝑚) is a modification of the bipartite graph. In this research, it is obtained that the crown graph 𝐻_(𝑚,𝑚) has a modular irregularity strength of 4 for even 𝑚 and ∞ for odd 𝑚."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lenni Fitri Anwar
"Misalkan $G=(V(G),E(G))$ merupakan suatu graf dengan himpunan simpul tak kosong berhingga $V(G)$ dan himpunan busur $E(G)$. Misalkan $G$ memiliki order $n$. Pelabelan busur $\varphi: E(G) \rightarrow \{1,2,\cdots,k\}$, dengan $k \in \mathbb{Z}^+$, disebut pelabelan-$k$ tak teratur modular jika terdapat fungsi bobot bijektif $\sigma:V(G) \rightarrow \mathbb{Z}_n$ dengan $\mathbb{Z}_n$ merupakan himpunan bilangan bulat modulo $n$. Fungsi $\sigma(v)=\sum_{\forall u \in N(v)} \varphi(uv) \mod n$ disebut bobot modular dari simpul $v\in V(G)$. $N(v)$ merupakan himpunan simpul yang bertetangga dengan simpul $v.$ Kekuatan tak teratur modular dari graf $G$, dinotasikan dengan $ms(G)$, merupakan nilai minimum $k$ sedemikian sehingga graf $G$ memiliki pelabelan-$k$ tak teratur modular. Graf bunga matahari ${Sf}_m$ merupakan graf yang dibangun dari graf roda $W_m,$ $m \geq 3,$ dengan simpul pusat $c$, simpul pada lingkaran-$m$ $v_1,v_2,\ldots,v_m$ dan tambahan $m$ simpul $w_1,w_2,\ldots,w_m$ dengan $w_i$ dihubungkan ke simpul $v_i$ dan $v_{i+1},$ $i=1,2,\ldots,m,$ dengan $v_{m+1}=v_1$ dan $v_0=v_m$. Pada penelitian ini dikontruksi fungsi pelabelan tak teratur modular pada graf bunga matahari ${Sf}_m$, $m\geq 3$, sehingga dapat ditentukan nilai kekuatan tak teratur modularnya.

Let $G=(V(G),E(G))$ be a graph with $V(G)$ is a nonempty finite vertex set and $E(G)$ is an edge set, which has order $n$. Edge $k-$labeling $\varphi: E(G) \rightarrow \{1,2,\cdots,k\}$, where $k \in \mathbb{Z}^+$, is called a modular irregular labeling of a graph $G$ if there exists a bijective weight function $\sigma:V(G) \rightarrow \mathbb{Z}_n$ where $\mathbb{Z}_n$ is a set of modulo $n$. Function $\sigma(v)=\sum_{\forall u \in N(v)} \varphi(uv) \mod n$ is called modular weight of vertex $v$. $N(v)$ denotes the set of all vertices that adjacent to $v$. The modular irregularity strength of a graph $G$, denoted by $ms(G)$, is the minimum number $k$ such that a graph $G$ has modular irregular $k$-labeling. The sunflower graph ${Sf}_m$ is a graph which constructed from a wheel graph $W_m$ with center vertex $c$ and $m$-cycle $v_1,v_2,\ldots,v_m$ and additional vertices $w_1,w_2,\ldots,w_m$ where $w_i$ is adjacent to $v_i$ and $v_{i+1}$, $i=1,2,\ldots,m$, with $v_{m+1}=v_1$ and $v_0=v_m$. This research shows the construction of modular irregular labeling on sunflower graph and its modular irregularity strength."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Satria Ibrahim
"Baca, dkk. (2020) memperkenalkan sebuah modifikasi dari pelabelan tak teratur yang disebut pelabelan tak teratur modular. Mereka mendefinisikan pelabelan tak teratur modular dari graf G dengan order n sebagai pelabelan-k busur ψ∶ E(G)→{1,2,3,…,k} sedemikian sehingga terdapat fungsi bobot bijektif σ_ψ ∶V(G)→Z_n yang didefinisikan sebagai σ_ψ (u)=∑_(v∈N(u))▒〖ψ(uv)〗, dengan Z_n adalah grup bilangan bulat modulo n, N(u) adalah himpunan simpul yang bertetangga dengan u. Kekuatan tak teratur modular ms(G) dari graf G adalah nilai minimum k sedemikian sehingga graf G memiliki pelabelan tak teratur modular dengan k sebagai label busur paling besar yang digunakan. Graf tangga L_n adalah graf hasil produk kartesian P_n×P_2. Graf tangga mobius M_n didapatkan dari graf tangga L_n dengan menghubungkan simpul akhir yang berlawanan dari dua salinan P_n. Pada penelitian ini akan ditentukan kekuatan tak teratur modular ms(G) untuk graf tangga mobius dan graf tangga.

Baca, dkk. (2020) introduced a modification of irregular labeling called modular irregular labeling. They defined a modular irregular labeling of a graph G of order n as an edge k-labeling ψ∶ E(G)→{1,2,3,…,k} such that there is a bijective weight function σ_ψ ∶V(G)→Z_n which is defined as σ_ψ (u)=∑_(v∈N(u))▒〖ψ(uv)〗, where Z_n is a group of integers modulo n, N(u) is the set of all vertices adjacent to u. Modular irregularity strength ms(G) of graph G is the minimum value k such that graph G has a modular irregular labeling with k as the largest label used. Ladder graph L_n is the cartesian product of graphs P_n×P_2. Mobius Ladder graph M_n is obtained from ladder graph L_n by joining the opposite end points of the two copies of P_n. In this research, we determine the modular irregularity strength ms(G) of mobius ladder graph and ladder graph."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>