Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 88459 dokumen yang sesuai dengan query
cover
Kevin Ahmad Faisal
"Grammatical Error Correction (GEC) merupakan salah satu topik yang menarik dalam penelitian Natural Language Processing (NLP). Sudah banyak penelitian mengenai GEC untuk bahasa universal seperti Inggris dan Cina, namun sedikit penelitian mengenai GEC untuk bahasa Indonesia. Pada penelitian ini penulis mengembangkan framework GEC untuk memperbaiki kesalahan 10 jenis Part of Speech (POS) bahasa Indonesia dengan arsitektur Gated Recurrent Unit (GRU). Dataset yang digunakan adalah Indonesian POS Tagged Corpus yang disusun oleh Ruli Manurung dari Universitas Indonesia. Hasil penelitian ini berhasil memberikan rata-rata Macro-Average F0.5 Score sebesar 0.4882 dan meningkatkan kecepatan prediksi sebesar 30.1%.

Grammatical Error Correction (GEC) is one of the exciting topics in Natural Language Processing (NLP) research. There have been many studies on GEC for universal languages such as English and Chinese, but little research on GEC for indonesian. In this study, the authors developed a GEC framework to correct ten Indonesian Part of Speech (POS) errors with the Gated Recurrent Unit (GRU) architecture. The dataset used is the Indonesian POS Tagged Corpus compiled by Ruli Manurung from the University of Indonesia. The results of this study succeeded in providing an average Macro-Average F0.5 Score of 0.4882 and increase prediction time by 30.1% "
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rico Tadjudin
"

Grammatical Error Correction (GEC) merupakan bagian dari Natural Language Processing yang membahas suatu task untuk mendeteksi dan setelahnya mengoreksi suatu teks. Pekerjaan tersebut mencakup pendeteksian dan pengoreksian kesalahan tata bahasa, kesalahan ortografi, dan semantik. Perkembangan GEC untuk bahasa Indonesia terkendala oleh sedikitnya dataset yang dapat digunakan untuk melatih model GEC. Penelitian ini mengusulkan pendekatan rule-based untuk membangun sebuah dataset sintetik yang mengandung kalimat salah secara tata bahasa baku bahasa Indonesia beserta koreksinya. Hal tersebut dapat dilakukan dengan memanfaatkan kamus tesaurus bahasa Indonesia dan alat bantuan NLP seperti tokenizer, part-of-speech tagger, morphological analyzer, dan dependency parser untuk mengekstrak informasi konteks dari kalimat. Kumpulan data sintetik dibangkitkan dengan menggunakan kalimat yang benar secara tata bahasa dari halaman0halaman situs Wikipedia sebagai kalimat input. Dataset ini menyediakan data dalam dua format yang berbeda, yaitu dalam format M2 dan dalam bentuk pasangan kalimat salah dan benar. Pembangkitan kesalahan tata bahasa akan memiliki 17 kemungkinan jenis kesalahan tata bahasa yang berbeda dengan total 16.898 kalimat salah yang dibentuk. Pengujian Gramatika dilakukan dengan melakukan evaluasi secara manual mengenai ketepatan pembangkitan tiap kesalahan pada kalimat. Pengujian manual dilakukan dengan melakukan stratified random sampling untuk mengambil sampel 100 kalimat. Sampel tersebut minimal memiliki 5 contoh untuk setiap jenis kesalahan tata bahasa. Dari pengevaluasian yang dilalukan oleh dua penguji, didapatkan nilai accuracy sebesar 91,1%.


Grammatical Error Correction (GEC) is a part of Natural Language Processing which deals with the task of detecting and correcting a text. This includes correcting grammatical errors, semantic errors, and orthographic errors. GEC development in Indonesian language has been hindered by the lack of suitable dataset that can be used to train GEC models. This research proposes a rule-based approach to develop a synthetic dataset that contains sentences in Indonesian with grammar errors and its corresponding corrections. It’s done with the help of dictionaries such as Indonesian thesaurus and NLP tools such as a tokenizer, part of speech tagger, morphological analyzer, and dependency parser to extract contextual information of sentences. The synthetic dataset is generated by using grammatically correct sentences from Wikipedia pages as the input. The resulting dataset is formatted to M2 format and pairs of correct and false sentences, containing 17 types of errors with a total of 16.898 sentences. The evaluation of Gramatika is done by manually assessing the accuracy of the sentence modifications. To do this, stratified random sampling is conducted to select 100 sentences with a minimum of 5 examples for each error type. From the manual evaluation by two evaluators, an average accuracy score of 91.1% is obtained.

"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Michael Felix Haryono
"Grammatical Error Correction (GEC) merupakan bagian dari Natural Language Processing yang membahas suatu task untuk mendeteksi dan setelahnya mengoreksi suatu teks. Pekerjaan tersebut mencakup pendeteksian dan pengoreksian kesalahan tata bahasa, kesalahan ortografi, dan semantik. Perkembangan GEC untuk bahasa Indonesia terkendala oleh sedikitnya dataset yang dapat digunakan untuk melatih model GEC. Penelitian ini mengusulkan pendekatan rule-based untuk membangun sebuah dataset sintetik yang mengandung kalimat salah secara tata bahasa baku bahasa Indonesia beserta koreksinya. Hal tersebut dapat dilakukan dengan memanfaatkan kamus tesaurus bahasa Indonesia dan alat bantuan NLP seperti tokenizer, part-of-speech tagger, morphological analyzer, dan dependency parser untuk mengekstrak informasi konteks dari kalimat. Kumpulan data sintetik dibangkitkan dengan menggunakan kalimat yang benar secara tata bahasa dari halaman0halaman situs Wikipedia sebagai kalimat input. Dataset ini menyediakan data dalam dua format yang berbeda, yaitu dalam format M2 dan dalam bentuk pasangan kalimat salah dan benar. Pembangkitan kesalahan tata bahasa akan memiliki 17 kemungkinan jenis kesalahan tata bahasa yang berbeda dengan total 16.898 kalimat salah yang dibentuk. Pengujian Gramatika dilakukan dengan melakukan evaluasi secara manual mengenai ketepatan pembangkitan tiap kesalahan pada kalimat. Pengujian manual dilakukan dengan melakukan stratified random sampling untuk mengambil sampel 100 kalimat. Sampel tersebut minimal memiliki 5 contoh untuk setiap jenis kesalahan tata bahasa. Dari pengevaluasian yang dilalukan oleh dua penguji, didapatkan nilai accuracy sebesar 91,1%.

Grammatical Error Correction (GEC) is a part of Natural Language Processing which deals with the task of detecting and correcting a text. This includes correcting grammatical errors, semantic errors, and orthographic errors. GEC development in Indonesian language has been hindered by the lack of suitable dataset that can be used to train GEC models. This research proposes a rule-based approach to develop a synthetic dataset that contains sentences in Indonesian with grammar errors and its corresponding corrections. It’s done with the help of dictionaries such as Indonesian thesaurus and NLP tools such as a tokenizer, part of speech tagger, morphological analyzer, and dependency parser to extract contextual information of sentences. The synthetic dataset is generated by using grammatically correct sentences from Wikipedia pages as the input. The resulting dataset is formatted to M2 format and pairs of correct and false sentences, containing 17 types of errors with a total of 16.898 sentences. The evaluation of Gramatika is done by manually assessing the accuracy of the sentence modifications. To do this, stratified random sampling is conducted to select 100 sentences with a minimum of 5 examples for each error type. From the manual evaluation by two evaluators, an average accuracy score of 91.1% is obtained.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Stanley Pratama
"Parafrasa merupakan suatu cara untuk menuliskan kalimat dengan kata-kata lain dengan maksud atau tujuan yang sama. Pendeteksian parafrasa otomatis dapat dilakukan dengan menggunakan Natural Language Sentence Matching (NLSM) yang merupakan bagian dari Natural Language Processing (NLP). NLP merupakan teknik komputasi untuk memproses teks secara umum, sedangkan NLSM dikhususkan untuk mencari hubungan antar dua kalimat. Dengan adanya perkembangan neural network (NN), maka saat ini NLP dapat lebih mudah dilakukan oleh komputer.Model untuk mendeteksi maupun membuat parafrasa Bahasa Inggris sudah banyak dikembangkan dibandingkan dengan Bahasa Indonesia yang data pelatihannya lebih sedikit. Penelitian ini mengusulkan Model SPratama yang memodelkan deteksi parafrasa untuk Bahasa Indonesia menggunakan recurrent neural network (RNN) yaitu bidirectional long short-term memory (BiLSTM) dan bidirectional gated recurrent unit (BiGRU). Data yang digunakan adalah “Quora Question Pairs” yang diambil dari Kaggle dan diterjemahkan ke Bahasa Indonesia menggunakan Google Translate. Hasil penelitian ini menunjukkan bahwa model-model yang diusulkan mendapatkan akurasi sekitar 80% untuk pendeteksian kalimat parafrasa.

Paraphrasing is a way to write sentences with other words with the same intent or purpose. Automatic paraphrase detection can be done using Natural Language Sentence Matching (NLSM) which is part of Natural Language Processing (NLP). NLP is a computational technique for processing text in general, while NLSM is used specifically to find the relationship between two sentences. With the development neural network (NN), nowadays NLP can be done more easily by computers. Many models for detecting and paraphrasing in English have been developed compared to Indonesian, which has less training data. This study proposes SPratamaModel, which models paraphrase detection for Indonesian using a recurrent neural network (RNN), namely bidirectional long short-term memory (BiLSTM) and bidirectional gated recurrent unit (BiGRU). The data used is "Quora Question Pairs" taken from Kaggle and translated into Indonesian using Google Translate. The results of this study indicate that the proposed models have the accuracy of around 80% for the detection of paraphrased sentences."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dhio Makarim Utomo
"Sistem Penilaian Esai Otomatis (SIMPLE-O) dikembangkan oleh Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia untuk ujian bahasa Indonesia. Skripsi ini akan membahas mengenai pengembangan SIMPLE-O untuk penilaian ujian bahasa Indonesia menggunakan metode Gated Recurrent Unit (GRU) dan bahasa pemrograman Python. Terdapat dua dokumen yang akan menjadi input, yaitu jawaban esai dari peserta ujian dan jawaban referensi dari penguji. Kedua jawaban diproses dengan layer GRU yang sama. Selanjutnya, kemiripan antara keduanya dihitung dengan fungsi persamaan. Rata-rata nilai akurasi yang didapatkan adalah 98.84 untuk fase training dan 86.82 untuk validasi

The Automatic Essay Assessment System (SIMPLE-O) was developed by the Department of Electrical Engineering, Faculty of Engineering, University of Indonesia for the Indonesian language test. This thesis will discuss the development of SIMPLE-O for the assessment of Indonesian language tests using the Gated Recurrent Unit (GRU) method and the Python programming language. There are two documents that will be input, essay answers from examinees and answer answers from examiners. Both answers are processed with the same GRU layer. Next, the similarity between the two is calculated by the similarity function. The average accuracy value obtained was 98.84 for the training phase and 86.82 for validation"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Heninggar Septiantri
"Ambiguitas adalah masalah yang seringkali ditemui dalam pemrosesan bahasa alami oleh komputer. Word Sense Disambiguation (WSD) adalah upaya untuk menentukan makna yang tepat dari sebuah kata yang ambigu. Berbagai penelitian tentang WSD telah banyak dikerjakan, namun penelitian WSD untuk bahasa Indonesia belum banyak dilakukan. Ketersediaan korpus paralel berbahasa Inggris-Indonesia dan sumber pengetahuan bahasa berupa WordNet bahasa Inggris dan bahasa Indonesia dapat dimanfaatkan untuk menyediakan data pelatihan untuk WSD dengan metode Cross-Lingual WSD (CLWSD). Data pelatihan ini kemudian dijadikan input untuk klasifikasi dengan algoritma Naive Bayes, sehingga model klasifikasinya dapat digunakan untuk melakukan monolingual WSD untuk bahasa Indonesia.
Evaluasi klasifikasi menunjukkan rata-rata akurasi hasil klasifikasi lebih tinggi dari baseline. Penelitian ini juga menggunakan stemming dan stopwords removal untuk mengetahui bagaimana efeknya terhadap klasifikasi. Penggunaan stemming menaikkan rata-rata akurasi, sedangkan penerapan stopwords removal menurunkan rata-rata akurasi. Namun pada kata yang memiliki dua makna dalam konteks yang cukup jelas berbeda, stemming dan stopwords removal dapat menaikkan rata-rata akurasi.

Ambiguity is a problem we frequently face in natural languange processing. Word Sense Disambiguation (WSD) is an attempt to decide the correct sense of an ambiguous word. Various research in WSD have been conducted, but research in WSD for Indonesian Language is still rare to find. The availability of parallel corpora in English and Indonesian language and WordNet for both language can be used to provide training data for WSD with Cross-Lingual WSD (CLWSD) method. This training data can be used as input to the classification process using Naive Bayes classifier.
The model resulted by the classification process is then used to do monolingual WSD for Indonesian language. The whole process in this research results in higher accuracy compared to baseline. This research also includes the use of stemming and stopwords removal. The effect of stemming is increasing the average accuracy, whereas stopwords removal is decreasing average accuracy. Nevertheless, for ambiguous words that have distinct context of usage, the use of stemming and stopwords removal can increase average accuracy."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2013
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ricky Nauvaldy Ruliputra
"ABSTRAK
Banyaknya pengguna internet di Indonesia berkontribusi pada potensi pertumbuhan Indonesia secara umum terutama dalam sisi ekonomi digital. Pesatnya pertumbuhan ini mendorong pemerintah untuk merencanakan revolusi industri 4.0. Pada praktisnya, landasan dalam membangun sistem yang diperlukan dalam revolusi industri 4.0 adalah teknologi artificial intelligence (AI). Inovasi dalam bidang AI banyak datang dari perusahaan startup. Meskipun pemanfaatan AI membawa banyak manfaat, 60% dari perusahaan belum memanfaatkan teknologi tersebut pada area fungsional seperti layanan chatbot, robot layanan pelanggan, otomasi proses robotik, monitoring media, dan pengamatan sosial. Celah ini perlu disikapi melihat bahwa 89% dari pengguna internet di Indonesia memanfaatkan layanan chatting, dan 87% lebih untuk media sosial. Pemanfaatan AI dapat dilakukan salah satu caranya adalah dengan menggunakan jasa perusahaan yang bergerak di bidang AI, namun pemetaan dari startup yang bergerak di bidang AI belum tersedia. Selain itu, dampak praktis dari penerapan AI di Indonesia perlu untuk dilakukan sebagai motivasi dan juga pengetahuan bagi pihak yang belum menerapkan AI sebagai bagian dari proses bisnis perusahaan. Penelitian ini melakukan pemetaan terhadap perusahaan startup di Indonesia yang bergerak di bidang AI, dan didapatkan 68 perusahaan startup yang terpetakan. Selain itu, penelitian ini juga melakukan identifikasi dampak dari penerapan AI bagi perusahaan dari perspektif startup penyedia layanan dengan melakukan wawancara kepada level-C dan manajer produk perusahaan penyedia layanan, dan mendapatkan bahwa dampak yang terjadi dapat dikategorikan ke dalam delapan aspek, yaitu motivasi, keuntungan, kepentingan, perubahan strategi, tantangan, kepuasan, kepercayaan, dan etika. Rekomendasi yang dapat diberikan kepada perusahaan klien terkait dengan penerapan NLP meliputi otomasi, kolaborasi, pengembangan berlanjut, humanisasi, melihat pasar, melihat peluang, tahu tujuan, siap secara teknis, dan berani mencoba.

ABSTRACT
The large number of internet users in Indonesia contributes to Indonesia's growth potential in general, especially in the digital economy. This rapid growth urged the government to plan for the industrial 4.0 revolution. In practice, the basis for building industrial 4.0 system is artificial intelligence (AI) technology. Innovations in the field of AI come from many startup companies. Despite of many benefits obtained from the use of AI, 60% of the companies have not utilized the technology in functional areas such as chatbot services, customer service robots, automation of robotic processes, media monitoring, and social observation. This gap needs to be addressed considering that more than 89% of internet users in Indonesia utilize chat services, and more than 87% of them use it for social media. The use of AI can be done one way is to use the services of companies engaged in AI. However, startup mapping from AI-based startups is not yet available. In addition, the practical impact of implementing AI in Indonesia needs to be done as motivation and knowledge for those who have not implemented AI as part of the company's business processes. This research mapped the startups in Indonesia who are engaged in AI, and obtained 68 mapped startup companies. In addition, this study also evaluates the implementation of AI for companies from the perspective of the implementor by conducting interviews with C-Levels and product managers of the service provider, and found that the impacts can be categorized into eight categories, namely motivation, profit, interest, change in strategy, competition, satisfaction, trust, and ethics. Recommendations is given to companies related to NLP related to automation, collaboration, accepted development, humanization, looking at the market, seeing opportunities, knowing goals, preparing technically, and dare to try.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
TA-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Fakultas Teknik Universitas Indonesia, 1993
S38343
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mirsa Salsabila
"Grammatical Error Correction (GEC) adalah salah satu task Natural Language Processing (NLP) yang mendeteksi dan mengoreksi kesalahan tata bahasa dalam sebuah teks. Task ini terus berkembang sampai saat ini dan telah diterapkan menggunakan berbagai metode, seperti rule-based, machine learning-based, dan sebagainya. Tugas akhir ini bertujuan membandingkan dua metode state-of-the-art Grammatical Error Correction yaitu metode T5 dan GECToR menggunakan dataset bahasa Inggris dan bahasa Indonesia. Untuk metode T5, akan dibandingkan model Flan-T5 dan mT5 dengan variasi ukuran base dan large. Adapun model yang dibandingkan untuk metode GECToR adalah model RoBERTa dan XLNet dengan variasi ukuran base dan large. Untuk dataset bahasa Inggris, akan digunakan dataset FCE untuk training dan dataset CoNLL-14 untuk testing. Sedangkan untuk dataset bahasa Indonesia, akan digunakan dataset Gramatika. Kemudian, untuk evaluasi digunakan metrik F0.5. Berdasarkan hasil uji coba, didapatkan bahwa untuk dataset bahasa Inggris FCE+CoNLL-14, metode T5 dengan varian model Flan-T5 unggul dari kedua varian metode GECToR dengan skor F0.5 sebesar 52,85%. Varian Flan-T5 ini unggul dengan margin sebesar 15,83% dari varian terbaik metode GECToR, yaitu RoBERTa. Sedangkan, metode GECToR dengan varian RoBERTa lebih unggul dengan margin 10,12% dari metode T5 dengan varian model mT5. Untuk dataset bahasa Indonesia Gramatika, kedua varian metode T5 lebih unggul dari metode GECToR. Varian terbaik metode T5 dengan skor F0.5 sebesar 45,38% dengan margin 31,05% dari varian terbaik metode GECToR, yaitu RoBERTa.

Grammatical Error Correction (GEC) is one of the Natural Language Processing (NLP) tasks that detect and correct grammatical errors in a text. This task continues to grow today and has been implemented using various methods, such as rule-based, machine learning-based, and so on. This final project aims to compare two state-of-the-art Grammatical Error Correction methods, namely the T5 and GECToR methods using English and Indonesian datasets. For the T5 method, Flan-T5 and mT5 models will be compared with base and large size variations. As for the GECToR method, RoBERTa and XLNet models will be compared with base and large size variations. For the English dataset, the FCE dataset will be used for training and the CoNLL-14 dataset for testing. As for the Indonesian dataset, the Grammatical dataset will be used. Then, the F0.5 metric is used for evaluation. Based on the experimental results, it is found that for the FCE+CoNLL-14 English dataset, the T5 method with the Flan-T5 model variant is superior to both variants of the GECToR method with an F0.5 score of 52.85%. The Flan-T5 variant is superior by a margin of 15.83% to the best variant of the GECToR method, RoBERTa. Meanwhile, the GECToR method with the RoBERTa variant is superior by a margin of 10.12% to the T5 method with the mT5 model variant. For the Indonesian Grammatical dataset, both variants of the T5 method are superior to the GECToR method. The best variant of the T5 method with an F0.5 score of 45.38% with a margin of 31.05% from the best variant of the GECToR method, which is RoBERTa."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Ravi Shulthan Habibi
"Sistem tanya jawab merupakan salah satu tugas dalam domain natural language processing (NLP) yang sederhananya bertugas untuk menjawab pertanyaan sesuai konteks yang pengguna berikan ke sistem tanya jawab tersebut. Sistem tanya jawab berbahasa Indonesia sebenarnya sudah ada, namun masih memiliki performa yang terbilang kurang baik. Penelitian ini bereksperimen untuk mencoba meningkatkan performa dari sistem tanya jawab berbahasa Indonesia dengan memanfaatkan natural language inference (NLI). Eksperimen untuk meningkatkan sistem tanya jawab berbahasa Indonesia, penulis menggunakan dua metode, yaitu: intermediate-task transfer learning dan task recasting sebagai verifikator. Dengan metode intermediate-task transfer learning, performa sistem tanya jawab berbahasa Indonesia meningkat, hingga skor F1-nya naik sekitar 5.69 dibandingkan tanpa menggunakan pemanfaatan NLI sama sekali, dan berhasil mendapatkan skor F1 tertinggi sebesar 85.14, namun, peningkatan performa dengan metode intermediate-task transfer learning cenderung tidak signifikan, kecuali pada beberapa kasus khusus model tertentu. Sedangkan dengan metode task recasting sebagai verifikator dengan parameter tipe filtering dan tipe perubahan format kalimat, performa sistem tanya jawab berbahasa Indonesia cenderung menurun, penurunan performa ini bervariasi signifikansinya. Pada penelitian ini juga dilakukan analisis karakteristik pasangan konteks-pertanyaan-jawaban seperti apa yang bisa dijawab dengan lebih baik oleh sistem tanya jawab dengan memanfaatkan NLI, dan didapatkan kesimpulan bahwa: performa sistem tanya jawab meningkat dibandingkan hasil baseline-nya pada berbagai karakteristik, antara lain: pada tipe pertanyaan apa, dimana, kapan, siapa, bagaimana, dan lainnya; kemudian pada panjang konteks ≤ 100 dan 101 ≤ 150; lalu pada panjang pertanyaan ≤ 5 dan 6 ≤ 10; kemudian pada panjang jawaban golden truth ≤ 5 dan 6 ≤ 10; lalu pada keseluruhan answer type selain law dan time; terakhir pada reasoning type WM, SSR, dan MSR.

The question-answering system is one of the tasks within the domain of natural language processing (NLP) that, in simple terms, aims to answer questions based on the context provided by the user to the question-answering system. While there is an existing Indonesian question-answering system, its performance is considered somewhat inadequate. This research conducts experiments to improve the performance of the Indonesian question answering system by utilizing natural language inference (NLI). In order to enhance the Indonesian question-answering system, the author employs two methods: intermediate task transfer learning and task recasting as verifiers. Using the intermediate-task transfer learning method, the performance of the Indonesian question-answering system improves significantly, with an increase of approximately 5.69 in F1 score compared to not utilizing NLI at all, achieving the highest F1 score of 85.14. However, the performance improvement with the intermediate-task transfer learning method tends to be non-significant, except in certain specific cases and particular models. On the other hand, employing the task recasting method as a verifier with filtering parameter type and sentence format change type leads to a decline in the performance of the Indonesian question-answering system, with the significance of this performance decrease varying. Additionally, this research conducts an analysis on the characteristics of context-question-answer pairs that can be better answered by the question-answering system utilizing NLI. The findings conclude that the question-answering system’s performance improves compared to its baseline across various characteristics, including different question types such as what, where, when, who, how, and others. Furthermore, it improves with context lengths ≤ 100 and 101 ≤ 150, question lengths ≤ 5 and 6 ≤ 10, as well as answer lengths (golden truth) ≤ 5 and 6 ≤ 10. Additionally, it performs better in overall answer types excluding law and time, and lastly, in reasoning types WM, SSR, and MSR.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>