Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 182279 dokumen yang sesuai dengan query
cover
Merry Tanujaya
"Penelitian ini berfokus pada model permintaan energi berbasis optimisasi di sektor rumah tangga dan komersial di Indonesia hingga tahun 2050 dan menganalisis portofolio teknologi pengguna akhir untuk memenuhi permintaan energi dan target pengurangan emisi yang memberikan total biaya services minimum dengan menggunakan piranti lunak TIMES. Hasil penelitian menunjukkan bahwa total kapasitas terpasang peralatan lighting dan peralatan cooking meningkat dua kali lipat, masing-masing menjadi 1490 juta unit dan 202,8 juta unit di tahun 2050 pada skenario Business as-usual (BAU) dan Carbon reduction scenario (CRS). Bauran teknologi lighting didominasi oleh LED yang mencapai 100% mulai tahun 2025 pada skenario BAU dan CRS. Bauran teknologi cooking didominasi oleh kompor LPG dengan penetrasi kompor listrik pada skenario BAU baru dimulai tahun 2045 karena total biaya kompor listrik yang kompetitif. Share kompor listrik pada CRS berkurang signifikan untuk mencapai target penurunan emisi. Kapasitas terpasang peralatan cooling meningkat 5,6 kali lipat menjadi 73,4 juta unit pada tahun 2050. Bauran teknologi didominasi oleh AC Inverter pada skenario BAU dan CRS di sektor rumah tangga. Di sektor komersial, CCHP memasok sebesar 20% dari total permintaan pada tahun 2030 - 2050. Portofolio teknologi cooling di sektor komersial pada skenario CRS didominasi oleh AC central pada tahun 2030 – 2040 sebesar 80% karena memiliki efisiensi tertinggi yang memberikan penggunaan listrik dan emisi CO2 yang lebih rendah. Biaya investasi pada tahun 2050 empat kali lebih tinggi dibandingkan tahun 2020 pada skenario BAU, yaitu sebesar 3620 juta USD. Carbon reduction scenario menghasilkan peningkatan biaya investasi sebesar 17%, setara dengan 630 juta USD, dan penurunan intensitas emisi sebesar 25%, setara dengan 90 gCO2/kWh (25 gCO2/MJ), dibandingkan BAU pada tahun 2050. Optimisasi dengan mempertimbangkan suplai listrik berbasis 100% energi terbarukan menghasilkan penurunan total emisi sebesar 70% pada tahun 2050 dan pengurangan intensitas emisi sebesar 265 gCO2/kWh (73,6 gCO2/MJ). Hasil studi menunjukkan bahwa kualitas energi berpengaruh signifikan terhadap penurunan emisi.

This study focuses on an optimization-based energy demand model of residential and commercial sectors in Indonesia out to 2050 and assess the end-use technology portfolio to fulfill energy demand and emission reduction target that provides a minimum total services cost in the TIMES model. The results show that total installed capacity of lighting and cooking appliances increased double to 1490 million unit and 202.8 million unit by 2050, respectively in the Business as-usual (BAU) and Carbon reduction scenario (CRS). The lighting technology mix is dominated by LED that reaches 100% starting in 2025 in the BAU and CRS. The cooking technology mix is dominated by LPG stoves with electric stoves penetration in BAU started in 2045 due to the competitive total cost. The share of electric stoves in CRS was significantly reduced to achieve the emission reduction target. The installed capacity of cooling appliances is drastically increased by a multiple of 5.6 to 73.4 million unit by 2050. The technology mix is dominated by Inverter AC for the residential sector in BAU and CRS. In the commercial sector, CCHP supplies 20% of total cooling demand in 2030 – 2050. Cooling technology portfolio for commercial sector in CRS is dominated by central AC in 2030 – 2040 by 80% because it has the highest efficiency that provides lower electricity consumption and CO2 emissions accordingly. The investment cost in 2050 is four times higher than 2020 in BAU, equal to 3,620 million USD. The Carbon Reduction Scenario results in a 17% increase in investment cost, equal to 630 million USD, and a 25% reduction in emission intensity, equal to 90 gCO2/kWh (25 gCO2/MJ), compared to BAU in 2050. By considering the electricity supply based on 100% renewable energy, the optimization results in total emission reduction of 70% by 2050 and emission intensity reduction of 265 gCO2/kWh (73.6 gCO2/MJ). The result reveals that the quality of energy has a significant impact on emissions reduction."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Widiandoko Kasiarnoldi Putro
"Berkembangnya suatu negara dapat ditandai dengan meningkatnya secara kualitas maupun kuantitas bangunan di negara tersebut. Jika dilihat dari sudut pandang pembangunan, ini merupakan hal yang positif. Tetapi jika dari sudut pandang penggunaan energi, ini merupakan hal yang negatif. Karena gedung bertingkat menggunakan konsumsi energi yang tidak sedikit, khususnya energi listrik. Pada penelitian kali ini, akan coba menganalisa energi dan beban thermal yang ada pada gedung Dekanat FT-UI dengan menggunakan software yang bernama EnergyPlus versi 2.2. Energy Plus itu sendiri adalah sebuah program simulasi untuk menghitung besar energi dan besar pembebanan yang dimiliki oleh sebuah bangunan atau gedung. Input data yang diperlukan disini adalah data cuaca, temperatur, tata letak bangunan, inventaris, jumlah orang yang terdapat di gedung Dekanat itu sendiri. Hasil keluaran yang akan dianalisa pada penelitian kali ini adalah berapa besar sensible cooling energi dan sensible cooling rate pada tiaptiap ruangan di gedung Dekanat. Adapun peningkatan dari ke-2 hal tersebut diatas adalah dimulai pada jam ke-7 hinga jam ke-19. Hal ini disebabkan karena faktorfaktor yang terjadi terhadap gedung Dekanat itu sendiri, baik didalam maupun diluar gedung.

Evolution in a country must have development in their building structural. It looks positive when we take it from the development side. But from the energy uses, it?s a negative side. Because every building need a lot of energy for their use, especially electrical energy. So that in this research, we want to know how much about the energy and the thermal load from the building. Which building is Dekanat building in University of Indonesia. The tools that we use in this research is EnergyPlus version 2.2. EnergyPlus is an energy analysis and thermal load simulation program. Data input that we need are temperature, wheather, strategical of the building, inventory, and the people. From the output side, we want to know about the sensible cooling energy and sensible cooling rate at each room of the building, which we want to analyze. From the result, we know that its enhancement occur from 7 to 19 o?clock time based."
Depok: Fakultas Teknik Universitas Indonesia, 2008
S50746
UI - Skripsi Open  Universitas Indonesia Library
cover
Kafahri Arya Hamidie
"Konsumsi daya listrik mempunyai peranan penting dalam pelaksanaan pembangunan untuk peningkatan kesejahteraan dan kegiatan ekonomi. Sehingga, diperlukan peramalan beban listrik untuk menyelenggarakan usaha penyediaan daya listrik dalam jumlah merata. Tujuan dari peramalan beban listrik tersebut adalah untuk melakukan analisa nilai beban mingguan dan harian pada tahun 2009 menggunakan metode koefisien energi. Dari hasil analisa didapat nilai error beban mingguan 2009 4,525% dan beban harian 2009 5,234%.

Electrical power consumption plays important role in developing our country, especially in economic and welfare. Load forecast is needed to distribute the electrical power evenly. By using load forecasting method, we want to analyze the 2009 weekly and daily load value using energy coefficient. From calculation the error percentage of 2009 weekly load is 4.525% and the 2009 daily load is 5.234%"
Depok: Fakultas Teknik Universitas Indonesia, 2012
S1832
UI - Skripsi Open  Universitas Indonesia Library
cover
Yales Vivadinar
"Penelitian ini bermaksud untuk melihat pengaruh faktor efisiensi dan faktor pembentuk utama determinan lainnya, serta pengaruh pola pemanfaatan energi pada proses produksi manufaktur dalam membentuk tingkat konsumsi energi dan intensitas energi sektor ini pada periode 2005-2013. Pendekatan Top-down dengan metode penguraian dekomposisi telah diterapkan pada kedua data agregat di atas, dan menjelaskan bahwa determinan di balik perubahan kedua data agregat tersebut pada periode 2005-2009 adalah perubahan faktor efisiensi energi, sedangkan pada periode 2009-2013 adalah perubahan faktor struktural. Metode dekomposisi berhasil mengidentifikasi industri yang dapat memperbaiki efisiensi energi, tetapi tidak dapat menjelaskan sumber dari perubahan efisiensi energi pada tingkatan operasional yang lebih rendah. Untuk itu, pendekatan Bottom-up dilakukan agar melengkapi analisa Top-down serta memberikan penjelasan terkait sumber perubahan efisiensi di atas.
Pendekatan bottom-up dilakukan dengan mengumpulkan data dari industri sampel untuk menghasilkan peta aliran energi pada peralatan pengguna energi untuk proses produksi. Peta aliran energi yang dihasilkan menjelaskan bahwa sistem pemanas mengkonsumsi 75 dari pasokan energi dan merupakan penghasil 67 dari kerugian energi sektor manufaktur. Pendekatan ini juga menjelaskan kelompok industri gula, semen serta pulp paper adalah pengguna terbesar sistem pemanas, dimana jumlah kerugian energi terbesar terjadi pada sektor industri semen yang mencapai 51 dari energi masuk. Sementara itu, industri kimia adalah pengguna listrik dan BBM terbesar namun jumlah pemanfaatan sisa panas dibawah 1 . Hasil analisa Specific Energy Consumption SEC yang dilakukan pada beberapa sektor industri menunjukkan angka SEC dari industri tersebut lebih tinggi antara 18 -42 dari angka acuan. Kombinasi pendekatan diatas telah menunjukkan fokus area untuk perbaikan efisiensi energi.

This study intends to access the effect of the key determinants and the impact of the energy utilization behavior along the production process toward the energy consumption and energy intensity of the manufacturing sector during the period 2005 2013. The top down approach by using the decomposition method has applied on both energy consumption and energy intensity data which successfully explained the determinants of the changes in both data above during the period 2005 2009 are the energy efficiency factor, while during 2009 2013 are the change of structural factor. Decomposition method has successfully identified the industry with energy efficiency issue, but this technique cannot spots the roots of the problem at the operational levels that could only be detected by the bottom up approach.
This approach has been started by collecting the data from the industry samples to produce the map of energy flow within the energy equipment. The map of energy flow shows the heating system is the largest energy users who consume up to 75 of energy supply and accountable for 67 of the energy losses from this sector. This system mainly used by sugar industry, pulp and paper, and cement industry. Meanwhile, the chemical industry is the biggest users of electricity and fuel, but they only use less than 1 of the waste heat. This study also delivers the SEC comparison analysis compared to the SEC reference. The combination of the top down and bottom up approach has helped us to identify the focus areas for energy efficiency improvement effort.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
D1723
UI - Disertasi Membership  Universitas Indonesia Library
cover
cover
Dewi Khujah Kejora
"Pada transaksi perdagangan komoditas energi, banyak ditemukan pergerakan harga yang ekstrim. Hasil penelitian menunjukkan bahwa distribusi return komoditas energi cenderung memiliki karakteristik fat tailed, kurtosis tinggi dan negatif skewness. Sementara, pengukuran risiko pada umumnya menggunakan asumsi distribusi normal atau lognormal sehingga diduga estimasi yang diberikan dalam mengukur risiko kurang tepat untuk karakteristik distribusi yang fat tailed seperti distribusi return komoditas energi. Dalam tesis ini dijelaskan proses perhitungan risiko harga komoditas energi WTI crude oil, heating oil dan propane di pasar spot dan future menggunakan metode EWMA, ARCH/GARCH dan EVT. Hasil perhitungan yang didapat menunjukkan nilai Value at Risk (VaR) EVT cenderung lebih besar dibandingkan VaR dari pendekatan lainnya. Hedging antara spot dan future juga menunjukkan bahwa upaya mitigasi dengan transaksi derivatif dapat menurunkan nilai VaR.

In energy complex market, daily logarithmic price changes tends to be highly volatile or extreme. All empirical distributions of energy complex exhibits fat tails, high kurtosis and negative skewness. On the other hand, market risk measurement usually only accommodate normal or lognormal distribution assumption which could underestimate the commodity?s risk estimation. In this thesis was described price risk measurement of WTI crude oil, heating oil and propane in spot and future market by applying EWMA, ARCH/GARCH and EVT approach. Calculation shows EVT Value at Risk (VaR) for those commodities are higher than VaR obtained from EWMA and ARCH/GARCH approach. Hedging the spot transactions with futures has shown significant impact in reducing VaR for each commodity."
Depok: Universitas Indonesia, 2009
T27172
UI - Tesis Open  Universitas Indonesia Library
cover
Agus Noor Sidiq
"Pemanfaatan hasil panas buang suatu sistem pembangkit dapat meningkatkan nilai efisiensi sistem. Siklus Kalina dapat menyediakan solusi untuk membangkitkan daya dari hasil buangan panas pada suatu system pembangkit listrik ataupun dari sumber panas bumi dengan temperature rendah. Untuk mempelajari aplikasi dan perancangan sistem termal yang menggunakan Siklus Kalina digunakan suatu aplikasi pemodelan sistem energi. Proses studi ini dilakukan dengan pembuatan simulasi sistem yang dibantu oleh software Cycle Tempo 5.0 untuk mengetahui efisiensi dan energi yang dapat dibangkitkan dari suatu sumber panas.
Suatu campuran fluida ammonia-water dimanfaatkan sebagai fluida kerja dalam proses sistem siklus Kalina (KCS) 11. Untuk memperoleh daya dan efisiensi maksimum yang dihasilkan sistem dilakukan proses optimasi pada fraksi massa campuran fluida kerja ammonia-water dan tekanan keluar turbin. Dari hasil pemodelan dan simulasi maka didapatkan suatu system KCS 11 yang memiliki nilai tertinggi pada daya pembangkitan dan efisiensi.

The utilization of waste heat produced by power plant system will gain the efficiency value for the system it self. Kalina cylce system gives a solution to generate power from wasted heat or from geothermal with low temperature. The modeling application on energy system is use to study the design of thermal system that using Kalina cycle. The study of this process is done by using Cycle Tempo 5.0, a simulating software, to get the data of the efficiency and the energy that could be generated from heat source.
An ammonia-water mixture is used as a working fluid on Kalina cycle system (KCS) 11. To get maximum power output and maximum efficiency, the system will be optimize on the mass fraction of working fluid, ammoniawater, and also the turbine output pressure. The result of the simulation is to get the best performance of KCS 11 that have high power output and efficiency.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S37338
UI - Skripsi Open  Universitas Indonesia Library
cover
Ayip Farouk
"ABSTRAK
Untuk berkontribusi dalam pengembangan energi terbarukan, penelitian ini bertujuan untuk menemukan keputusan yang tepatdari pemanfaatan Tandan Kosong Kelapa Sawit TKKS sebagai salah satu bahan yang potensial di Indonesia.Produk akhir dari pemanfaatan TKKS pada penelitian ini adalah Etanol, Furfural, dan Listrik. Multi-objektif yang akan di lakukan pada penelitian ini adalah NPV maksimum dan CO2 minimun yang akan diukur dengan Kurva Pareto. Penelitian sebelumnya sudah melakukan optimasi namun NPV yang dihasilkan masih belum ekonomis, salah satunya dikarenakan biaya kapital dari pemasangan sistem gugus tenaga surya yang masih mahal. Oleh karena itu, pada penelitian ini pengembangan yang akan penulis lakukan adalah dengan mengganti sumber kukus dengan bahan bakar gas alam. Sehingga mampu mengurangi biaya kapital dan diharapkan bisa memperbaiki NPV agar lebih ekonomis. Pada penelitian ini, diperoleh suhu operasi yang optimum pada unit praperlakuan sebesar 180o C, dan juga split fraksi 0.25 TKKS masuk kedalam unit hidrolisis. Pada kondisi ini, diperoleh NPV sebesar 43.6 juta dan emisi sebesar 9.237 juta kgCO2 Ekuivalen.

ABSTRACT
For doing some contribution in development of renewable energy, this study has an objective to find an optimum decision for Empty Fruit Bunch EFB utilization as one of potential raw material in Indonesia. The final products from EFB utilization in this study are ethanol, furfural, and electricity. Multi Objective that will optimize in this study are NPV maximum and CO minimum that will measure with Pareto Curve. The recent study has done the optimizing but the NPV still not economic. It s happen because the capital cost from CSP utilization as a steam generation still expensive. In this study, natural gas will use as a fuel for steam generation, so that can decrease the capital cost and can make the NPV become economic. In this study, the optimum operation temperature was obtained in 180o C and split fraction in 0.25 EFB into hidrolisis reactor unit. In this condition, the result for NPV is 43,6 million and emission 9.237 million kgCO2 equivalent."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Haris Munandar
"ABSTRAK
Penelitian ini mengkaji proyeksi besaran kebutuhan energi primer jangka panjang untuk sektor kelistrikan Jawa Bali dari tahun 2015 s.d tahun 2050 dengan menggunakan model LEAP. Beberapa skenario proyeksi diterapkan dalam simulasinya yaitu skenario Referensi, skenario dengan variasi PDRB, skenario Optimasi Supply Side dengan variasi pada reserve margin, perbaikan susut, perbaikan efisiensi pembangkit, serta perubahan peran pembangkit gas menjadi pemikul beban dasar, dan skenario Optimasi Least Cost-Lower GHG. Dari hasil penelitian ini, diketahui bahwa berdasarkan Skenario Referensi dengan kondisi PDRB sebesar 5,6% per tahun, susut di transmisi dan distribusi pada 9,45%, reserve margin 35%, tidak ada kenaikan efisiensi pada pembangkit baru untuk PLTU dan PLTGU, dan target bauran energi untuk gas dan EBT sesuai dengan target KEN, pada tahun 2050, kebutuhan energi listrik untuk Jawa Bali diproyeksikan mencapai 596,69 TWh, dimana untuk memenuhi kebutuhan energi listrik tersebut, produksi energi listrik yang perlu disediakan adalah sebesar 658,97 TWh dengan total kapasitas pembangkit listrik mencapai 136,90 GW. Untuk memenuhi operasional pembangkit tersebut, proyeksi total kebutuhan energi primer yang perlu disiapkan adalah sebesar 1.835,88 TWh (6,61 milyar GJ) dengan rincian: batubara sebesar 131,6 juta ton setara 3,86 milyar GJ, gas alam sebanyak 2.690,8 BBTUD setara 1,04 milyar GJ, panas bumi setara 0,84 milyar GJ, tenaga surya setara 0,47 milyar GJ, biomassa sebanyak 15,8 juta ton setara 0,25 milyar GJ, tenaga air setara 0,15 milyar GJ, dan BBM 0,006 milyar GJ setara 165,7 ribu kL. Emisi gas rumah kaca yang dihasilkan pada skenario ini secara kumulatif (100 Year-GWP) adalah sebesar 8,76 milyar ton CO2.


In this thesis, we will study the forecasting long-term primary energy demand for the Java Bali electricity sector from 2015 to 2050 using LEAP model. Some projection scenarios applied to the simulation are Reference Scenario, Scenarios with variations in GDP growth, Supply Side Optimization Scenarios with variations in reserve margin, losses improvement, and power plant efficiency, and changing the role of gas power plants to be baseload power plants, and Least Cost-Lower GHG Optimization Scenario. The results of this study found that based on Reference Scenario with following condition: GDP of 5.6% per year, a T&D losses of 9,45%, reserve margin of 35%, no efficiency improvement of additional coal-fired power plants and gas-fired power plants, and energy mix targets for gas and renewable energy in accordance with National Energy Policy (KEN) targets. In 2050, the electricity demand for Java Bali is projected to reach 596,69 TWh in, where to meet the electricity needs, the electricity production that should be provided is 658,97 TWh with a total power generation capacity reaching 136,90 GW. To fulfill the operation of the power plant, the primary energy forecasting that need to be prepared are 1.835,88 TWh (6,6 billion GJ) with details: 131,6 million tons of coal (3,86 billion GJ), 2.690,8 BBTUD of natural gas (1,04 billion GJ), 0,84 billion GJ of geothermal, 0,47 billion GJ of solar power, 15,8 million tons of biomass (0,25 billion GJ), 0,15 billion GJ of hydro-power, and 166 thousand kL of diesel oil (0,006 billion GJ). Cumulative greenhouse gas emissions (100 Years-GWP) of this scenario are 8,76 billion tons of CO2.

"
2019
T52289
UI - Tesis Membership  Universitas Indonesia Library
cover
Najma
"Ketergantungan bahan bakar fosil di Indonesia memicu penggunaan biosolar dari CPO sebagai campuran bahan bakar fosil. Kebijakan ambisius pencampuran biosolar ditetapkan sebesar 20% namun hingga saat ini belum terpenuhi (12,7%) karena kualitas dari B20 yang memiliki kandungan air tinggi sehingga dapat merusak mesin kendaraan sedangkan pencampuran bioethanol belum diterapkan sama sekali dikarenakan aspek biaya. Oleh sebab itu, dibutuhkan alternatif lainnya agar dapat menaikkan penggunaan bahan bakar bersih sesuai yang diinginkan. Pada penelitian ini, dilakukan optimisasi sistem bahan bakar jangka panjang dengan minimum total biaya sistem hingga tahun 2050 menggunakan TIMES-VEDA pada spesifikasi kualitas bahan bakar tertentu yang dipengaruhi oleh ketersediaan suplai bahan baku sehingga diperoleh campuran bahan bakar yang optimum.Teknologi biofuel yang ditinjau adalah FAME, HVO, FT-Diesel, Bioethanol generasi pertama dan kedua. Hasil yang diperoleh untuk skenario IND-EURO adalah campuran FAME 50% di tahun 2020-2030 dan campuran FAME 47%-HVOSMR 53% di tahun 2035-2050. Untuk skenario EURO-SULPHUR IND di tahun 2020 adalah HVOSMR 30% sedangkan FAME 20% untuk tahun 2025-2030 dan campuran FAME 47%-HVOSMR 53% di tahun 2035-2050. Untuk skenario EURO adalah campuran FAME 47%-HVOSMR 53% di tahun 2020-2030 dan FAME 20% di tahun 2035-2050. Untuk campuran bensin semua skenario di tahun 2020 adalah Ethanol 5% dan Ethanol-Ethanol2G 20% ditahun 2035-2050. Perbedaan campuran Ethanol terjadi di skenario EURO untuk tahun 2025-2030 yaitu lebih rendah 5% sehingga pengurangan bahan bakar minyak masing-masing skenario secara berurut adalah 79%, 67% dan 55% untuk solar sedangkan 19%, 19% dan 17% untuk bensin.

Renewable fuel as a mix with petroleum fuel is one of solution to decrease the use of fossil fuels in Indonesia. The ambitious policy is to mix 20% of biosolar from CPO but until now still not meet the target (12.7%) due to the poor quality of B20 and for mix of bioethanol has not been implemented due to lack of financial support. Therefore, alternative renewable fuels are needed in order to meet the target. In this study, we apply optimization with a minimum total system cost up to 2050 using TIMES-VEDA on certain fuel quality specifications that are affected by the availability of raw material supply so that the optimum fuel blending is obtained. The biofuel technology reviewed is FAME, HVO, FT Diesel, Bioethanol first and second generation. The results obtained for the IND-EURO scenario are a blend of FAME 50% in 2020-2030 and blend of FAME 47% -HVOSMR 53% in 2035-2050. The scenario of EURO-SULPHUR IND has fuel mix HVOSMR 30% in 2020, FAME 20% for 2025-2030 and have same percentage of blend with scenario IND-EURO for 2035-2050. The EURO scenario has fuel blending of FAME 47%-HVOSMR 53% in 2020-2030 and FAME20% in 2035-2050. For all scenario gasoline blends are Ethanol 5% in 2020 and combination Ethanol-Ethanol2G 20% in the 2035-2050. Ethanol blend for scenario of EURO has 5% lower rather than other scenario in 2035-2050. Biofuel mix can reduce consumption diesel and gasoline respectively for each scenario are 79%, 67% and 55% and 19%, 19% and 17%."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>