Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 137736 dokumen yang sesuai dengan query
cover
Fika Minata Wathan
"Latar Belakang: Kelahiran preterm merupakan penyebab tertinggi kematian neonatal. Indonesia menduduki posisi tertinggi di ASEAN dan kelima di dunia untuk kelahiran preterm. Rumusan masalah: Belum adanya model prediksi kelahiran preterm yang memperlihatkan prediktor yang berguna untuk mengembangkan program pencegahan. Tujuan: Menemukan model prediksi kelahiran preterm berbasis machine learning untuk deteksi dini kelahiran preterm di Fasilitas Kesehatan Tingkat Pertama (FKTP). Metode: Penelitian ini menggunakan desain studi case control dengan menggunakan data rekam medis Rumah Sakit (RS) di Palembang yaitu RS YK Madira, RSMH, RS Bunda, RS Ar Rasyid, RS Muhammadiyah, dan RS Bhayangkara tahun 2019 dengan jumlah sampel 1758 responden yang terdiri dari 879 preterm dan 879 aterm. Faktor risiko yang digunakan pada penelitian ini didapatkan dari Systematic Literature Review yang terdiri dari faktor sosiodemografi (10 variabel), faktor perilaku/gaya hidup (5 variabel), faktor maternal/kondisi ibu sebelum kehamilan (8 variabel), faktor kehamilan/obstetri ginekologi (21 variabel), faktor biologis (3 variabel), faktor pelayanan kesehatan (2 variabel) dan faktor janin (4 variabel). Pemodelan dilakukan dengan menggunakan machine learning dengan menggunakan algoritme decision tree, K-Nearest Neighbour (KNN), naïve bayes, logistic regression, Support Vector Machine (SVM) dan neural network (CNN1D, multilayer perceptron dan backpropagation). Hasil: Ditemukan 21 variabel penelitian dari 53 variabel yang dibutuhkan, dan menemukan 6 variabel yang menjadi prediktor utama kelahiran preterm di antaranya pre-eklamsia, perdarahan dalam kehamilan, riwayat ketuban pecah dini, jarak antar dua kehamilan, paritas, dan anemia. Pada penelitian ini ditemukan algoritme terbaik yaitu decision tree dengan nilai akurasi 95% untuk training dan 96% untuk testing dan telah dibuat prototype berupa aplikasi berbasis web untuk deteksi dini di FKTP. Kesimpulan: Ditemukan research novelty yaitu diperoleh model prediksi kelahiran preterm, dimana model ini potensial untuk digunakan di FKTP sebagai upaya deteksi dini. Model prediksi ini akan mendeteksi ibu hamil akan berisiko preterm atau tidak berisiko. Apabila diketahui ibu berisiko kelahiran preterm, maka ibu dianjurkan untuk melakukan pemeriksaan di RS, agar tidak terjadi keterlambatan penanganan yang menyebabkan kematian ibu maupun bayi. Dibandingkan tidak ada model prediksi, maka risiko kelahiran preterm tidak dapat dicegah, sehingga keterlambatan penanganan akan terjadi.

Background: Preterm birth is the highest cause of neonatal death. Indonesia occupies the highest position in ASEAN and fifth in the world for preterm births. Formulation of the problem: There is no predictive model of preterm birth that provides a useful predictor for developing prevention programs. Objective: To find prediction model of preterm birth based on machine learning for early detection of preterm birth in First Level Health Facilities (FKTP). Methods: This study uses a case control study design using medical record data at the Hospital (RS) in Palembang that isYK Madira Hospital, RSMH, Bunda Hospital, Ar Rasyid Hospital, Muhammadiyah Hospital, and Bhayangkara Hospital in 2019 with a total sample of 1758 respondents consisting of 879 preterm and 879 term. The risk factors used in this study were obtained from a Systematic Literature Review consisting of: sociodemographic factors (10 variables), behavioral/lifestyle factors (5 variables), maternal factors/mother's condition before pregnancy (8 variables), pregnancy/gynecological factors (21 variables), biological factors (3 variables), health service factors (2 variables) and fetal factors (4 variables). The modeling is done using machine learning using decision tree algorithms, K-Nearest Neighbor (KNN), nave Bayes, logistic regression, Support Vector Machine (SVM) and neural networks (CNN1D, multilayer perceptron and backpropagation). Results: Found 21 research variables from 53 variables were needed, and found 6 variables that were the main predictors of preterm birth including pre-eclampsia, bleeding in pregnancy, history of premature rupture of membranes, distance between two pregnancies, parity, and anemia. In this study, the best algorithm was found, namely decision tree with an accuracy value of 95% for training and 96% for testing and a prototype was made in the form of a web-based application for early detection in FKTP. Conclusion: It was found that the research novelty obtained a predictive model of preterm birth, which is the main cause of AKN, where this model has the potential to be used in FKTP as an early detection effort. This predictive model will detect pregnant women will be at risk of preterm or not at risk. If it is known that the mother is at risk of preterm birth, the mother is recommended to do an examination at the hospital, so that there is no delay in handling that causes the death of both mother and baby. Compared to no predictive model, the risk of preterm birth cannot be prevented, so that delays in treatment will occur."
Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia, 2022
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Ibnu Rais Syukran
"Paduan super merupakan jenis paduan yang dapat mempertahankan kekuatan mekanis dan kestabilan permukaannya pada temperatur yang sangat tinggi sehingga cocok diaplikasikan pada bidang kedirgantaraan, khususnya turbin gas. Jenis paduan super yang paling banyak digunakan adalah paduan super berbasis nikel karena memiliki struktur kristal FCC yang stabil di segala temperatur. Agar dapat digunakan dalam jangka waktu yang lama, kegagalan pada paduan super berbasis nikel dapat dicegah dengan mengetahui kekuatan tarik dari paduannya. Selain itu untuk mencegah terjadinya keausan pada komponen mesin, kekerasan pada paduan super berbasis nikel juga harus diketahui. Adapun titik leleh dari paduan super berbasis nikel juga harus dapat diketahui untuk mencegah terjadinya pelunakan paduan super pada temperatur yang sangat tinggi. Biaya produksi paduan super berbasis nikel tergolong mahal, karena dibuat berdasarkan pendekatan trial and error yang memakan waktu. Pada penelitian ini, dilakukan pembuatan sebuah program yang dapat memprediksi sifat mekanis paduan super berbasis nikel menggunakan pembelajaran mesin dengan metode deep learning. Melalui pembelajaran mesin, biaya produksi paduan super berbasis nikel dapat ditekan serta mempersingkat siklus perkembangan material. Penelitian ini menghasilkan suatu program deep learning dengan jenis model regresi yang dapat memprediksi kekuatan tarik, kekerasan, dan titik leleh paduan super berbasis nikel dengan keakurasian model menurut metrik R2 sebesar 98,77% berdasarkan variasi hyperparameter yang ditetapkan sebanyak tiga hidden layer dengan dense 256, 128, 64, test size sebesar 25%, random state dengan nilai 75, batch size sebesar 32, epoch sebanyak 300, dan learning rate sebesar 0,001.

A superalloy is a type of alloy that can maintain its mechanical strength and surface stability at very high temperatures so that it is suitable for application in the aerospace field, especially in gas turbines. The most widely used type of superalloy is Ni-based superalloy because it has a stable FCC crystal structure at all temperatures. The failure of Ni-based superalloys can be prevented by knowing the tensile strength of the alloy for a longer-term used. In addition, to prevent wear on the engine components, the hardness of Ni-based superalloys must also be known. The melting point of Ni-based superalloys must also be known to prevent softening of the superalloy at very high temperatures. The production cost of Ni-based superalloys is quite expensive because they are made based on a time-consuming trial and error approach. In this research, a program is developed that can predict the mechanical properties of Ni-based superalloys using machine learning with deep learning methods. Through machine learning, the production cost of Ni-based superalloys can be reduced, and the material development cycle can be shortened. The result of this research is a deep learning program with a regression model which can predict the tensile strength, hardness, and melting point of Ni-based superalloys with a model accuracy of 98.77% according to the R2 metric based on the hyperparameter variations set as three hidden layers wi"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alifya Zhafira Ananda
"Prediksi vessel turnaround time (VTT) di pelabuhan merupakan langkah strategis untuk meningkatkan efisiensi operasional dan mendukung pengambilan keputusan berbasis data. Penelitian ini berfokus pada rancang bangun sistem prediksi berbasis machine learning untuk memperkirakan durasi waktu tunggu kapal, melalui pengembangan model regresi dengan pendekatan yang sistematis. Model dirancang dan dievaluasi dengan membandingkan rentang data historis (5 tahun vs 10 tahun), dua metode seleksi fitur—RFE (Recursive Feature Elimination) dan SHAP (SHapley Additive exPlanations)—serta penerapan hyperparameter tuning untuk mengoptimalkan performa.
Evaluasi dilakukan secara menyeluruh menggunakan 50 variasi model seed dan pendekatan rolling time window. Hasil menunjukkan bahwa penggunaan dataset 10 tahun dan model LightGBM memberikan performa terbaik dengan RMSE validasi sebesar 2.7882 jam. SHAP menghasilkan performa hampir setara dengan RFE meskipun menggunakan jumlah fitur yang lebih sedikit. Setelah proses tuning, sistem prediktif yang dirancang menjadi jauh lebih stabil antar pengulangan (RMSE validasi: 2.7865, IQR RMSE: 0.0099), dan tetap menunjukkan hasil yang baik pada data uji serta evaluasi lintas waktu. Secara keseluruhan, rancang bangun sistem prediksi VTT ini membuktikan bahwa kombinasi data historis yang memadai, pemilihan fitur yang tepat, dan pengaturan parameter yang optimal mampu menghasilkan model yang akurat, konsisten, dan siap diterapkan dalam operasional pelabuhan secara nyata.

Predicting vessel turnaround time (VTT) at ports is a strategic effort to improve operational efficiency and support data-driven decision-making. This study focuses on the design and development of a predictive system based on machine learning to estimate vessel waiting durations, through a systematic approach to regression model construction. The models are designed and evaluated by comparing different historical data ranges (5 years vs. 10 years), two feature selection methods—RFE (Recursive Feature Elimination) and SHAP (SHapley Additive exPlanations)—as well as the implementation of hyperparameter tuning to optimize performance.
Comprehensive evaluation was carried out using 50 model seed variations and a rolling time window approach. The results show that the use of a 10-year dataset and the LightGBM model achieved the best performance, with a validation RMSE of 2.7882 hours. SHAP yielded nearly comparable performance to RFE, despite using fewer features. After tuning, the predictive system became significantly more stable across repetitions (validation RMSE: 2.7865, IQR RMSE: 0.0099), and consistently produced reliable results on the test set as well as in various time-based evaluation windows. Overall, this predictive system design for VTT demonstrates that the combination of sufficient historical data, appropriate feature selection, and optimal parameter configuration can produce a model that is accurate, robust, and ready for real-world port operations.
"
Depok: Fakultas Teknik Universitas Indonesia, 2025
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aldo Sultan Manneken
"Dalam pelaksanaan distribusi listrik yang dilakukan PT.”X” terhadap pelanggan PT. “X”, terdapat susut energi listrik yang terjadi baik secara teknis maupun non teknis. Susut energi listrik ini mengakibatkan kerugian yang cukup besar bagi PT.”X” setiap tahunnya. Dalam upaya untuk mengatasi dan mengurangi susut energi non teknis, PT.”X” mengadakan kegiatan P2TL dimana pada kegiatan ini, petugas P2TL akan melakukan pengecekan pada pelanggan PT.”X” yang terindikasi melakukan susut energi non teknis. Namun, dalam pelaksanaan kegiatan P2TL, PT.”X” masih melakukan proses penentuan target operasi P2TL secara manual. Untuk membantu kinerja PT.”X” dalam melakukan kegiatan P2TL, diperlukan pendekatan lain dalam melakukan penentuan target operasi P2TL. Penelitian ini akan melakukan pendekatan berbasis machine learning dengan metode supervised learning untuk melakukan deteksi pencurian tenaga listrik. Terdapat tiga algoritma yang akan digunakan dalam penelitian ini, yaitu: Naïve bayes, Naïve bayes dengan AdaBoost, dan logistic regression. Dalam penelitian ini, dataset yang digunakan adalah dataset pemakaian bulanan 423.216 pengguna listrik PT.”X” pascabayar selama 49 bulan yaitu sejak bulan Agustus tahun 2018 hingga bulan Agustus tahun 2022. Hasil penelitian ini menunjukkan rata-rata akurasi model yaitu Naïve bayes sebesar 53%, Naïve bayes dengan AdaBoost sebesar 64%, dan logistic regression sebesar 75%. Algoritma logistic regression menunjukkan performa paling baik dibandingkan dengan kedua algoritma lainnya yaitu rata-rata precision score 74%, rata-rata F1 score 59% dan rata-rata recall score adalah 60%.

In the implementation of electricity distribution carried out by PT. “X”-to-PT.”X” customers, there are losses in electrical energy that occur both technically and non-technically. This loss of electrical energy results in substantial losses for PT.”X” every year. To overcome and reduce non-technical energy losses, PT.”X” holds P2TL activities where in this activity, P2TL officers will check PT.”X” customers who are suspected of carrying out non-technical energy losses. However, in carrying out P2TL activities, PT.”X” is still carrying out the process of determining P2TL operational targets manually. To assist PT. “X”'s performance in carrying out P2TL activities, another approach is needed in determining P2TL operational targets. This research will use a machine learning-based approach using supervised learning method to detect electricity theft. There are three algorithms that will be used in this study, namely: naïve bayes, naïve bayes with AdaBoost, and logistic regression. In this study, the dataset used is the monthly usage dataset of 423,216 postpaid PT.”X” electricity users for 49 months, from August 2018 to August 2022. The results of this study show that the average accuracy of the model by naïve bayes is 53%, naïve bayes with AdaBoost is 64%, and logistic regression is 75%. The logistic regression algorithm shows the best performance compared to the other two algorithms, where the average precision score is 74%, the average F1 score is 59% and the average recall score is 60%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ratna Aminah
"ABSTRAK
<

Diabetes merupakan penyakit kronis yang terjadi ketika terdapat peningkatan kadar glukosa dalam darah karena tubuh tidak dapat atau tidak cukup menghasilkan hormon insulin atau tidak dapat menggunakan insulin secara efektif. Umumnya untuk mendeteksi penyakit diabetes adalah dengan tes kadar gula darah atau hemoglobin HbA1c yang dilakukan oleh praktisi medis. Pada penelitian ini, dibangun sistem prediksi penyakit diabetes berbasis iridologi atau melalui citra mata, menggunakan machine learning. Sistem yang dikembangkan terdiri dari instrumen akuisisi citra mata dan algoritma pengolahan citra. Metode GLCM (Gray Level Co-Occurence Matrix) digunakan untuk proses ekstraksi ciri, dengan tujuan untuk mendapatkan ciri tekstur pada citra. Metode SVM (Support Vector Machine) dan kNN (k Nearest Neighbor) digunakan untuk proses klasifikasi kelas diabetes dan non-diabetes. Hasil klasifikasi kemudian dilakukan proses validasi dengan menggunakan metode k-fold cross validation. Hasil yang diperoleh menunjukkan bahwa metode kNN memiliki performa yang lebih baik dibandingkan dengan metode SVM. Performa terbaik didapatkan saat variasi kombinasi ukuran area segmentasi 30×360 dengan jarak antar tetangga 30 pixel. Tingkat akurasi yang diapatkan dari pengujian sebesar 79,6%, dengan nilai misclassification rate (MR) 20,4%, false positive rate (FPR) 20,6%, false negative rate (FNR) 20%, sensitivity 87,1%, dan specificity 70,0%.

 


ABSTRACT

Diabetes is a chronic disease that occurs when there is an increase in glucose levels in the blood because the body cannot produce enough of the hormone insulin or cannot use insulin effectively. Generally, to detect diabetes is by pengujian blood sugar levels or hemoglobin HbA1c carried out by medical practitioners. In this study, a diabetes prediction system based on iridology or through eye images was constructed using machine learning. The developed system consists of eye image acquisition instruments and image processing algorithms. The GLCM (Gray Level Co-Occurence Matrix) method is used for feature extraction processes, with the aim of obtaining texture characteristics in the image. The SVM (Support Vector Machine) and kNN (k Nearest Neighbor) methods are used to classify diabetic and non-diabetic classes. The classification results are then validated by using the k-fold cross validation method. The results show that kNN method has better performance compared to the SVM method. The best performance is when size of the segmentation area 30×360 pixel with the distance between neighbors 20 pixel. The results show that the accuracy from pengujian is 79.6%, misclassification rate (MR) 20.4%, false positive rate (FPR) 20.6%, false negative rate (FNR) 20.0%, sensitivity 87.1%, and specificity 70.0%.

 

"
Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Qusyairi Ridho Saeful Fitni
"Dalam beberapa tahun terakhir, keamanan data pada sistem informasi organisasi telah menjadi perhatian serius. Banyak serangan menjadi kurang terdeteksi oleh firewall dan perangkat lunak antivirus. Untuk meningkatkan keamanan, intrusion detection systems (IDS) digunakan untuk mendeteksi serangan dalam lalu lintas jaringan. Saat ini, teknologi IDS memiliki masalah kinerja mengenai akurasi deteksi, waktu deteksi, pemberitahuan alarm palsu, dan deteksi jenis serangan baru atau belum diketahui. Beberapa studi telah menerapkan pendekatan pembelajaran mesin (machine learning) sebagai solusi, dan mendapat beberapa peningkatan. Penelitian ini menggunakan pendekatan pembelajaran ensemble (ensemble learning) yang dapat mengintegrasikan manfaat dari setiap algoritma pengklasifikasi tunggal. Pada penelitian ini, dibandingkan tujuh pengklasifikasi tunggal untuk mengidentifikasi pengklasifikasi dasar yang digunakan untuk model ensemble learning. Kemudian dataset IDS terbaru dari Canadian Institute for Cybersecurity yaitu CSE-CIC-IDS2018 digunakan untuk mengevaluasi model ensemble learning. Hasil percobaan menujukan bahwa implementasi metode ensemble learning khususnya majority voting dengan tiga algoritma dasar (gradient boosting, decision tree dan logistic regression) dapat meningkatkan nilai akurasi lebih baik dibandingkan implementasi algoritma klasifikasi tunggal, yaitu 0,988. Selanjutnya, implementasi teknik pemilihan fitur spearman-rank order correlation pada dataset CSE-CIC-IDS2018 menghasilkan 23 dari 80 fitur, dan dapat meningkatkan waktu pelatihan model, yaitu menjadi 11 menit 4 detik dibanding sebelumnya 34 menit 2 detik.

In recent years, data security in organizational information systems has become a serious concern. Many attacks are becoming less detectable by firewall and antivirus software. To improve security, intrusion detection systems (IDSs) are used to detect anomalies in network traffic. Currently, IDS technology has performance issues regarding detection accuracy, detection times, false alarm notifications, and unknown attack detection. Several studies have applied machine learning approaches as solutions. This study used an ensemble learning approach that integrates the benefits of each single classifier algorithms. We made comparisons with seven single classifiers to identify the most appropriate basic classifiers for ensemble learning. Then the latest IDS dataset from the Canadian Institute for Cybersecurity, CSE-CIC-IDS2018, was used to evaluate the ensemble learning model. The experimental results show that the implementation of the ensemble learning method, especially majority voting with three basic algorithms (gradient boosting, decision tree and logistic regression) can increase the accuracy rate better than the implementation of a single classification algorithm, which is 0.988. Furthermore, the implementation of the spearman-rank order correlation feature selection technique in the CSE-CIC-IDS2018 dataset produced 23 of the 80 features, and could increase the model training time, which was 11 minutes 4 seconds compared to 34 minutes 2 seconds before."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Siagian, Borris Ficthe
"Artificial Intelligence (AI) model Machine Learning (ML) merupakan perkembangan teknologi yang memiliki potensi untuk berperan sebagai pengambil keputusan dalam kehidupan manusia. Teknolgi harus dijaga agar memberikan dampak positif dalam kehidupan masyarakat sesuai amanat dalam
Pasal 28C UUD 1945. Pemerintah yang memiliki kewajiban untuk memenuhi hal tersebut. Tujuan dari penelitian ini untuk menganalisa pengaturan terkait AI model ML terkait penggunaan dan pemanfaatan di Indonesia. Penelitian ini juga akan menganlisa peraturan hukum Indonesia dalam melingkupi prinsip Ethical and trustworty AI dalam penyelenggaraan AI model ML. Kemudian penelitian ini
juga mengalisa bentuk pertanggunjawaban hukum terkait AI di Indonesia. Metode yang digunakan dalam penelitian ini adalah penelitian yuridis normatif dengan pendekatan kualitif yang bersifat exploratoris. Hasil dari penelitian ini menunjukan Indonesia memiliki sisnas IPTEK untuk mencapai tujuan Pasal 28C UUD 1945. AI yang tergolong dalam sistem elektronik, menjadikan tunduk pada
aturan terkait penyelenggaraan sistem elektronik dalam UU ITE. Utilitarian purposes yang melekat pada teknologi AI membuat perlindungan kekayaan intelektual berada dalam perlindungan Paten. Ethical dan trustworthy pada AI
dapat dikrucutkan kedalam 5 prinsip utama dalam penggunaan dan pemanfaatan AI dalam industri. Prinsip tersebut adalah Keaman dan Keselamatan, Privasi, Keadilan, Transparansi serta Akuntabilitas. Prinsip ini telah tertanggulangi dalam prinsip dalam strategi nasional kecerdasan Artifisial. Pemenuhan standar produk AI dan Kode Etik yang mengadopsi prinsip ethical and trustworthy AI diperlukan dalam peraturan hukum di Indonesia saat ini. Berdasarkan peraturan yang ada, pertanggungjawaban dalam penyelenggaraan Sistem Elektronik, termasuk AI, menerapkan prinsip praduga bersalah. Besarnya risiko pada AI membuatnya termasuk kedalam dengerous activities, sehingga perlu diterapkan strict liability.

Artificial Intelligence (AI) Machine Learning (ML) model is a technologicaldevelopment that has the potential to be a decision maker in human life. According to the article 28C of the UUD 1945, technology must be maintained to has a positive impact on people's lives. Government has the obligation to fulfill this. The purpose of this research is to analyze regulations related to AI model ML about its use and utilization in Indonesia. This research will also analyze Indonesian regulations covering principles of Ethical and trustworthiness of AI in implementation of AI model ML. Then this reasearch also analyzes forms of legal liabiility related to AI in Indonesia. Analysis method used a normative juridical research with a qualitative approach. The results show that Indonesia has Sisnas IPTEK to achieve a possitive impact. AI is classified as an electronic system, making it subject to rules related to the implementation of electronic systems in UU ITE. AI being protect by Paten, because of utilitarian purposes attached to it.
Ethical and trustworthy of AI can be narrowed down into 5 main principles. These are Security and Safety, Privacy, Fairness, Transparency and Accountability. They have been addressed in Stragtegi Nasional Kecerdasan Artifisial. Current regulations require product standard and Code of Ethics that adopts ethical and trustworthy principles of AI. Based on existing regulations, legal liability in operation of Electronic Systems, including AI, applies the presumption of guilt.
Big risk in AI makes it included in dengerous activities, so it is necessary to applystrict liability.
"
Depok: Fakultas Hukum Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Bisyron Wahyudi
"ABSTRAK
Salah satu komponen penting dalam Sistem Monitoring Keamanan Jaringan adalah Intrusion Detection System IDS yang berfungsi untuk mendeteksi setiap potensi serangan yang mengancam keamanan jaringan. Keunggulan sebuah IDS ditentukan oleh kemampuannya untuk mendeteksi serangan siber secara akurat dan mudah beradaptasi terhadap perubahan lingkungan sistem yang terus berkembang. Sebuah IDS yang akurat mampu mendeteksi berbagai jenis serangan secara tepat dengan sedikit kesalahan deteksi false alarm .Penelitian ini merancang dan mengimplementasikan metode machine learning ke dalam IDS yang digunakan untuk mendeteksi serangan dalam jaringan sebenarnya secara akurat dan cepat. Dalam pengembangan model machine learning untuk IDS ini digunakan dataset KDDCUP rsquo;99 dan NSL-KDD. Dengan melakukan analisis pemilihan fitur diperoleh subset 28 fitur dari total 41 fitur dataset KDD yang paling relevan dan dapat diimplementasikan dalam jaringan sebenarnya. Dalam pengembangan model machine learning diperoleh hasil bahwa metode terbaik adalah menggunakan SVM.Pada tahap implementasi digunakan metode multi-stage detection yang memberikan hasil deteksi serangan yang lebih cepat dan akurat. Hasil ujicoba model IDS yang telah dikembangkan menggunakan metode machine learning dengan implementasi multi-stage detection mampu mendeteksi serangan dengan tingkat akurasi sampai 99,37 . Lebih jauh lagi, kecepatan proses deteksi meningkat dengan rata-rata 24 pada data testing dan rata-rata 10 pada lingkungan jaringan sebenarnya.

ABSTRACT
An important component in Network Security Monitoring System is Intrusion Detection System IDS . IDS serves to detect any potential attacks that threaten network security. The reliability of an IDS is determined by its ability to detect cyber attacks accurately, and to dynamically adapt to ever-evolving system environment changes. An accurate IDS is able to detect different types of attacks appropriately with minimum false alarm.This research designs and implements machine learning method into IDS to detect actual network attacks accurately and quickly. In the development of machine learning model for IDS, KDDCUP 39;99 and NSL-KDD dataset are used. By performing feature selection analysis, a subset of 28 most relevant features of a total of 41 features of KDD dataset is obtained and can be implemented in the actual network. In the development of machine learning model it is found that the best method for our approach is by using SVM.In the implementation phase the proposed multi-stage detection method provides faster and more accurate attack detection. The experiments also show that combining machine learning method with multi-stage detection implementation improves detection accuracy up to 99.37 . Further, the proposed method increases the average speed of detection process up to 24 in data testing and up to 10 average in the real network environment."
Depok: Fakultas Teknik Universitas Indonesia, 2018
D2498
UI - Disertasi Membership  Universitas Indonesia Library
cover
Dessy Ana Laila Sari
"ABSTRAK
Klasifikasi emosi manusia merupakan salah satu topik hangat yang dapat dimanfaatkan dalam berbagai bidang, baik medis maupun militer. Emosi manusia sendiri dapat diklasifikasi dengan berbagai metode, salah satunya adalah Machine Learning (ML). Machine learning merupakan proses pembelajaran computer untuk menyelesaikan task tertentu, dengan menggunakan metode ini hasil yang didapatkan akan lebih akurat dan konstan. Dalam tesis ini akan dikembangkan sistem klasifikasi emosi manusia berdasarkan sinyal EEG dari DEAP yang berbasis ML dengan berbagai studi metode ML, seperti Backpropagation Neural Network (BPNN), k-Nearest Neighbor (k-NN), Support Vector Machine (SVM) hingga Random Forest (RF). Sistem klasifikasi kemudian akan dikembangkan kembali menggunakan metode Convolutional Neural Network (CNN). Dari penelitian ini didapatkan bahwa nilai recognition rate yang dihasilkan hanya berkisar 50% dengan nilai maksimal 62%. Sistem juga diberikan feature selection layer untuk memaksimalkan recognition rate, namun penambahan ini tidak memberikan hasil yang signifikan. Dengan demikian recognition rate pada sistem klasifikasi menggunakan sinyal EEG sangat bergantung pada pemrosesan sinyal raw.

ABSTRACT
The classification of human emotions is a hot topic that can be utilized in various fields, both medical and military. Human emotions themselves can be classified by various methods, one of which is Machine Learning (ML). Machine learning is a process of learning computers to complete certain tasks, using this method the results obtained will be more accurate and constant. In this thesis a human emotion classification system will be developed based on EEG signals from DEAP dataset using various ML method studies, such as Backpropagation Neural Network (BPNN), k-Nearest Neighbor (k-NN), Support Vector Machine (SVM) to Random Forest (RF). The classification system will be developed again using the Convolutional Neural Network (CNN) method. From this study it was found that the value of the recognition rate produced is only around 50% with a maximum value of 62%. The system is also given a feature selection layer to maximize recognition rate, but this addition does not provide significant results. Thus the recognition rate in the classification system using EEG signals is very dependent on raw signal processing."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Widyo Jatmoko
"Memprediksi penjualan produk sangatlah penting bagi perusahaan FMCG terutama pada kondisi ekonomi yang tak menentu saat ini. Kemampuan untuk mencapai efisiensi dalam pembuatan, pendistribusian, dan pemasaran barang, sangatlah bergantung pada seberapa akurat perkiraan penjualan. Pengaruh prediksi penjualan yang salah dapat menyebabkan perubahan perilaku konsumen terhadap produk, persediaan berlebih, dan kurangnya stok di pasar. Banyak penelitian yang menunjukkan bahwa metoda machine learning saat ini adalah metoda terbaik untuk memprediksi penjualan, namun, banyak perusahaan masih kesulitan untuk menggunakan metoda machine learning ini dikarenakan banyak variabel yang dibutuhkan untuk memprediksi penjualan agar hasilnya menjadi lebih akurat. Penelitian ini mengusulkan kerangka sederhana untuk memprediksi penjualan produk menggunakan metoda machine learning regresi linear, decision tree, random forest serta support vector machine dalam variabel seperti harga produk, tingkat distribusi, pemasaran dan variabel eksternal seperti inflasi, indeks kepercayaan konsumen dan tingkat bunga. Hasilnya menunjukkan bahwa menggabungkan regresi random forest untuk meramalkan Indeks kepercayaan Konsumen dan kemudian menggunakan regresi support vector dalam variabel-variabel ini cukup akurat untuk memprediksi penjualan.

Predicting the sales of the product is becoming more critical for fast-moving consumer goods company especially during unprecedented times. The ability to achieve efficiency for manufacturing, distributing, and marketing for the goods, are really dependent on how accurate the sales forecast is. The effect of wrong sales prediction could lead to consumer behavior changes towards the product, excessive inventory, and out of stocks in the market. Many papers show that machine learning techniques are currently the best practice to predict sales, however, many companies are still struggling to use these machine learning techniques due to many variables that are being needed to forecast the sales for the result to become more accurate. This study proposed a simple framework to forecast the sales of products using the combined supervised machine learning technique between multiple linear regression, decision tree regression, random forest regression, and support vector regression within internal marketing variables such as product price, distribution level, and marketing spends and external variables such as inflation, consumer confidence index and interest rate. The results show that combining random forest regression to forecast the Consumer Confidence Index and then using support vector regression within these variables is quite accurate to predict the sales."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>