Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 61014 dokumen yang sesuai dengan query
cover
Rizka Amalia Hayati
"Saat ini, implan telah banyak dikembangkan dalam dunia kesehatan, seperti implan koklea, prostesis retina, implan alat pacu jantung dll. Low noise amplifier (LNA) adalah salah satu rangkaian utama pada rangkaian penerima sistem transfer daya nirkabel untuk aplikasi implan medis yang berfungsi untuk mengamplifikasi sinyal keluaran dari antena penerima. Dalam penelitian ini, dirancang suatu rangkaian penerima berdaya dan berderau rendah dengan frekuensi kerja 13,56 MHz. Menggunakan tiga blok rangkaian, yaitu LNA, penyearah, dan filter, rangkaian penerima ini didesain untuk mengamplifikasi daya sekaligus menyearahkannya. Dari hasil simulasi, rangkain penerima yang didesain memiliki penguatan (S21) sebesar 43dB, noise figure 1,179dB, dan daya yang dibutuhkan sebesar 0,987 mW. Rangkaian ini telah diimplementasikan dalam sebuah PCB dalam ukuran 85,1 mm x 32,6 mm dan diuji parameter-parameternya.

Nowadays, implant has been developed a lot in medical field, such as cochlear implant, retinal prostheses, pacemaker implant, etc. Low noise amplifier (LNA) is a main circuit of wireless power transfer system receiver, which has a function to amplify output signal from receiver antenna. In this thesis, a low-noise low-power 13,56 MHz receiver had been designed. Using three circuit blocks: LNA, rectifier, and filter, this receiver was designed to do amplification and rectification as well. From simulation, this receiver got amplification gain (S21) 43dB, noise figure 1.179dB, and power consumption 0.987mW. The receiver was implemented in 85.1 mm x 32.6 mm PCB and had been tested for its parameters."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Taufiq Alif Kurniawan
"ABSTRAK
To support the WiMAX infrastructure development in Indonesiaa dualband
2.3/3.3 GHz low noise amplifier (LNA) is designed and analyzed. The LNA
is designed by combining the inductive source degeneration architecture and the
proposed switchable inductor for controlling gain. The chipis implemented by
TSMC 0.18-μm CMOS technology.
First of all, the mathematical analysis of the proposed LNA architecture is
conducted. It includesinput-impedance, gain and noise figure analysis. The
proposed input-impedance analysis modifies the input impedance of the inductive
source degeneration LNA architecture, includes devices selection to fulfill S11
requirement. Furthermore, the gain analysis is performed to explain the proposed
switchable inductor structure for controlling gain. It shows that combining onchip
inductor paralleled with series bond-wire and on-board inductor will obtain a
flatter gain for two bands of interest. The noise figure for source inductive
degeneration LNA architecture is derived. The noise figure described by the
derived equations agrees well with that obtained from the simulation.
Secondly, the proposed dual-band 2.3/3.3 GHz LNA is simulated. At lowband
mode, simulated results show the maximum S21 of 18.69 dB, an S11 below -
29 dB, and a flat noise figure of 2.3 ~ 2.33 dB from 2.3 to 2.4 GHz. The LNA
presents the IIP3 and the P1dB of -12.1 dBm and -23.3 dBm, respectively, while
consuming 18.4 mW at 1.5 V power supply. At high-band mode, the simulation
results show the S21 of 17.01 ~ 17.48 dB, the S11 below -21 dB, and an flat noise
figure of 2.36 ~ 2.37 dB from 3.3 to 3.4 GHz. The LNA consumes only 12.9 mW
at high-band mode, while exhibiting the IIP3 and the P1dB of -11.3 dBm and -22.1
dBm, respectively.
And then, the proposed LNA is verified by the post-simulation in which
the bond-wire effects are considered for an on-board deployment. At low-band
mode, the post-simulation results show the S11 of -29.11 dB ~ -32 dB, the S21 of
17.18 ~ 17.42 dB, and the flat noise figure of 2.67 ~ 2.71 dB. The LNA exhibits
the IIP3 and P1dB of -13.4 dBm and -24.2 dBm respectively, while consuming
16.32 mW power. At high-band mode, the LNA exhibits the S21 of 15.5 ~ 15.88
dB, the S11 of -12.94 ~ -16.82 dB, and the flat noise figure of 2.52 ~ 2.54 dB while
consuming 11.75 mW. The IIP3 and P1dB for the high-band mode are -12.3 dBm
and 23.3 dBm, respectively. The total chip area ofthe proposed LNA is 0.9 mm2,
including the IO pads."
2011
T29993
UI - Tesis Open  Universitas Indonesia Library
cover
Aditya Rizki Dwi Putra
"Teknologi implan medis pada saat ini telah menjadi bagian penting dalam suatu metode monitoring kondisi tubuh dari suatu makhluk hidup. Dalam sistem teknologi implan medis yang dijalankan secara nirkabel,diperlukan sistem Wireless Power Transfer. Sistem Pada sistem WPT terdapat 2 bagian penting, yaitu transmitter dan reciever. Pada bagian transmitter memiliki peran penting untuk proses amplifikasi daya, dibagian transmitter yang memiliki peran tersebut adalah Power Amplifier (PA). Topologi PA yang digunakan adalah Class-J yang dikenal memiliki liniearity yang baik tanpa mengorbankan efisiensi yang dimiliki, lalu terdapat komponen MOSFET yang bertugas sebagai switching tegangan-arus yang mengalir diterapkan dalam PA, spesifikasi MOSFET diharapkan memiliki kemampuan switching yang cepat dan memiliki efek parasitik dan resistansi yang rendah. PA akan dioperasikan dengan parameter frekuensi masukan sebesar 13,56 MHz sebagai spesifikasi dari penerapan untuk alat implant biomedis. Desain PA dilakukan dengan menggunakan perangkat lunak Advance System Design 2020 (ADS 2020) untuk mendapatkan efisiensi yang tinggi dengan parameter yang diharapkan. Hasil dari desain merupakan dengan target mendapatkan nilai PAE setinggi-tingginya dengan keluaran daya juga yang besar dalam hal ini Power Gain (dBm), dan hasil penguatan dalam decibel (dB) sebesar-besarya agar daya tidak hilang ketika ditransfer melalui coil menuju reciever. Melalui desain ini diperoleh output power atau P1dB sebesar 12,3 dBm sedangkan pada hasil simulasi P1dB sebesar 32 dBm..

Medical implant technology at this time has become an important part in a method of monitoring the body condition of a living being. In a medical implant technology system that runs wirelessly, a Wireless Power Transfer system is needed. System In the WPT system there are 2 important parts, namely transmitter and receiver. The transmitter section has an important role for the power amplification process, the transmitter section has a Power Amplifier (PA) role. The PA topology used is Class-J which is known to have good linearity without sacrificing its efficiency, then there is a MOSFET component that acts as a current-voltage switching applied in the PA, the MOSFET specification is expected to have fast switching capabilities and has parasitic and parasitic effects. low resistance. The PA will be operated with an input frequency parameter of 13.56 MHz as a specification of the application for biomedical implant devices. The PA design was carried out using the Advance System Design 2020 (ADS 2020) software to obtain high efficiency with the expected parameters. The result of the design is with the target of getting the highest PAE value with a large power output in this case Power Gain (dBm), and the maximum gain in decibels (dB) so that power is not lost when transferred through the coil to the receiver. Through this design, the output power or P1dB is 12.3 dBm, while the P1dB simulation results are 32 dBm."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dzikrul Insanul Kamila
"Skripsi ini ditujukan untuk merancang Penguat Derau Rendah hibrid yang bekerja pada frekuensi 13 MHz untuk aplikasi implan medis dengan memodifikasi topologi current reuse. Induktor yang terhubung dengan terminal source pada sisi common gate di topologi konvensional current reuse digantikan oleh resistor, sehingga rangkaian yang diusulkan dapat bekerja pada frekuensi rendah secara optimal. Analisa matematis pada impedansi masukan dan penguatan telah dilakukan untuk mengoptimasi setiap nilai komponen elektronika dalam rangkaian. Berdasarkan hasil simulasi, didapat rangkaian Penguat Derau Rendah berpenguatan 20,85 dB dengan noise figure 15,78 dB yang bekerja pada frekuensi 13 MHz. Konsumsi daya yang dibutuhkan oleh rangkaian ini sebesar 1,644 mW. Desain Penguat Derau Rendah ini telah dirancang pada PCB (printed circuit board) dan telah dilakukan pengujian parameter-S. Akan tetapi hasil pengujian yang dilakukan tidak sesuai dengan simulasi karena MOSFET yang digunakan tidak dapat bekerja secara optimal.

This thesis is intended to design a hybrid Low Noise Amplifier that work at 13 MHz by modifying the current reuse topology. The inductor connected to the source terminal on the common gate side in the conventional current reuse topology is replaced by resistor, so the proposed circuit can work at low frequency optimally. Mathematical analysis of input impedance and gain has been carried out to optimize each value of electronic components in the circuit. Based on the simulation results, obtained gain of Low Noise Amplifiers is 20.85 dB with a noise figure 15.78 dB that works at 13 MHz. The power consumption required by this circuit is 1.644 mW. This Low Noise Amplifier design has been designed on a PCB (printed circuit board) and has been tested for S-parameters. However, the results of the tests performed did not match the simulation because the MOSFETs used could not work optimally."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Fakultas Teknik Universitas Indonesia, 1995
S38746
UI - Skripsi Membership  Universitas Indonesia Library
cover
Puspita Sulistyaningrum
"ABSTRAK
Concurrent multiband LNA merupakan salah satu tipe multiband LNA yang
mampu bekerja pada beberapa frekuensi berbeda secara simultan dalam satu
waktu. Pada tesis ini dirancang concurrent multiband LNA yang bekerja pada
empat frekuensi tengah yaitu 950 MHz, 1.85 GHz, 2.35 GHz, dan 2.65 GHz.
LNA yang dirancang menggunakan transistor HJ-FET NE3210S01 dengan bias
jenis self bias, topologi input matching inductive degeneration yang ditambahkan
resonator LC paralel, dan ditambah transistor yang dipasang cascode. Simulasi
dilakukan dengan menggunakan perangkat lunak Advance Design System (ADS),
layout dibuat dengan perangkat lunak altium designer dan kemudian difabrikasi di
atas PCB.
Hasil simulasi dari rancangan LNA menunjukkan bahwa pada keempat frekuensi
tengah 950 MHz, 1.85 GHz, 2.35 GHz, dan 2.65 GHz, S21 mencapai 21.77 dB,
17.88 dB, 16.71 dB, dan 15.85 dB untuk keempat frekuensi tengah. S11 sebesar -
23.23 dB, -20.46 dB, -17.93 dB, dan -19.69 dB. NF sebesar 0.73 dB, 0.69 dB,
0.68 dB, dan 0.75 dB.
Hasil pengukuran menunjukkan frekuensi tengah yang bergeser menjadi 665 MHz
dengan S11 -14.57 dB dan S21 -4.56 dB, 1.07 GHz dengan S11 -13.42 dB dan S21 -
5.79 dB, 1.34 GHz dengan S11 -13.34 dB dan S21 -2.01 dB, dan 2.84 GHz dengan
S11 -24.49 dB dan S21 -14.79 dB.

ABSTRACT
Concurrent multiband LNA is one type of multiband LNA that works at several
frequency bands one time simultaneously. This project presents a design of
Concurrent multiband LNA that works at four frequency centers namely 950
MHz, 1.85 GHz, 2.35 GHz, and 2.65 GHz. The simulated LNA uses HJ-FET
NE3210S01 with self bias, inductive degeneration topology added with resonator
LC, and added with cascode transistor. Simulation performed with Advance
Design System (ADS), layout is designed with altium designer software than
fabricated on PCB.
The simulation result of the LNA shows that, at four frequency centers 950 MHz,
1.85 GHz, 2.35 GHz, and 2.65 GHz, S21 achieves 21.77 dB, 17.88 dB, 16.71 dB,
and 15.85 dB respectively, S11 achieves -23.23 dB, -20.46 dB, -17.93 dB, and -
19.69 dB respectively, NF achieves 0.73 dB, 0.69 dB, 0.68 dB and 0.75 dB
respectively.
The measurement result shows that frequency centers shift, they are 665 MHz
with S11 -14.57 dB and S21 -4.56 dB, 1.07 GHz with S11 -13.42 dB and S21 -5.79
dB, 1.34 GHz with S11 -13.34 dB and S21 -2.01 dB, and 2.84 GHz with S11 -24.49
dB and S21 -14.79 dB.
"
Fakultas Teknik Universitas Indonesia, 2013
T35228
UI - Tesis Membership  Universitas Indonesia Library
cover
Hasudungan, Alamsyah Jeremy
"Teknologi implant biomedis menjadi salah satu teknologi yang paling banyak digunakan pada saat ini. Teknologi tersebut memanfaatkan sistem WPT untuk mentransmisikan energi nya. Salah satu bagian penting pada WPT adalah PA. Pada skripsi ini, didesain sebuah PA yang beroperasi pada frekuensi kerja 13.56 MHz yang dapat mencapai PAE hingga 80% dan gain hingga 20 dB. Pada PA ini digunakan konfigurasi Kelas A dengan menggunakan titik kerja kelas AB. PA dapat menghasilkan daya output hingga 10 dBm atau sekitar 10 mW. Tahapan desain dimulai dengan melakukan simulasi menggunakan perangkat lunak ADS (Advanced Design System) 2020 untuk menguji dan menganalisis PAE, gain, dan daya output. Berdasarkan hasil simulasi, didapatkan PAE sebesar 87.48%, gain sebesar 41.44 dBm, dan P1dB sebesar 12.39 dBm. Pada tahapan berikutnya, skematik rangkaian PA pada ADS didesain menjadi sebuah layout PCB dengan menggunakan komponen yang tersedia di pasaran. Layout PCB tersebut kemudian dicetak dan diuji. Berdasarkan pengukuran PCB, didapatkan PAE sebesar 14.58%, gain sebesar 39.1 dB, dan P1dB sebesar 12.4 dBm.

Biomedical implant technology is one of the most widely used technologies today. The technology utilizes the WPT system to transmit its energy. One of the important parts of WPT is PA. In this research, a 13.56 MHz PA that can reach PAE up to 80% and gain up to 20 dB has been designed. This PA used Class A configurations with Class AB operation. This PA could produce an output power up to 10 dBm or approximately 10 mW. The design process started from simulation using ADS (Advanced Design System) 2020 to observe and analyze PAE, gain, and output power. Based on simulation, this PA could reach PAE up to 87.48%, gain up to 41.44 dBm, and P1dB of 12.39 dBm. The next step of the design process is designing a PCB layout based on the schematic on ADS 2020 using available components. The PCB layout was printed and tested. Based on the PCB testing result, this PCB could reach PAE up to 14.58%, gain up to 39.1 dB, and P1dB of 12.4 dBm."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Irwan Fauzi
"Rangkaian RF penerima tersusun atas beberapa tingkat-tingkat proses, yaitu LNA, filter bandpass, mixer, AGC, dan PLL. Dalam penelitian ini dirancang rangkaian low noise amplifier (LNA) dan automatic gain control (AGC). Perancangan LNA dan AGC untuk m-WiMAX dilakukan dengan Advance Design System (ADS) 2009 update 1. LNA yang dirancang menggunakan current-reused karena memberikan keuntungan antara lain konsumsi daya rendah, isolasi dan noise figure yang baik. Sedangkan untuk AGC dengan menggunakan gilbert cell karena dapat menjaga bandwidth loop AGC lebih stabil dibandingan dengan tipe linear.
Pada LNA yang dirancang diperoleh gain diperoleh sebesar 20,136dB, NF diperoleh sebesar 0,259dB, VSWR diperoleh sebesar 1,048, Stabilitas sebesar 1,21. Untuk IP3 yang terdiri atas berbagai bentuk diperoleh upper IIP3 diperoleh sebesar 5,469dBm, upper OIP3 diperoleh sebesar 22,819dBm, lower IIP3 diperoleh sebesar 4,613dBm, dan lower OIP3 diperoleh sebesar 21,963dBm. Selanjutnya, Sensitivitas daya diperoleh -115,201dBm dengan daya output LNA - 97,851dBm. Parameter pada AGC diperoleh Gain maksimum diperoleh sebesar 103,940dB, VSWR diperoleh sebesar 1,117.
Evaluasi output AGC yang terjadi mengalami kenaikan dalam gain pada titik puncak hingga 26.693dBm pada 10ns sebelum menurun menjadi daya output sebesar 5.217dBm pada kestabilan daya output setelah 40ns dan selanjutnya dihasilkan daya output dalam keadaan linear dan stabil. Evaluasi tegangan kendali dari AGC dimana terjadi kenaikan tegangan hingga diperoleh tegangan sebesar 2.583e-9volt pada 40ns dan selanjutnya akan dihasilkan dalam tegangan kendali yang linear dan stabil. Evaluasi tegangan acuan yang digunakan untuk menghasilkan daya output sebesar 5,217 dBm adalah 0,577 Volt.

RF receiver circuit is composed of several levels of the process, ie LNA, bandpass filter, mixer, AGC, and PLL. In this research designed a series of low noise amplifier (LNA) and automatic gain control (AGC). Design of LNA and AGC for the m-WiMAX done by Advance Design System (ADS) 2009 Update 1. LNA designed using a current-reused because they offer advantages such as low power consumption, isolation and a good noise figure. While for AGC using Gilbert cell because it can maintain more stable AGC loop bandwidth compared with the linear type.
In the LNA gain is found it is obtained at 20.136 dB, NF is obtained at 0.259 dB, VSWR is obtained at 1.048, Stability of 1.21. For IP3 which consists of various forms of acquired upper dBm IIP3 obtained at 5.469, upper dBm OIP3 is obtained at 22.819, the lower was obtained at 4.613 dBm IIP3, and lower at 21.963 dBm OIP3 obtained. Furthermore, the power sensitivity obtained -115.201 dBm -97.851 dBm output power LNA. AGC parameters obtained at the maximum gain obtained is 103.940 dB, VSWR obtained is 1.117.
Evaluation of the AGC output occurs an increase in gain on cusp until 26.693dBm at 10ns before declining to the power output of 5.217dBm on the stability of output power after 40ns and subsequently resulted in a state of linear output power and stable. Evaluation of the AGC control voltage where the voltage increases until the voltage obtained by 2.583e-9volt at 40ns and thereafter will be generated in the control voltage is linear and stable. Evaluation of the reference voltage used to generate the output power of 5.217 dBm is 0.577 Volt.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
T27581
UI - Tesis Open  Universitas Indonesia Library
cover
Wisnu Dewantara
"Sistem penghilang bising merupakan sebuah sistem yang digunakan untuk menghilangkan frekuensi tertentu atau membalikan fasa pada suatu sistem tata suara. Dalam sistem tersebut terdapat mikrofon untuk mengambil kebisingan yang dihasilkan dari generator Power System Simulator PSS , Rangkaian pembalik fasa untuk menghilangkan frekuensi atau membalikan fasa, amplifier untuk menguatkan sinyal hasil pembalik fasa dan mengeluarkan hasil suara yang dihasilkan melalui speaker. Pada rangkaian amplifier digunakan dalam sistem penghilang bising untuk memperkuat sinyal pembalik agar frekuensi yang mengganggu dapat hilang atau saling terinterferensi. Dalam skripsi ini, dibuat amplifier dengan kelas AB yang memiliki linearitas lebih baik dibanding kelas-kelas amplifier yang ada sehingga sinyal yang dikirimkan dapat dikuatkan 100 kali seperti sinyal masukannya dan juga memberikan sinyal gelombang 180o lebih. Hasil spektrum respon frekuensi amplifier yang cenderung datar pada rentang frekuensi 65 Hz 16 Hz dapat mencakup frekuensi dominan yang mengganggu pada frekuensi 300 Hz dan 5500 Hz. Pengujian implementasi perangkat penghilang bising pada Laboratorium Sistem Tenaga Listrik mengalami penurunan tingkat tekanan suara SPL di beberapa titik uji dengan rata-rata -1,75 dB.

Noise cancelling system is a system used for eliminate frequencies or reverse phase. Such system among others The microphone used to pick up the sound generator power system simulation PSS , the phase inverting circuit remove frequency, amplifier to amplify inverted phase signal and the output is speaker. In amplifier circuits are used in noise cancelling systems to amplify the inverting signals so that disturbing frequencies can be lost or interfere with each other. In this thesis, amplifier made with class AB which has a better linearity than the existing class of amplifier class so that the signal can be boosted 100 times as its input signal and also gives more 180o wave signal. The results of frequency respons at 65 Hz 16 Hz can include dominant frequencies in frequencies of 300 Hz and 5500 Hz. Implementation test noise cancelling device on Electric Power System Laboratory has decreased sound pressure level SPL in various points with an average of 1.75 dB."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S69791
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>