Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 144676 dokumen yang sesuai dengan query
cover
Muhammad Sabila Haqqi
"Banyak sekali variabel nonlinear didalam sistem kendali untuk quadcopter sehingga cukup rumit untuk mengendalikan dinamika penerbangan dari wahana ini. Salah satu metode yang digunakan untuk membangun model dinamik quadcopter adalah Deep Learning berbasis Long Short-Term Memory. Metode pembelajaran yang umum digunakan dalam melatih model adalah offline learning, dimana pelatihan dilakukan secara akumulatif berdasarkan dataset yang telah dimiliki. Walaupun offline learning memungkinkan model belajar lebih cepat, metode ini menghasilkan model yang kurang baik untuk wahana yang membutuhkan feedback dengan kompleksitas tinggi. Untuk menangani masalah tersebut akan dikembangkan metode online learning, dimana data diperoleh secara sekuensial dan digunakan untuk memperbarui model di setiap timestep. Akan ditunjukkan bahwa metode online learning dapat memperbaiki model yang diperoleh dari metode offline learning berdasarkan Mean Square Error dari setiap jenis data quadcopter.
..... There are so many nonlinear variables in the control system for the quadcopter so it is quite complicated to control the flight dynamics of this vehicle. One of the methods used to build a dynamic quadcopter model is Deep Learning based on Long Short-Term Memory. The learning method commonly used in training the model is offline learning, where training is carried out accumulatively based on the existing dataset. Although offline learning allows for faster learning models, this method results in poor models for vehicles that require high complexity feedback. To deal with this problem, an online learning method will be developed, where data is obtained sequentially and used to update the model at each time step. It will be shown that the online learning method can improve the model obtained from the offline learning method based on the Mean Square Error of each quadcopter data type."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Theresia Gowandi
"Analisis sentimen adalah salah satu bidang dari Pemrosesan Bahasa Alami yang membangun sistem untuk mengenal opini dalam teks dan mengelompokkan ke dalam sentimen positif atau negatif. Banyak peneliti telah membangun model yang menghasilkan akurasi terbaik dalam melakukan analisis sentimen. Tiga diantaranya adalah Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), dan Gated Recurrent Unit (GRU), yang merupakan bagian dari deep learning. CNN digunakan karena kemampuannya dalam mengekstrak fitur penting dalam penggalan kalimat, sedangkan LSTM dan GRU digunakan karena kemampuannya yang memiliki memori akan input yang telah diproses sebelumnya. GRU memiliki struktur yang lebih sederhana dibandingkan dengan LSTM. Ketiga model tersebut dapat digabungkan menjadi model gabungan LSTM-CNN, CNN-LSTM, GRU-CNN, dan CNN-GRU. Penelitian sebelumnya telah membuktikan bahwa model gabungan tersebut memiliki akurasi yang lebih baik dibandingkan dengan model dasar LSTM, GRU, dan CNN. Implementasi model dilakukan pada data ulasan aplikasi berbahasa Indonesia. Hasilnya, didapatkan bahwa hampir seluruh model gabungan memiliki akurasi yang lebih baik dibandingkan dengan model dasar.

Sentiment analysis is one of the fields of Natural Language Processing that builds a system to recognize and extract opinion in the form of text into positive or negative sentiment. Nowadays, many researchers have developed methods that yield the best accuracy in performing analysis sentiment. Three particular models are Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU), which are part of deep learning architectures. CNN is used because of its ability to extract important features from each sentence fragment, while LSTM and GRU are used because of their ability to have a memory of prior inputs. GRU has a simpler and more practical structure compared to LSTM. These models can be combined into combined LSTM-CNN, CNN-LSTM, GRU-CNN, and CNN-GRU model. Former researches have proved that these models have better accuracy compared to standard models. This research is focused on the performance of all the combined LSTM-CNN, CNN-LSTM, GRU-CNN, CNN-GRU models and will be compared to the standard LSTM, GRU, CNN models. Implementation of the model is performed on a collection of application review data in Indonesian text. As a result, almost all of the combined models have better accuracy than the standard models."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hartina Hiromi Satyanegara
"Serangan MitM ini memiliki dampak yang cukup besar dan dapat membuka jalan untuk serangan selanjutnya, seperti Phishing. Penelitian ini membahas tentang pendekatan metode hybrid deep learning yang dapat membantu pendeteksian serangan MitM secara efektif. Metode hybrid deep learning yang digunakan dalam penelitian ini adalah CNN-MLP dan CNN-LSTM, yaitu merupakan gabungan dari CNN, MLP, dan LSTM. Selain itu, dalam skenario eksperimennya menggunakan berbagai metode feature scaling (StandardScaler, MinMaxScaler, dan MaxAbsScaler) dan tanpa menggunakan metode feature scaling sebelum melakukan pemodelan, yang kemudian akan ditentukan metode hybrid deep learning yang terbaik untuk mendeteksi serangan MitM dengan baik. Dataset yang digunakan dalam penelitian ini yaitu Kitsune Network Attack Dataset (ARP MitM Ettercap). Hasil dari penelitian ini yaitu metode CNN-MLP dengan 10 epoch menggunakan MaxAbsScaler memiliki nilai accuracy tertinggi, yaitu 99.93%. Pada urutan kedua, CNN-MLP dengan 10 epoch menggunakan StandardScaler memiliki nilai accuracy sebesar 99.89%.

Man in the Middle (MitM) has a sizeable impact because it could make the attackers will do another attacks, such as Phishing. This research is discussing about hybrid deep learning methods-approach on detecting MitM attacks effectively. We were used 2 (two) combinations of the Deep Learning methods (CNN, MLP, and LSTM), which are CNN-MLP and CNN-LSTM. Besides that, in the experiment scenarios, we also used various Feature Scaling methods (StandardScaler, MinMaxScaler, and MaxAbsScaler) and without using any Feature Scaling methods before building the models and will determine the better hybrid Deep Learning methods for detecting MitM attack. Kitsune Network Attack Dataset (ARP MitM Ettercap) is the dataset used in this study. The results of this research proves that CNN-MLP that with 10 epoch using MaxAbsScaler has the highest accuracy rate of 99.93%. In second place, CNN-MLP with 10 epoch using StandardScaler has the accuracy rate of 99.89%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Putu Bagus Raka Kesawa
"Kemajuan umat manusia dalam penerbangan modern sangat bergantung pada kemampuan untuk melakukan pemodelan sistem idenifikasi penerbangan dari suatu wahana pernerbangan. Pemodelan suatu sistem identifikasi penerbangan bergantung dengan tingkat kualitas dan kuantitas dari data simulasi yang digunakan untuk mendapatkan pendekatan situasi dan kondisi penerbangan aktual yang seakurat mungkin. Akurasi dan presisi dari data simulasi yang digunakan dalam pemodelan sistem penerbangan akan mempengaruhi hasil algoritma yang digunakan dalam sistem identifikasi. Dalam pencapaian kualitas data tersebut, digunakanlah perangkat lunak X-Plane yang berfungsi sebagai simulator penerbangan ultra-realistis yang menyuplai set data yang memungkinkan pembelajaran mesin dari algoritma berbasis komputer. Data pembelajaran pesawat terbang terdiri dari attitude orientasi pesawat. Data yang diperoleh dari simulator tersebut akan diproseskan menggunakan metode preprocessing, sehingga layak digunakan untuk pelatihan sistem identifikasi. Suatu algoritma artificial neural network diterapkan untuk mengidentifikasi sistem pesawat dengan mempelajari dataset yang disebutkan di atas, yang kemudian akan digunakan dalam pengembangan perancangan sistem kontrol. Algoritma artificial neural network yang dirancang dalam penelitian ini telah menunjukkan keberhasilan dalam sistem identifikasi untuk sistem penerbangan pesawat, dan siap digunakan dalam percobaan dan pengujian sistem kontrol pada pesawat.

Humanitys progress in modern aviation is very dependent on the ability to model the flight identification system of a flight vehicle. Modeling a flight identification system depends on the quality and quantity of simulation data used to get the most accurate representation of the actual flight situation and condition. The accuracy and precision of the simulation data used in the flight system modeling will affect the results of the algorithm used in the identification system. In achieving this data quality, X-Plane software is used which functions as an ultra realistic flight simulator that supplies data sets that enable machine learning from computer based algorithms. Airplane learning data consists of airplane orientation attitude. Data obtained from the simulator will be processed using the preprocessing method, so it is feasible to use for identification system training. An artificial neural network algorithm is applied to identify aircraft systems by studying the dataset mentioned above, which will then be used in the development of control system design. The artificial neural network algorithm designed in this study has shown success in the identification system for aircraft flight systems, and is ready to be used in the testing and testing of control systems on aircraft."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ajeng Dwi Asti
"Ujaran kebencian dapat menyebabkan terjadinya konflik dan pembantaian di masyarakat sehingga harus segera ditangani. Indonesia memiliki lebih dari 700 bahasa daerah dengan karakteristik masing-masing. Ujaran kebencian yang ada di Indonesia juga pernah dilakukan menggunakan bahasa daerah. Media sosial Twitter paling sering digunakan dalam menyebarkan ujaran kebencian. Identifikasi target, kategori, serta level ujaran kebencian dapat membantu Polri dan Kemenkominfo dalam menentukan prioritas penanganan ujaran kebencian sehingga dapat meminimalisir dampaknya. Penelitian ini melakukan identifikasi ujaran kasar dan ujaran kebencian beserta target, kategori, dan level ujaran kebencian pada data Twitter berbahasa daerah menggunakan algoritma classical machine learning dan deep learning. Penelitian ini menggunakan data lima bahasa daerah di Indonesia dengan penutur terbanyak yaitu Jawa, Sunda, Madura, Minang, dan Musi. Pada data Bahasa Jawa performa terbaik diperoleh menggunakan algoritma Support Vector Machine (SVM) dengan transformasi data Classifier Chains (CC) serta kombinasi fitur word unigram, bigram, dan trigram dengan F1-score 70,43%. Algoritma SVM dengan transformasi data CC serta kombinasi fitur word unigram dan bigram memberikan performa terbaik pada data Bahasa Sunda dan Madura dengan masing-masing F1-score 68,79% dan 78,81%. Sementara itu, pada data Bahasa Minang dan Musi hasil terbaik diperoleh menggunakan algoritma SVM dengan transformasi data CC serta fitur word unigram dengan F1-score 83,57% dan 80,72%. Penelitian ini diharapkan dapat digunakan sebagai masukan bagi Polri dan Kemenkominfo dalam pembangunan sistem identifikasi ujaran kasar, ujaran kebencian serta target, kategori, dan level ujaran kebencian pada media sosial.

Hate speech can lead to conflict and massacres in society so it must be dealt immediately. Indonesia has more than 700 regional languages with their own characteristics. Hate speech in Indonesia has also been carried out using regional languages. Twitter is the most frequently used social media to spread hate speech. Identification of targets, categories, and levels of hate speech can help the National Police and the Ministry of Communication and Information to determine priorities for handling hate speech to minimize its impact. This study identifies abusive speech and hate speech along with the target, category, and level of hate speech on regional language Twitter data using classical machine learning and deep learning algorithms. This study uses data from five regional languages in Indonesia with the most speakers, namely Javanese, Sundanese, Madurese, Minang, and Musi. In Java language data, the best performance is obtained using the Support Vector Machine (SVM) algorithm with Classifier Chains (CC) data transformation and a combination of unigram, bigram, and trigram word features with an F1-score of 70.43%. The SVM algorithm with CC data transformation and the combination of unigram and bigram word features provides the best performance on Sundanese and Madurese data with F1-scores of 68.79% and 78.81%, respectively. Meanwhile, in Minang and Musi language data, the best results were obtained using the SVM algorithm with CC data transformation and word unigram features with F1-scores of 83.57% and 80.72%, respectively. This research is expected to be used as input for the National Police and the Ministry of Communication and Information in developing a system for identifying harsh speech, hate speech and the target, category, and level of hate speech on social media."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Hajar Indah Fitriasari
"Pencitraan 'X-ray' dapat digunakan sebagai alternatif penunjang diagnostik klinis untuk mendeteksi penyakit COVID-19 pada paru-paru pasien. 'Machine learning' atau 'Deep Learning' akan disematkan pada 'computer-aided-diagnosis' (CAD) untuk meningkatkan efisiensi dan akurasi dalam menangani permasalahan membedakan COVID-19 dengan penyakit lain yang memiliki karakteristik yang serupa. Beberapa sistem kecerdasan buatan berbasis 'Convolutional Neural Network' (CNN) pada penelitian sebelumnya, memiliki akurasi yang menjanjikan dalam mendeteksi COVID-19 menggunakan citra 'X-ray' rongga dada. Dalam penelitian ini, dikembangkan 'classifier' berbasis CNN dengan teknik 'transfer learning', yakni memanfaatkan model CNN pra-terlatih dari ImageNet bernama Xception dan ResNet50V2 yang dikombinasikan agar sistem menjadi lebih akurat dalam kemampuan ekstraksi fitur untuk mendeteksi COVID-19 melalui citra 'X-ray' rongga dada. 'Classifier' yang dikembangkan terdiri dari 2 jenis, yakni 'classifier' yang disusun secara serial dan paralel. Pengujian dilakukan dalam 2 skenario berbeda. Pada skenario 1, digunakan 'dataset' dan pengaturan parameter yang mengacu pada penelitian sebelumnya, sedangkan skenario 2 dilakukan dengan menambahkan sejumlah citra kedalam 'dataset' baru serta pengaturan parameter yang berbeda untuk memperoleh peningkatan akurasi. Dari pengujian untuk kelas COVID-19 pada skenario 1, diperoleh 'classifier' paralel berhasil menggungguli 'classifier' lain dengan mencapai akurasi rata-rata 93,412% serta memperoleh 'precision', 'recall,' dan 'f1-score' masing – masing mencapai 96.8%, 99.6% dan 98%. Pada skenario 2, 'classifier' paralel mencapai akurasi rata-rata yang lebih tinggi, yakni mencapai 96,678% serta memperoleh 'precision', 'recall,' dan 'f1-score' yang cukup tinggi pula, yakni masing – masing mencapai 98.8%, 99.8% dan 99.4% untuk kelas COVID-19. Adanya penambahan jumlah 'dataset' pada skenario 2 dapat meningkatkan akurasi dari 'classifier' yang dikembangkan. Secara keseluruhan, 'classifier' paralel yang dikembangkan dapat direkomendasikan menjadi alat yang dapat membantu praktisi klinis dan ahli radiologi untuk membantu mereka dalam diagnosis, kuantifikasi, dan tindak lanjut kasus COVID-19.

X-ray imaging can be used as an alternative support clinical diagnostics to detect COVID-19 in the patient's lungs. Machine learning or Deep Learning will be embedded in computer-aided diagnosis (CAD) to increase efficiency and accuracy in dealing with problems distinguishing COVID-19 from other diseases that have similar characteristics. Several artificial intelligence systems based on the Convolutional Neural Network (CNN) in previous studies have promising accuracy in detecting COVID-19 using Chest X-ray images. In this study, a CNN-based classifier with transfer learning techniques was developed, which utilizes a pre-trained CNN model from ImageNet named Xception and ResNet50V2 combined that makes the system powerful using multiple feature extraction capabilities to detect COVID-19 through Chest X-ray images. There are 2 types of classifiers developed, classifiers arranged in serial and parallel. The testing in this study was carried out in two different scenarios. In the scenario 1, the dataset and parameter settings are used referring to previous studies, while the scenario 2 was carried out by adding several images to the new dataset and setting different parameters to obtain increased accuracy. From testing of the COVID-19 class in the scenario 1, the parallel classifier succeeded in outperforming other classifiers by achieving an average accuracy in 93.412% and also obtains precision, recall and f1-score, which reached 96.8%, 99.6%, and 98% respectively. In the scenario 2, the parallel classifier achieved a higher average accuracy of 96.678%, and also obtained quite high precision, recall and f1-score, which reached 98.8%, 99.8% and 99.4% for the COVID-19 class, respectively. The addition of the number of datasets in scenario 2 can increase the accuracy of the developed classifier. Overall, the developed parallel classifier can be recommended as a tool that can help clinical practitioners and radiologists to aid them in diagnosis, quantification, and follow-up of COVID-19 cases."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Fauzi Rahmad
"Arsitektur model deep learning kini sudah semakin kompleks setiap harinya. Namun semakin besar model maka dibutuhkan kekuatan komputasi yang cukup besar juga dalam menjalankan model. Sehingga tidak semua perangkat Internet of Things (IoT) dapat menjalankan model yang begitu besar secara efisien. Untuk itu teknik model optimization sangat diperlukan. Pada penelitian kali ini penulis menggunakan metode optimasi menggunakan layer weight regularization, serta penyederhanaan arsitektur model pada hybrid deep learning model. Dataset yang digunakan pada penelitian kali ini adalah N-BaIoT. Sementara evaluasi performa model yang digunakan adalah accuracy, confussion matrix, dan detection time. Dengan tingkat accuracy yang sama, model yang diusulkan berhasil meningkatkan waktu deteksi model lebih cepat 0,8 ms dibandingkan dengan model acuan.

The deep learning model architecture is getting more complex every day. However, the larger the model, the greater the computational power is needed to run the model. So not all Internet of Things (IoT) devices can run such a large model efficiently. For this reason, model optimization techniques are needed. In this study, the author uses an optimization method using layer weight regularization, as well as simplification of the model architecture on the hybrid deep learning model. The dataset used in this research is N-BaIoT. While the evaluation of the performance of the model used is accuracy, confusion matrix, and detection time. With the same level of accuracy, the proposed model succeeded in increasing the detection time of the model by 0.8 ms faster than the reference method."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lunnardo Soekarno Lukias
"

Dalam kehidupan kita sehari-hari umumnya banyak barang yang kita butuhkan dan gunakan dalam rumah tangga kita. Mulai dari bahan pangan, minuman, barang untuk membersihkan rumah, barang untuk mencuci pakaian, kudapan, dan lain sebagainya, Pada masyarakat kini banyak barang keperluan sehari-hari tersebut kita beli dan jumpai di berbagai tempat mulai dari warung di dekat rumah, supermarket, toko sembako, dan lain sebagainya. Akhir-akhir ini jumlah supermarket dan minimarket mulai menjamur. Pada tahun 2021 jumlah minimarket di Indonesia mencapai 38.323 gerai yang merupakan peningkatan sebanyak 21,7% dibandingkan pada tahun 2017 yakni hanya sebanyak 31.488 gerai saja. Dengan jumlah gerai yang semakin banyak, banyak masyarakat yang semakin banyak menggunakan jasanya untuk mendapatkan barang-barang kebutuhan sehari-hari mereka. Apalagi bila barang yang dibeli juga cukup banyak sehingga akan sulit untuk mendata barang-barang apa saja yang telah dibeli. Untuk memudahkan hal tersebut, penulis mengajukan sebuah solusi untuk membuat sebuah rancangan sistem yang akan memanfaatkan teknologi Deep Learning untuk mendeteksi tulisan pada struk belanja dari hasil pembelian barang pada minimarket. Hasilnya dari pengujian yang sudah dilakukan pada penelitian ini, masing-masing model Deep Learning memiliki tingkat akurasi mAP50 99,4% dan mAP50:95 72,9% untuk YOLOv5, tingkat akurasi mAP50 99,61% dan mAP50:95 65,19% untuk Faster R-CNN, dan tingkat akurasi mAP50 61,77% dan mAP50:95 98,09% untuk RetinaNet. Dimana YOLOv5 memiliki tingkat akurasi mAP50:95 tertinggi yakni 72,9% dan Faster R-CNN memiliki tingkat akurasi mAP50 tertinggi yakni 99,61%. Dimana pada proses implementasi sistem YOLOv5 dan Faster R-CNN berhasil melakukan proses pengenalan sedangkan RetinaNet gagal untuk melakukannya.


In our daily lives, we generally need and use many items in our households. Starting from food ingredients, drinks, household cleaning items, laundry items, snacks, and so on. Nowadays, many of these daily necessities are bought and found in various places such as small shops near our homes, supermarkets, grocery stores, and so on. Recently, the number of supermarkets and minimarkets has increased. In 2021, the number of minimarkets in Indonesia reached 38,323 branches which is an increase of 21.7% compared to 2017 which was only 31,488 branches. With the increasing number of branches, many people are using their services to obtain their daily necessities. Especially when the purchased items are quite a lot so it will be difficult to record what items have been purchased. To facilitate this matter, the author proposes a solution to create a system design that will utilize Deep Learning technology to detect writing on receipts from purchasing items at minimarkets. The results of testing that have been carried out in this study show that each Deep Learning model has an mAP50 accuracy level of 99.4% and mAP50:95 72.9% for YOLOv5, an mAP50 accuracy level of 99.61% and mAP50:95 65.19% for Faster R-CNN, and an mAP50 accuracy level of 61.77% and mAP50:95 98.09% for RetinaNet. YOLOv5 has the highest mAP50:95 accuracy rate at 72.9%, while Faster R-CNN has the highest mAP50 accuracy rate at 99.61%. Where in the implementation process, YOLOv5 and Faster R-CNN systems were able to perform recognition processes while RetinaNet failed to do so."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Naura Asyifa
"Sistem Penilaian Esai Otomatis (SIMPLE-O) merupakan teknologi deep learning yang dikembangkan oleh Departemen Teknik Elektro, Fakultas Teknik Universitas Indonesia. SIMPLE-O dikembangkan untuk menilai ujian esai Bahasa Indonesia menggunakan gabungan algoritma CNN dengan Bidirectional LSTM. Dokumen yang menjadi input untuk sistem berupa jawaban mahasiswa dan kunci jawaban dosen. Keduanya akan melalui proses pre-processing yang dilanjut menuju proses embedding dan masuk ke dalam model deep learning. Selanjutnya akan dilakukan perhitungan dengan metrik penilaian yaitu Manhattan Distance dan Cosine Similarity. Pengujian dilakukan dengan mencari hyperparameter terbaik dari enam skenario yang dijalankan. Hasil pengujian skenario akhir fase training dan testing pengukuran Manhattan Distance mendapatkan nilai rata-rata selisih sebesar 0,72 dan 15,19. Untuk pengujian akhir pengukuran Cosine Similarity didapatkan nilai sebesar 1,07 dan 15,43.

The Automated Essay Assessment System (SIMPLE-O) is a deep learning technology developed by the Department of Electrical Engineering, Faculty of Engineering, University of Indonesia. SIMPLE-O was developed to assess Indonesian essay exams using the CNN algorithm and the Bidirectional LSTM. Documents that become input for the system are student answers and lecturer answer keys. Both of them will go through a pre-processing process, leading to the embedding process and entering the deep learning model. Next, calculations will be done with assessment metrics: Manhattan Distance and Cosine Similarity. Testing is done by looking for the best hyperparameters from the six-run scenarios. The results of testing the scenario at the end of the training and testing phase of the Manhattan Distance measurement obtained an average difference of 0.72 and 15.19. For the final test of the Cosine Similarity measurement, values were obtained of 1.07 and 15.43."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Raihan Kenji Rizqillah
"Fatik menjadi salah satu indikator utama yang menjadi perhatian pada penggunaan paduan alumunium sebagai aplikasi struktural pesawat terbang, dimana sebanyak lebih dari 50% kecelakaan dirgantara disebabkan oleh kegagalan fatik material. Metode eksperimental trial and error untuk mendesain material memerlukan waktu panjang, biaya tinggi, serta efisiensi penelitian yang dipengaruhi oleh intuisi dan keberuntungan dari peneliti menimbulkan urgensi pendekatan lain dalam penelitian mekanika material. Penelitian mekanika material berbasis Pembelajaran Mesin (PM) dapat memanfaatkan data-data eksperimen dan penelitian terdahulu, sehingga dapat memangkas biaya dan waktu penelitian. Pada penelitian ini telah berhasil dikembangkan dua model deep learning yang mampu memetakan dengan baik hubungan antara data paduan alumunium dengan sifat fatik yang dihasilkan. Model dibuat dengan arsitektur Deep Neural Network menggunakan TensorFlow. Model S2P (Structure to Performance) dapat memprediksi performa fatik suatu paduan alumunium dari data komposisi, perlakuan panas, sifat mekanis, dan pembebanan fatik yang diterima. Model P2S (Performance to Structure) dapat memprediksi komposisi paduan alumunium yang dapat memenuhi performa fatik yang diharapkan. Kedua model menghasilkan performa baik berdasarkan pada metrik penilaian R2, yaitu senilai 0,92 untuk model S2P dan 0,96 untuk model P2S. Formula matematika sifat mekanis dan sifat fatik paduan alumunium dibuat sebagai fungsi dari variabel unsur paduan dan perlakuan panas. Pengembangan model deep learning prediksi sifat paduan alumunium berbasis fitur atomik menunjukkan bahwa total elektronegatifitas berpengaruh besar terhadap sifat mekanis dan sifat fatik.

Fatigue is one of the main concern of the utilization of aluminum alloys as aircraft structural applications, since more than 50% of aerospace accidents are caused by material fatigue failure. The experimental trial and error method for designing materials requires long time and high costs. Research efficiency is also influenced by intuition and luck of the researcher. These condition raises the urgency of other approaches in material mechanics research. Machine Learning (ML) based material mechanics research can take advantage of experimental data and previous research, which ables reduce research costs and time. In this research, two deep learning models have been successfully developed. The models are able to map the relationship between aluminum alloy data and the resulting fatigue properties. The model is built on a fully connected Deep Neural Network architecture using TensorFlow. The S2P (Structure to Performance) model can predict the fatigue performance of an aluminum alloy from the data of composition, heat treatment, mechanical properties, and fatigue loading condition. The P2S (Performance to Structure) model can predict the composition of aluminum alloys that can meet the expected fatigue performance. Both models produce good performance based on the R2 scoring metric, which is 0.92 for the S2P model and 0.96 for the P2S model. Mathematical formulas for mechanical properties and fatigue properties of alloys are made as a function of alloying and heat treatment variables. The development of atomic feature based deep learning model shows that the total electronegativity has a large impact on the mechanical properties and fatigue properties."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>