Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 146708 dokumen yang sesuai dengan query
cover
Ajeng Kania Widiastuti
"Daerah Karaha Bodas dan Talaga Bodas merupakan lapangan panas bumi yang lokasinya berdekatan di Tasikmalaya, Jawa Barat. Lapangan Karaha Bodas dan Talaga Bodas memiliki prospek panas bumi dengan ditemukannya beberapa manifestasi permukaan berupa mata air panas, fumarol, danau asam. Orientasi struktur yang berkembang di kedua lapangan menunjukkan orientasi yang berbeda. Meskipun begitu, belum ada penelitian yang menjelaskan mengenai hubungan sistem panas bumi lapangan Karaha Bodas dan lapangan Talaga Bodas, dan potensi Cipacing dan Pamoyanan. Lokasi penelitian berada di Kabupaten Garut dan Kabupaten Tasikmalaya, Jawa Barat. Metode Penelitian yang dilakukan adalah metode kualitatif (Analisis Morfostruktur) dan kuantitatif (Analisis Hidrogeokimia). Dilakukan pengolahan data yang memakai data citra DEM untuk analisis morfostruktur, dan 3 data kimia air dari lapangan Karaha Bodas, Talaga Bodas, dan potensi Cipacing untuk analisis Hidrogeokimia. Hubungan Sistem panas bumi Karaha Bodas dan Talaga Bodas berada dalam satu sistem panas bumi, dengan memiliki dua sumber panas yang berbeda, dengan lapangan Talaga Bodas sebagai zona upflow, dan lapangan Karaha Bodas juga Potensi Cipacing dan Pamoyanan sebagai zona outflow.

The Karaha Bodas and Talaga Bodas are geothermal fields which are located in Tasikmalaya, West Java. The Karaha Bodas and Talaga Bodas fields have geothermal prospects with the discovery of several surface manifestations in the form of hot springs, fumarols, and acid lakes. The orientation of the structure that developed in the two fields showed a different orientation. However, there is no research that explains the relationship between the geothermal system in the Karaha Bodas field and the Talaga Bodas field, and the potential of Cipacing and Pamoyanan. The research location is in Garut and Tasikmalaya, West Java. The research method used is qualitative (morphostructural analysis) and quantitative (hydrogeochemical analysis) methods. Data processing using DEM (Digital Elevation Model) data for morphostructural analysis, and water chemistry data from the Karaha Bodas field, Talaga Bodas field, and Cipacing fields for hydrogeochemical analysis. The analysis shows that relationship between the Karaha Bodas and Talaga Bodas geothermal systems is a geothermal system, with two different heat sources, the Talaga Bodas field as an upflow zone, and the Karaha Bodas field with Cipacing and Pamoyanan potentials as an outflow zone."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Della Bella Rochita
"Studi hidrogeokimia merupakan salah satu metode pendekatan dalam melakukan eksplorasi dan pengembangan panas bumi. Gedong Songo merupakan daerah yang memiliki potensi panas bumi yang terletak di lereng selatan Gunung Ungaran, Kabupaten Semarang, Jawa Tengah. Studi hidrogeokimia di Gedong Songo masih jarang dilakukan dan pemodelan hidrogeokimia pada sistem panas bumi Gedong Songo belum diperbarui. Oleh karena itu, penelitian ini dilakukan untuk membarui model konseptual hidrogeokimia daerah panas bumi Gedong Songo. Studi hidrogeokimia pada daerah penelitian dapat ditentukan berdasarkan integrasi data geologi, geokimia, dan geofisika. Manifestasi yang terdapat pada daerah panas bumi Gedong Songo meliputi mata air panas/hangat, kolam air panas/hangat, batuan alterasi, dan fumarol. Manifestasi fluida pada daerah Gedong Songo memiliki tipe air sulfat dan tipe bikarbonat. Berdasarkan data geokimia air, sistem panas bumi Gedong Songo terletak pada zona upflow. Sistem panas bumi ini tergolong sistem entalpi tinggi dengan estimasi temperatur reservoir sekitar 230-280 °C

The study of hydrogeochemistry is one of the approaching methods in the exploration and development of geothermal. Gedong Songo is an area that has geothermal potential located on the southern slope of Mount Ungaran, Semarang Regency, Central Java. Hydrogeochemical studies at Gedong Songo are still rare and hydrogeochemical modeling on Gedong Songo's geothermal system has not been updated. This study was conducted to update the conceptual model of hydrogeochemicals of gedong songo geothermal area. Hydrogeochemical studies in research areas was determined based on the integration of geological, geochemical, and geophysical data. Manifestations found in the geothermal area of Gedong Songo include hot/warm springs, hot/warm pools, alteration rocks, and fumaroles. The fluid manifestations in the Gedong Songo area are sulfate water type and bicarbonate type. Based on water geochemical data, the Gedong Songo geothermal system is located in the upflow zone. This geothermal system is classified as a high enthalpy system with an estimated reservoir temperature of around 230 - 280 °C"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Triwening Larasati
"Pemanfaatan potensi panas bumi di Gunung Galunggung yang merupakan salah satu gunungapi aktif di Indonesia belum dilakukan hingga saat ini. Studi mengenai sistem panas bumi daerah terkait belum banyak dilakukan. Studi pada penelitian ini dilakukan untuk memperjelas pendefinisian sistem pada model konseptual sebelumnya. Studi dilakukan untuk mengetahui keadaan sistem panas bumi daerah penelitian menggunakan data utama geologi dan geokimia. Metode yang digunakan antara lain metode penginderaan jauh, pemetaan geologi lapangan, petrografi, serta analisis geokimia dan isotop air yang diintegrasi dengan data gaya berat dan magnetotelluric literatur. Hasil studi menunjukkan keberadaan sumber panas yang berkaitan dengan vulkanisme aktif Gunung Galunggung. Batuan penudung terduga berada di utara hingga selatan daerah penelitian dengan reservoir yang terbentang di bawahnya. Pendugaan suhu reservoir memiliki kisaran antara 143-152°C menggunakan geotermometer Na-K-Ca. Fluida berasal dari air meteorik dan reservoir yang sama. Fluida panas bumi akan masuk melaui daerah imbuhan di utara, lalu terpanaskan oleh sumber panas, mengalir ke atas sehingga air kondensat termanifestasi, dan mengalir ke selatan hingga air klorida terencerkan termanifestasi. Permeabilitas dikontrol oleh struktur depresi di utara dan sesar normal dari komplek deformasi kuat di selatan. Sistem panas bumi daerah penelitian dikategorikan menjadi dinamis konvektif high-enthalphy liquid-dominated high-relief yang berasosiasi dengan vulkanisme Kuarter Gunung Galunggung.

The utilization of geothermal potential on Mount Galunggung, one of the active volcanoes in Indonesia, has not been carried out yet. There have not been many studies on the geothermal system in the related areas. The study in this research was conducted to further clarify the how the system works in the previous conceptual model. The study was conducted to determine the state of the geothermal system in the research area mainly using the geological and geochemical data. The methods used include remote sensing methods, field geological mapping, petrography, and geochemical and water isotope analysis integrated with gravity and magnetotelluric literature data. The results of the study indicate the presence of a heat source related to the active volcanism of Mount Galunggung. The expected cap rocks are in the north to south of the study area with the reservoir extending beneath it. The reservoir temperature estimation has a range between 143-152°C using Na-K-Ca geothermometer. The fluids originated from meteoric water and the same reservoir. Geothermal fluid will enter through the recharge area in the north, heated by a heat source, flow upwards so the steam-condensate water is manifested, and flows south until dilute chloride water is manifested. Permeability is controlled by the depression structure in the north and the normal fault of the strong deformation complex in the south. The geothermal system in the study area is categorized as a high-enthalphy liquid-dominated high-relief convective dynamic associated with the Galunggung Quaternary volcanism."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fauzan Abdurrahman Masykur
"Panas bumi berperan penting dalam mempengaruhi kualitas air permukaan dengan efek positif dan negatif. Ini menjadi sumber energi terbarukan yang efisien dalam menghasilkan listrik tanpa menghasilkan gas berbahaya. Namun, keberadaan panas bumi mempengaruhi kualitas air permukaan di suatu DAS. Penelitian ini difokuskan pada daerah panas bumi Gunung Salak yang memiliki aktivitas vulkanik dan tektonik. Parameter-parameter seperti daya hantar listrik (diukur dalam milisiemens/cm) digunakan untuk mengukur kandungan mineral dan senyawa terlarut dalam air. Total Dissolved Solids (TDS) yang diukur dalam ppt digunakan untuk mengkuantifikasi padatan terlarut, sedangkan tingkat keasaman air (pH) menunjukkan tingkat keasaman atau kebasaan air. Penelitian ini juga melibatkan pengumpulan data kuesioner untuk menjawab pertanyaan penelitian.

Geothermal heat plays a significant role in influencing the quality of surface water, with both positive and negative effects. It serves as a renewable energy source, efficiently generating electricity without emitting harmful gases. However, the presence of geothermal heat affects the quality of surface water in a watershed. The study focuses on the geothermal region of Gunung Salak, characterized by volcanic and tectonic activities. Various parameters were used to measure surface water quality, such as electrical conductivity (measured in millisiemens/cm) indicating mineral and dissolved compound content. Total Dissolved Solids (TDS) measured in parts per thousand (ppt) quantify dissolved solids, while water acidity (pH) levels indicate its alkalinity. The research also involved questionnaire data collection to address research inquiries."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Farhan
"Pemahaman kondisi reservoir merupakan salah satu aspek penting dalam aktivitas monitoring proses produksi fluida dalam sistem panas bumi. Langkah awal manajemen reservoir bagi Lapangan Panas Bumi FR yang baru berproduksi sejak tahun 2014 perlu dilakukan. Penelitian ini bertujuan mendelineasi reservoir khususnya fasa uap menggunakan metode tomografi waktu tunda. Penelitian ini menggunakan data seismogram yang diukur selama 95 hari yang direkam oleh 11 stasiun perekaman. Hasil picking waktu tiba mendapatkan 215 kejadian gempa mikro dengan minimal terekam oleh 3 stasiun perekaman. Distribusi hiposenter awal menunjukkan posisi episenter cenderung mengkluster pada sumur produksi akan tetapi dari segi kedalaman hiposenter masih terdapat fix depth pada elevasi 1170 masl, oleh sebab itu masih diperlukan proses relokasi hiposenter. Relokasi hiposenter dilakukan dengan dua metode secara kombinasi yaitu menggunakan metode Joint Hypocenter Determination (JHD) dan metode double difference. Selanjutnya dilakukan proses tomografi waktu tunda menggunakan perangkat lunak simulsp12.
Hasil distribusi relokasi hiposenter menunjukkan satu cluster di sekitar sumur produksi utama yaitu sumur B dan C. Sedangkan dari segi kedalaman hiposenter terdistribusi cluster disekitar trajectory sumur produksi B dan C dari elevasi 1000 sampai 0 masl dengan residual waktu tempuh antara 0.2 sampai 0.4 detik. Hasil tomogram menunjukkan bahwa pada elevasi sekitar 2000 sampai 1000 masl diduga sebagai zona batuan yang mengandung air dengan tingkat alterasi yang cukup besar yaitu zona clay cap dengan nilai VP/VS berkisar 1.73. Sedangkan dugaan zona uap berada pada elevasi 1000-500 masl dengan nilai VP/VS berkisar 1.67-1.7 melampar sepanjang Kawah Ciwidey dengan Kawah Putih. Selanjutnya dilakukan rekonstruksi model konseptual sederhana Lapangan Panas Bumi FR Jawa Barat dengan mengintegrasikan antara data utama penelitian yaitu tomografi microearthquake dan distribusi hiposenter yang sudah terelokasi dengan data pendukung berupa line penampang metode MT 2-D, section vertikal geologi berdasarkan data cutting sumur, profiling sumur temperatur serta lokasi sumur ekstraksi untuk memberikan arah fluida.

Understanding reservoir conditions is one of the important aspects in fluid production monitoring activity in geothermal systems. The initial step of reservoir management in the FR Geothermal Field which has only been producing since 2014 needs to be done. The object of this study to delineate the reservoir elemen especially the vapor phase using the tomography delay time method. This research used seismogram data measured for 95 days recorded by 11 seismometers. Arrivals time picking results get 215 micro earthquake events with a minimum recorded by 3 recording seismometers. The initial hypocenter distribution shows that the position of the epicenter tends to cluster in production wells but in terms of hypocenter depth there still fix depth at 1170 masl, therefore hypocenter relocation is still needed. Hypocenter relocation is done by two methods in combination. The first use Joint Hypocenter Determination (JHD) and second Double difference relocation method. Then the delay time tomography invers is using simulsp12 software.
The results of the hypocenter relocation distribution show one cluster around the main production wells that are wells B and C. While in terms of hypocenter depth distributed clusters around the trajectory of production wells B and C from elevations 1000 to 0 masl with a residual travel time of 0.2 to 0.4 seconds. The tomogram results show that at an elevation arround elevation 2000 to 1000 masl it is prediction that the zone containing water with a considerable alteration rate or usually calls of clay cap zone with a value of Vp / Vs ranging from 1.73. While the prediction steam zone is at an elevation of 1000-500 masl with a value of Vp / Vs ranging from 1.67-1.7 on the part between Ciwidey Crater and Putih Crater. The reconstruction of a simple conceptual model of West Java FR Geothermal Field by integrating the main data likes hypocenter distribution that has been relocated and microearthquake tomography with supporting data in the form of cross section MT 2-D method, geological vertical section based on well cutting data, profiling temperature wells and location of extraction wells to provide fluid direction.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Dimas Ahmad Syafii
"Keberadaan sistem panas bumi dapat diperkirakan dengan melihat manifestasi yang muncul di permukaan tanah akibat adanya struktur geologi, seperti sesar/patahan pada daerah potensi panas bumi. Untuk mengetahui keberadaan struktur patahan di lapangan ?DAS? digunakan metode gravitasi. Dalam metode gravitasi terdapat metode lanjutan untuk mengidentifikasi patahan, yaitu FHD (First Horizontal Derivative) dan SVD (Second Vertical Derivative). Metode tersebut memanfaatkan turunan dari nilai anomali gravitasi. Output dari metode tersebut adalah peta kontur yang menunjukkan keberadaan suatu patahan.
Terdapat delapan patahan yang teridentifikasi oleh metode FHD dan SVD, tujuh patahan merupakan patahan normal dan satu patahan merupakan petahan naik. Hasil tersebut diintegrasikan dengan data pendukung, seperti data MT, geologi, geokimia, data sumur dan model sintetik. Dari data-data tersebut dapat dibuat model densitas dan model konseptual sistem panas bumi daerah ?DAS?. Model densitas menunjukkan densitas clay cap sebesar 2,25 gr/cm3, densitas reservoir sebesar 2,41 gr/cm3, dan densitas heat source sebesar 2,81 gr/cm3. Berdasarkan model konseptual, fumarol dan mata air panas SPG merupakan zona upflow, sedangkan mata air panas BB 1 dan BB 2 merupakan zona outflow.

The existence of geothermal system can be assessed by identifying distribution of manifestations that appears on the surface. The manifestations appear because of geology structure, like fault structure on geothermal potention area. Gravity method is used to knowing the exsistence of fault structure on ?DAS field. In gravity method, there are the advanced methods to identify fault. They are FHD (First Horizontal Derivative) and SVD (Second Vertical Derivative). Those methods use derivative of gravity anomaly value. The output of FHD and SVD is contour map that indicates the exsistence of fault.
There are eight faults identified by FHD and SVD, they are seven normal faults and a reverse fault. The FHD and SVD contour map will be integrated with other support data, such as resistivity section of MT, geology data, geochemistry data, thermal gradient data, and sintetic model. Those data result density model and conseptual model of ?DAS? field geothermal system. Density model show the density of clay cap is 2,25 gr/cm3, reservoir is 2,41 gr/cm3, and heat source is 2,81 gr/cm3. Base on conseptual model, fumarole and hot spring SPG are upflow zone, while hot springs BB 1 and BB 2 are outflow zone.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2016
S63686
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Alzaid Ponka
"Sistem panas bumi Gunung Lawu merupakan salah satu prospek panas bumi yang terletak di antara Jawa Tengah dan Jawa Timur. Pada tahap eksplorasi, survei geokimia merupakan salah satu survei yang harus dilakukan. Survei tersebut mencakup studi hidrogeokimia. Studi hidrogeokimia penting untuk menentukan suhu reservoir, asal usul sistem panas bumi, dan mekanisme sirkulasi fluida. Tujuan penelitian adalah menentukan karakteristik hidrogeokimia lapangan panas bumi Gunung Lawu, Jawa Tengah. Metode penelitian terdiri dari beberapa tahapan, yaitu tahap pendahuluan meliputi studi literatur, pengumpulan data meliputi data geologi, citra satelit, dan geokimia. Selanjutnya, tahap analisis data mencakup analisis kation, anion, dan isotop pada tiap sampel air. Daerah penelitian merupakan sistem relief tinggi. Daerah penelitian mempunyai delapan manifestasi permukaan panas bumi dengan suhu manifestasi berkisar 40-58 ºC, pH 2 dan 6. Empat mata air dingin dengan suhu berkisar 15-25 ºC dan pH 7. Manifetasi permukaan panas bumi memiliki tipe air beragam, yaitu sulfat, klorida, bikarbonat, dan dilute klorida-bikarbonat. Selain itu, air dingin didominasi oleh tipe air bikarbonat. Berdasarkan analisis geoindikator, zona upflow berada di titik manifestasi LWU, sedangkan zona outflow berada di titik manifestasi PBL atau JNW. Sistem panas bumi daerah penelitian memiliki suhu reservoir sekitar 160-170 ºC dan termasuk ke dalam klasifikasi sistem entalpi tinggi. Sumber air panas bumi daerah penelitian berasal dari air meteorik (SGN 1 dan NGT) dan air campuran (PBL, BNA, dan LWU) melalui analisis isotop. Berdasarkan ciri atau aspek geologi dan geokimia, daerah penelitian termasuk ke dalam sistem geothermal play convection dominated tipe CV-1. Luaran akhir penelitian ini adalah model konseptual hidrogeokimia lapangan panas bumi Gunung Lawu.

Gunung Lawu geothermal system is one of a geothermal prospect where is located between Central and East Java. In the exploration stage, geochemistry survey must be conducted. The survey covers hydrogeochemistry study. Hydrogeochemistry study is important to determine reservoir temperature, origin of the geothermal system, and fluid recharge mechanism. The research aims to determine the hydrogeochemical characteristics of Gunung Lawu geothermal field, Central Java. The research method consists of several stages, the preliminary stage cover literature study, data collection covers geological data, satellite imagery, and geochemistry. Furthermore, data analysis covers the analysis of cations, anions, and isotope in each water sample. The research area is a high relief system. The research area has eight geothermal surface manifestations with temperatures 40-58 ºC, pH 2 and 6. Four cold water has a temperature from 15-25 ºC and pH 7. The surface manifestation has various water types are sulfate, chloride, bicarbonate, and dilute chloride-bicarbonate. Moreover, cold water is dominated by bicarbonate water types. Based on geoindicator analysis, the upflow zone is located in LWU, while the outflow zone is located in PBL or JNW. The geothermal system in the study area has a reservoir temperature of around 160-170ºC and is included in a high enthalpy system classification. The geothermal water in the study area is originated from meteoric water (SGN 1 and NGT) and mixed water (PBL, BNA, and LWU) through isotope analysis. Based on geology or geochemistry aspect, the research area include in convection dominated CV-1 type of geothermal play. The final output of this research is the hydrogeochemical model of the Gunung Lawu geothermal field.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Grano Prabumukti
"Sumber mata air panas memiliki potensi untuk menghasilkan tenaga terutama di daerah off grid PLN terpencil . Ada dua siklus biner yang dapat digunakan untuk menghasilkan tenaga dari sumber panas suhu rendah yaitu siklus Kalina dan ORC. Fluida kerja yang digunakan adalah Propana, Propena, R1234yf dan R407a untuk ORC dan Ammonia 85 untuk Siklus Kalina. Simulasi masing-masing siklus untuk tiap fluida kerja dilakukan dengan menggunakan software UNISIM untuk menghasilkan nilai effisiensi dan LCOE dengan mengubah kondisi operasi tekanan masuk turbin, suhu sumber panas dan laju alir sumber panas. Tren nilai effisiensi berbanding terbalik dengan tren nilai LCOE pada pengaruh tekanan masuk turbin. Nilai effisensi terbaik berbeda bergantung pada suhu sumber panas. R1234yf dan Propena dengan konfigurasi basic ORC menghasilkan effisiensi terbaik untuk rentang suhu sumber panas 60oC - 99oC. Dari data simulasi, dapat dibentuk persamaan regresi untuk melakukan pemetaan dari tiap lokasi sumber mata air panas. Dari lokasi hotspring, didapat rentang nilai daya 2,1 kWe - 61,3 kWe dan nilai LCOE 99,4 /kWh -15.9 /kWh. Lokasi hotspring APSGA 2, Losseng 2, Beang, Kawah Sirung, Pamandian, Kadidia, Pulu 1, Sajau 3 dan Sajau 2 berpotensi untuk dikembangkan lebih lanjut karena memiliki nilai LCOE lebih rendah dari pembangkit diesel termurah.

Hotsprings have the potential to generate power, especially in off grid areas of PLN. There are two binary cycles that can be used to generate power from low temperature heat source, Kalina Cycle and ORC. The working fluids used are Propane, Propene, R1234yf and R407a for ORC and Ammonia 85 for Kalina Cycle. The simulation of each cycle for each working fluid is done by using UNISIM software to produce efficiency and LCOE values by changing turbine inlet pressur, heat source temperature and heat source flow rate. Efficiency value trends are inversely proportional to the trend of LCOE values on the influence of turbine inlet pressure. The best value of efficiency differs depending on the temperature of the heat source. R1234yf and Propena with ORC basic configuration produce the best efficiency for hoto temperature range 60oC 99oC. From the simulation data, regression equation can be formed to mapping from each hot springs location. From the hotspring location, there is a range of power values of 2.1 kWe 61.3 kWe and a LCOE value of 99.4 kWh 15.9 kWh. The hotspring locations of APSGA 2, Losseng 2, Beang, Sirung Crater, Pamandian, Kadidia, Pulu 1, Sajau 3 and Sajau 2 have the potential to be developed in the future as they have lower LCOE value than the cheapest diesel generators.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S67681
UI - Skripsi Membership  Universitas Indonesia Library
cover
Amanda Claudiya A.
"Heat source merupakan parameter yang penting dalam sistem panas bumi. Heat source akan memanaskan fluida atau meteoric water yang terkandung di dalam bumi. Fluida yang terpanaskan ini kemudian akan menghasilkan hot spring dan fumarol di permukaan. Munculnya manifestasi di permukaan dikarenakan adanya patahan yang menghubungkan reservoir dengan permukaan bumi. Maka dari itu, penting untuk mengetahui dimana letak reservoir dan patahan serta strukturnya saat eksplorasi. Selama ini analisis data gravitasi hanya fokus pada reservoir tidak sampai menentukan heat source. Tilt angle atau tilt derivative adalah metode derivative yang dapat digunakan untuk mengetahui kedalaman hot rock. Tilt angle memanfaatkan perbanding antara vertical derivative dengan horizontal derivative. Diharapkan dari penelitian ini kita dapat mengetahui kedalaman hot rock dari sistem geothermal yang berada di gunung lawu dengan menggunakan tilt derivative. Tidak hanya hot rock namun diharapkan juga dari penelitian ini kita dapat mengetahui letak struktur patahan yang kemudian akan digunakan untuk membuat model konseptual geothermal pada sistem geothermal di Gunung Lawu.Heat source merupakan parameter yang penting dalam sistem panas bumi. Heat source akan memanaskan fluida atau meteoric water yang terkandung di dalam bumi. Fluida yang terpanaskan ini kemudian akan menghasilkan hot spring dan fumarol di permukaan. Munculnya manifestasi di permukaan dikarenakan adanya patahan yang menghubungkan reservoir dengan permukaan bumi. Maka dari itu, penting untuk mengetahui dimana letak reservoir dan patahan serta strukturnya saat eksplorasi. Selama ini analisis data gravitasi hanya fokus pada reservoir tidak sampai menentukan heat source. Tilt angle atau tilt derivative adalah metode derivative yang dapat digunakan untuk mengetahui kedalaman hot rock. Tilt angle memanfaatkan perbanding antara vertical derivative dengan horizontal derivative. Diharapkan dari penelitian ini kita dapat mengetahui kedalaman hot rock dari sistem geothermal yang berada di gunung lawu dengan menggunakan tilt derivative. Tidak hanya hot rock namun diharapkan juga dari penelitian ini kita dapat mengetahui letak struktur patahan yang kemudian akan digunakan untuk membuat model konseptual geothermal pada sistem geothermal di Gunung Lawu.

Heat source is the important parameter in geothermal system which is will heats fluid or meteoric water that is contained in the earth. Basically, geothermal system formed as a result of heat transfer from heat source to the surrounding by conduction and convection. Geothermal manifestation occurs because of the propagation of heat from below the surface. The emergence of manifestations at the surface due to the fault that connects the reservoir to the earth rsquo s surface. Therefore, it is important to know where the location of the reservoir, the location of the fault, and the structure of the fault when exploration used gravity method. In general, analysis of gravity data only focus to determine the reservoir . Tilt angle or tilt derivative is a dervative method that can be used to determine the depth of the hot rock. Tilt angle utilizing comparison between vertical derivative with horizontal derivative. The zero contours of the tilt angle correspond to the boundaries of geologic discontinuities and are used to detect the linear features in gravity data. The half distance between 4 and 4 radians is equal to the depth of top of heat source. This research is expected that can we know the depth of top of heat source of geothermal system at Mt. Lawu using tilt derivative.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S68018
UI - Skripsi Membership  Universitas Indonesia Library
cover
Samuel Adam
"Indonesia memiliki cadangan panas bumi yang besar, diperkirakan 24 GW atau setara dengan 35-40% dari potensi global, menjadikannya komponen penting dalam upaya transisi energi terbarukan negara tersebut. Namun, hanya 2.34 GW yang telah dimanfaatkan, jauh di bawah target pemerintah 2025 sebesar 7.2 GW. Indonesia menghadapi masalah dalam mengamankan pendanaan untuk target panas bumi yang ambisius ini karena iklim investasi yang menantang. Ketidakpastian yang melekat dalam proyek panas bumi, biaya pengembangan awal yang tinggi, dan insentif yang tidak memadai menjadi penghalang besar bagi investor untuk mencapai pengembalian yang sepadan dengan risiko yang luas. Oleh karena itu, mengatasi ketidakpastian utama dalam fase yang sangat berisiko dari pengembangan panas bumi, seperti eksplorasi dan eksploitasi, diperlukan untuk mengejar strategi yang tepat untuk meminimalkan risiko investasi yang gagal dan meningkatkan kesesuaian untuk alokasi anggaran. Studi ini mengusulkan pendekatan pemodelan dan analisis keuangan eksplorasi untuk menyelidiki ketidakpastian utama dalam proyek panas bumi dengan menggabungkan opsi nyata dan pemodelan eksplorasi. Temuan menunjukkan bahwa harga listrik, kekeringan fluida, biaya pengeboran eksplorasi, dan faktor kapasitas adalah ketidakpastian utama dalam fase eksplorasi. Sementara itu, rasio keberhasilan sumur produksi dan biaya pengembangan dan injeksi adalah ketidakpastian utama dalam fase eksploitasi. Analisis opsi nyata berguna dalam kondisi yang tidak menguntungkan di mana fleksibilitas manajemen diperlukan untuk menghindari penghentian proyek lebih awal. Namun, ketika berada dalam kondisi yang menguntungkan, para pengambil keputusan harus mencari ketahanan keseluruhan di mana proyek tidak akan dihentikan terlepas dari ketidakpastian masa depan.

Indonesia has massive geothermal reserves, estimated at 24 GW or equal to 35-40% of global potential, making it a crucial component in the nation's effort for renewable energy transition. Nevertheless, only 2.34 GW has been utilized, far below the government's 2025 target of 7.2 GW. Indonesia faces problems securing funding for its ambitious geothermal target due to the challenging investment climate. The inherent uncertainty in geothermal projects, high upfront development costs, and insufficient incentives pose significant barriers for investors in achieving returns commensurate with the extensive risks. Therefore, addressing key uncertainties in highly risky phases of geothermal development, such as exploration and exploitation, is needed to pursue the right strategy to minimize the risk of failed investments and increase appropriateness for budget allocation. This study proposes an exploratory financial modeling and analysis approach to investigating key uncertainties in geothermal projects by combining real options and exploratory modeling. The findings show that electricity price, fluid dryness, exploration drilling cost, and capacity factor are key uncertainties in the exploration phase. Meanwhile, the production well success ratio and costs of development and injection are key uncertainties in the exploitation phase. Real options analysis is useful in unfavorable conditions where management flexibility is needed to avoid early abandonment of the project. However, when situated in favorable circumstances, the decision-makers should seek overall robustness where the project will not be abandoned regardless of future uncertainties."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>