Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 81484 dokumen yang sesuai dengan query
cover
Fajar Bayu Ajiriyanto
"Salah satu penggunaan material implan yang paling popular adalah Titanium. Titanium digunakan sebagai material implan karena memiliki sifat biokompatibilitas yang baik karena adanya lapisan oksida tipis di permukaannya yang secara spontan terbentuk, dimana lapisan oksida ini menyebabkan Titanium menjadi pasif sehingga tidak mengalami korosi saat diaplikasikan menjadi material implan. Namun material Titanium ini tergolong sebagai material bio-inert, sehingga masih kurang mendukung dalam pertumbuhan dan perkembangan tulang (osseointegrasi) jika dibandingkan dengan material yang tergolong sebagai bio-active. Penggunaan material Titanium padat juga masih memiliki keterbatasan dalam propertis mekanis dimana Titanium padat memiliki tingkat kekakuan yang tinggi sehingga menyebabkan fenomena shielding stress, oleh karena itu beberapa peniliti mengajukan penggunaan material berpori sebagai material implan. Untuk meningkatkan osseointegration serta menanggulangi masalah stiffnes penggunaan material Titanium padat, perlu di lakukannya proses elektroforesis hidroksiapatit dan chitosan pada material berpori. Penggunaan hidroksiapatit dan chitosan untuk membentuk lapisan material berpori akan meningkatan osseointegration serta penggunaan material berpori akan menurunkan tingkat kekakuan Titanium padatan sehingga di dapati modulus young yang turun sehingga shielding stress dapat dihindari. Penggunaan voltase 5,6 dan 7 volt dipilih dalam eksperimen ini serta waktu elektroforesis yang dilakukan terdapat 10 dan 15 menit. Pengamatan visual, berat deposisi, serta hasil adhesivitas lapisan HA/CS akan diamati pada eksperimen ini.

One of the most popular uses of implant materials is Titanium. Titanium is used as an implant material because it has good biocompatibility properties due to the presence of a thin oxide layer on its surface which spontaneously forms, where this oxide layer causes Titanium to be passive so that it does not corrode when applied as an implant material. However, this titanium material is classified as a bio-inert material, so it is still less supportive of bone growth and development (osseointegration) when compared to materials classified as bio-active. The use of bulk titanium material also has limitations in mechanical properties where bulk titanium has a high level of rigidity that causes the shielding stress phenomenon, therefore several researchers propose the use of porous materials as implant materials. To improve osseointegration and overcome the problem of stiffness using titanium bulk material, it is necessary to carry out electrophoresis of hydroxyapatite and chitosan on porous materials. The use of hydroxyapatite and chitosan to form a layer of porous material will increase osseointegration and the use of porous materials will reduce the stiffness level of Titanium bulk so that a decrease in Young's modulus is found so that shielding stress can be avoided. The use of voltages of 5.6 and 7 volts was chosen in this experiment and the electrophoresis time was 10 and 15 minutes. Visual observations, deposition weight, and the results of the adhesion of the HA/CS layer will be observed in this experiment."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Labibah Nur Hasanah
"Pengembangan implan ortopedi terus dilakukan untuk mendapatkan implan dengan kualitas terbaik dengan harga terjangkau. Pengembangan implan menggunakan material titanium dipilih dengan mempertimbangkan sifat mekanik dan ketahanan korosi yang dimiliki oleh titanium. Modifikasi permukaan dilakukan untuk mengatasi kekurangan titanium yang bersifat bio-inert. Hidroksiapatit dipilih sebagai material pelapis karena material tersebut memiliki kandungan yang serupa dengan unsur penyusun tulang dan memiliki sifat bioaktif yang dapat menginisiasi pertumbuhan tulang. Penggunaan titanium berpori dipilih karena keberadaan pori dapat mengurangi modulus Young’s sehingga menghindari terjadinya fenomena shielding stress. Deposisi elektroforesis dipilih untuk mendeposisikan hidroksiapatit karena kelebihan elektroforesis yang mudah dikontrol, dapat dilakukan pada suhu ruang, dan dapat dilakukan pada geometri yang kompleks. Pada penelitian ini, variasi konsentrasi hidroksiapatit dan voltase deposisi yang digunakan diamati terhadap proses dan hasil pelapisan. Berat deposisi paling tinggi diperoleh pada konsentasi hidroksiapatit 0,2wt% untuk 11 V dan 0,4wt% untuk 13 V. Kekuatan adhesi akan berkurang seiring dengan kenaikan konsentrasi hidroksiapatit dan voltase deposisi yang digunakan.

Orthopedic implant development continues to be undertaken to obtain the best quality implant with an affordable price. Titanium is chosen considering the mechanical properties of titanium and its corrosion resistance. Surface modification needed to be done in order to address the bio-inert properties of titanium. Hydroxyapatite is selected as the coating material since it has similar content to the constituent element of human bone and has bioactive properties that can initiate bone growth. Porous titanium is used since its porosity can reduce the modulus Young's and avoid the occurrence of the shielding stress phenomenon. Electrophoretic deposition is chosen to deposit hydroxyapatite due to its advantages that can be easily controlled, can be performed at room temperature, and feasible for complex geometry. On this study, effect of hydroxyapatite concentration and voltage deposition was studied against the electrophoretic deposition process and the coating result. The highest deposition rate was obtained from 0.2wt% HA for 11 V and 0.4wt% HA for 13 V. Increase on hydroxyapatite concentration and voltage decrease the coating adhesion strength on substrate."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Rizky
"Pelapisan hidroksiapatit dengan doping ion antibakteri pada implan logam memiliki dampak signifikan dalam meningkatkan osseointegrasi dan mengurangi kolonisasi bakteri. Perlakuan panas pasca-deposisi juga berpengaruh terhadap sifat permukaan dan kristalinitas logam implan yang memengaruhi adhesi, proliferasi sel, dan sifat bioaktivitas. Penelitian ini menggunakan metode Pulsed Laser Deposition (PLD) dengan sumber laser Nd:YAG (? = 532 nm) untuk melapisi logam SS 316L dengan HA-Zn lalu dilakukan annealing pada temperatur 400°C, 500°C, dan 600°C selama 1 jam. Pengujian SEM dan AFM menunjukkan bahwa permukaan yang dihasilkan semakin seragam dengan peningkatan temperatur annealing, tetapi pada 600°C kekasaran lapisan HA-Zn cenderung meningkat akibat tumbuhnya partikel nano. Hasil XRD menunjukkan bahwa lapisan yang dideposisi pada substrat memiliki fasa amorf, dan kristalinitas meningkat setelah perlakuan annealing pada temperatur 400°C dan 600°C. Pengujian bioaktivitas dengan merendam sampel dalam larutan SBF selama 7 hari menunjukkan terbentuknya presipitat apatit pada semua lapisan, menunjukkan sifat bioaktivitas yang baik. Terdapat perbedaan morfologi apatit yang terbentuk pada temperatur annealing yang berbeda, akibat perubahan fasa. Pengujian sudut kontak menunjukkan bahwa semua lapisan memiliki sifat hidrofilik, dengan peningkatan sudut kontak akibat proses annealing pasca-deposisi. Dengan demikian, metode pelapisan ini menghasilkan lapisan HA-Zn dengan morfologi, sifat permukaan, dan sifat bioaktivitas yang diinginkan untuk aplikasi sebagai implan ortopedi.

Antibacterial ion doped hydroxyapatite coating on metal implants has a significant impact in increasing osseointegration and reducing bacterial colonization. Post-deposition annealing also plays a crucial role in achieving desired surface morphology, crystallinity, and bioactivity. In this study, Pulsed Laser Deposition (PLD) method using Nd:YAG laser source (? = 532 nm) was employed to coat SS 316L metal with HA-Zn, followed by annealing at temperatures of 400°C, 500°C, and 600°C for 1 hour. SEM and AFM revealed that the surface became more uniform with increasing annealing temperature. However, after annealed at 600°C, the roughness tended to increase due to the growth of nano-sized particles. XRD results showed that the deposited layer exhibited an amorphous phase, and an increase in crystallinity was observed after annealing at 400°C and 600°C. The bioactivity testing by immersing the samples in simulated body fluid (SBF) for 7 days indicated the formation of apatite precipitates on all layers, suggesting their good bioactivity properties. Morphological differences were observed in the apatite formed at different annealing temperatures, which were attributed to phase changes. The contact angle measurements demonstrated that all layers exhibited hydrophilic properties, with an increased contact angle after annealing process. In conclusion, this coating method yielded HA-Zn layers with desired morphology, surface properties, and bioactivity for orthopedic implant."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Callista Fatima Larasati
"ABSTRAK
Penelitian ini bertujuan untuk membahas perlakuan Plasma Electrolytic Polishing (PeP) dengan prinsip erosi fisiokimia yang menggunakan sel elektrolitik pada implan paduan Ti-6Al-4V untuk dapat terjadi proses osseointegration. Dengan membentuk lapisan plasma dalam bentuk spark discharge dan Vapor Gas Envelope (VGE), PeP dapat menghasilkan permukaan yang sangat halus dan memiliki kilap yang tinggi jika dibandingkan dengan metode pemolesan lainnya. Sampel Ti-6Al-4V dicelupkan ke dalam variasi elektrolit dan dihubungkan pada arus DC pada tegangan 50-130 V. Pengujian topografi dan morfologi permukaan dilakukan menggunakan uji Surfcom dan SEM. Pengujian dekontaminasi permukaan dilakukan dengan uji pH dan konduktivitas dari larutan hasil pembersihan. Kekerasan dilihat dari uji kekerasan mikro Vickers.

ABSTRACT
This study aims to discuss the treatment of Plasma Electrolytic Polishing (PeP) with the principle of physiochemical erosion using electrolytic cells on Ti-6Al-4V alloy implants to enable the osseointegration process, forming a plasma layer in the form of spark discharge and Vapor Gas Envelope (VGE). PeP can produce a very smooth and high gloss surface when compared to other polishing methods. Samples of Ti-6Al-4V were dipped in electrolyte variations and connected to DC currents at 50-130 V. The topographic and surface morphology tests were carried out using Surfcom and SEM tests. Testing of surface decontamination is carried out by pH testing and conductivity of the cleaning solution. Hardness is seen from the Vickers micro hardness test.

 

"
2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nurul Ilmaniar
"ABSTRAK
Pengenduran pada interfasa dan infeksi pada implan merupakan dua penyebab utama dari kegagalan implan ortopedi dini. Salah satu cara untuk mencegah pengenduran pada interfasa dan infeksi pada implan adalah dengan memodifikasi permukaan implan ortopedi. Permukaan yang diinginkan akan memiliki kekasaran permukaan yang rendah serta topografi skala nano. Plasma electrolytic polishing adalah proses finishing yang diketahui akan kemampuannya dalam menghasilkan permukaan yang sangat halus dan mengkilap. Plasma electrolytic polishing dilakukan dengan variasi komposisi elekrolit dan waktu poles. Kekasaran permukaan diukur menggunakan surfcom roughness contouring detector dan topografi permukaan diamati menggunakan SEM. Hasil pengukuran kekasaran menunjukkan kekasaran permukaan paling rendah dan paling tinggi sebesar 0,0889 µm dan 0,6281µm. Pengamatan SEM menunjukkan terbentuknya struktur nano yang menyerupai kawah dengan adanya pits dan ridges pada perlakuan dengan elektrolit H3PO4, NaClO4, dan HF serta terbentuknya pits di permukaan pada perlakuan dengan elektrolit etilen glikol dan NH4F serta NaCl. Kedua struktur mengalami penghalusan seiring dengan bertambahnya waktu poles terutama pada waktu poles 90 dan 120 detik. Kenaikan kekerasan sampel mengindikasikan adanya lapisan oksida yang terbentuk di permukaan. Sampel hasil poles bebas dari sisa-sisa elektrolit sehingga mencegah kemungkinan terjadinya reaksi alergi atau kontaminasi zat toksik.

ABSTRACT

Aseptic loosening and infection are the two major causes for premature orthopedic implant failure. One of the strategies to prevent both scenarios is by modifying surface of orthopedic implant. The surface should have minimum surface roughness with nano topography. Plasma electrolytic polishing is a finishing process known for its ability to provide highly smooth and glossy surface. The two variables are electrolyte composition and polishing time.  Surface roughness is measured using surfcom roughness contouring detector and surface topography is observed using SEM. The result of surface roughness measurement shows lowest and highest surface roughness are at 0,0889 µm and 0,6281 µm. SEM observation shows crater-like nanostructure with pits and ridges with electrolyte comprised of H3PO4, NaClO4, and HF meanwhile nanotructures of pits on top of smooth surface is available with electrolyte comprised of ethylene glycol and NH4F and electrolyte comprised of NaCl. The increase of polishing time shows smoothing effects on orthopedic implant surfaces especially on 90 and 120 s. Increase in hardness of polished samples indicates the presence of oxide layer in the surface. Polished samples are free from remainder of electrolyte therefore preventing possibility of allergic reaction or contamination of substance that is toxic for the body."

2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Iwan Setyadi
"Beberapa dekade ini pengembangan magnesium biodegradable untuk implan ortopedi sementara (temporary orthopedic implants) menarik minat periset. Magnesium (Mg) merupakan logam teringan (1,74-2,0 g/cm3), bersifat biokompatibel dan memiliki modulus elastisitas yang mirip dengan tulang. Beberapa upaya terus dilakukan dalam hal perbaikan sifat mekanik, kemunculan gas hidrogen dan penurunan laju degradasi terutama melalui pembuatan paduan baru, modifikasi permukaan dan pembuatan struktur baru. Adanya keselarasan antara kekuatan dan laju degradasi serta sifat biokompatibilitas Mg yang terjaga selama proses penyembuhan tulang merupakan tujuan akhir yang hendak dicapai. Disertasi ini fokus pada salah satu upaya peningkatan kinerja magnesium melalui pengembangan struktur baru dalam bentuk komposit Magnesium-Carbonate Apatite (Mg-xCA) yang berbasis serbuk. Carbonate Apatite (CA) disamping dijadikan sebagai penguat (reinforcement) guna memperbaiki sifat mekanik, juga untuk memperbaiki laju degradasi dan sifat biokompatibilitas. CA dianggap lebih mudah diserap osteoblast, mempercepat pembentukan jaringan dan penyembuhan tulang (bersifat osteoinductive dan osteoconductive) tanpa membentuk fibrotic tissue dibandingkan hidoxyapatite (HA). CA yang digunakan merupakan produk lokal. Komposisi Mg-xCA dibuat dengan variasi kandungan CA (x = 0, 5, 10 dan 15% berat) dan waktu milling (3, 5 dan 7 jam). Fabrikasi Mg-xCA dilakukan melalui tahapan pemadatan awal dengan kompaksi hangat (WC) dan dilanjutkan dengan proses pemadatan lanjut, masing-masing melalui proses sinter, proses ekstrusi dan proses equal channel angular pressing (ECAP) 1 pass untuk mendapatkan hasil optimal. Karakterisasi meliputi uji densitas relatif, uji sifat mekanis, uji korosi, uji biokompatibel (indirect cytotoxicity), pengamatan strukturmikro (OM), SEM-EDS-Mapping, micro XRF dan XRD. Hasil studi menunjukkan bahwa waktu milling 5 jam dapat memberikan padatan awal yang optimal melalui proses kompaksi hangat. Karakteristik prototipe Mg-xCA paling baik diperoleh dari hasil pemadatan lanjut dengan proses ekstrusi dengan rasio ekstrusi (R) 4. Rod yang dihasilkan memiliki ϕ 10 mm, panjang maks 100 mm dan bisa diiris sampai ketebalan 1 mm dengan distribusi kekerasan relatif seragam. Penambahan dan peningkatan kandungan CA menaikkan kekerasan, kekuatan tarik dan kekuatan tekan, memperbaiki laju korosi dan sifat toksik, namun menurunkan densitas relatif dibanding Mg murni (Mg-0CA). Semua komposisi bersifat biokompatibilitas (tidak beracun). Laju korosi terendah didapatkan pada Mg-5CA sebesar 1,92 mm/th (Icorr: 8.560E-05 A/cm2), dimana lebih kecil dari Icorr Mg-xHA hasil microwave sintering (berkisar 1,00E-4 - 2,51E-4 A/cm2) atau laju korosi Mg-5HA ( ± 5 mm/th) dengan metode uji pencelupan. Sebagian sifat mekanis (hardness, ultimate tensile stress, elongasi dan flexural stress) komposit memenuhi karakteristik tulang tengkorak manusia (human cranial bone) terutama Mg-15CA dan Mg-10CA, namun yield strength dan young modulus masih perlu ditingkatkan. Komposit Mg-xCA sangat prospek untuk terus dikembangkan sebagai kandidat material implan ortopedi.

In recent decades the development of biodegradable magnesium for temporary orthopedic implants has been of interest to researchers. Magnesium is the lightest metal (1.74 - 2.0 g/cm3), biocompatible and it has a modulus of elasticity similar to bone. Efforts are being made to improve mechanical properties, the emergence of hydrogen gas and the rate of degradation, especially through the manufacture of new alloys, surface modifications and the creation of new structures. The harmony between the strength and the rate of degradation as well as the maintained properties of Mg biocompatibility during the bone healing process is the final goal to be achieved. This dissertation focuses on one of the efforts to improve the performance of magnesium through the development of a new structure in the form of a powder-based Magnesium-Carbonate Apatite (Mg-xCA) composite. Carbonate apatite (CA) besides being used as a reinforcement to improve mechanical properties, also to improve the rate of degradation and biocompatibility properties. CA is considered more easily absorbed by osteoblasts, accelerates tissue formation and bone healing (osteoinductive and osteoconductive) without forming fibrotic tissue compared to hydoxyapatite (HA). The CA used is a local product. The composition of Mg-xCA was made by varying the content of CA (x = 0, 5, 10 and 15% by weight) and milling time (3, 5 and 7 hours). Mg-xCA fabrication was performed through the initial compaction stage with warm compaction (WC) and continued with a further compaction process, each through the sintering process, the extrusion process and the 1 pass equal channel angular pressing (ECAP) process to obtain optimal results. Characterization includes relative density test, mechanical properties test, corrosion test, biocompatible test (indirect cytotoxicity), microstructure observation (OM), SEM-EDS-Mapping, micro XRF and XRD. The results show that the 5 hour milling time can provide optimal initial solids through a warm compaction process. The best characteristic of the Mg-xCA prototype is obtained from the results of further compaction by extrusion process with extrusion ratio (R) 4. The resulting rod has ϕ 10 mm, max length 100 mm and it can be sliced to a thickness of 1 mm with a relatively uniform hardness distribution. The addition and increase of CA content increases the hardness, tensile strength and compressive strength, improves corrosion rates and toxic properties, but reduces the relative density compared to pure Mg (Mg-0CA). All compositions are biocompatible (non-toxic). The lowest corrosion rate was obtained at Mg-5CA of 1.92 mm / year (Icorr: 8.560E-05 A/cm2), which it is smaller than Icorr Mg-xHA from microwave sintering (ranging from 1.00E-4 - 2.51E-4 A/cm2) or Mg-5HA corrosion rate (± 5 mm/yr) by immersion test method. Some of the mechanical properties (hardness, ultimate tensile strength, elongation and flexural stress) of the composite meet the characteristics of human cranial bone, especially Mg-15CA and Mg-10CA, but yield strength and young modulus still need to be improved. Mg-xCA composites are very prospective for further development as candidates for orthopedic implant materials."
Depok: Fakultas Teknik Universitas Indonesia, 2021
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Aldo Fransiskus Marsetio
"ABSTRAK
Pendahuluan: Pencarian implan berbahan biomaterial yang dapat diserap tubuh dengan baik terus berlanjut. Biomaterial untuk implan orthopaedi biodegradabel harus memenuhi kriteria tertentu, seperti waktu degradasi yang harus parallel dengan lini masa fisiologis penyembuhan tulang normal. Magnesium adalah mikronutrien tubuh alami sekaligus metal biodegradabel yang mempunyai sifat biomekanika menyerupai tulang. Akan tetapi, waktu degradasi metal ini sangatlah singkat dan menghasilkan produk korosi gas H2 serta sifat alkali. Karbonat apatit merupakan apatit biologis yang mempunyai osteokonduktivitas yang baik dan penyembuhan tulang tanpa jaringan fibrotik. Pencampuran magnesium dengan karbonat apatit diharapkan dapat menciptakan material biodegradabel yang dapat dipakai sebagai material dasar implant orthopaedi biodegradabel.
Metode: Kami memfabrikasi specimen komposit magnesium dan karbonat apatit dengan kadar yang bervariasi menggunakan metode metalurgi bubuk, milling time bervariasi 3, 5 dan 7 jam pada 200 RPM, kompaksi pada suhu 300°C dan tekanan 265 MPa, sintering pada 550°C, waktu tahan 1 jam, laju panas 5°C/menit, atmosfir ruangan biasa untuk membuat spesimen uji berbentuk silinder dan miniplate. Spesimen tersebut kemudian dilakukan uji biomekanika, biotoksisitas MTT dan kontak langsung, serta korosi.
Hasil: Kami dapat memfabrikasi komposit magnesium dan karbonat apatit dengan densitas yang sama dengan tulang manusia. Spesimen komposit magnesium dengan 10% karbonat apatit memiliki biokompatibilitas yang cukup baik. Walaupun, ketahanan tekanan, ketahanan regangan, modulus elastisitas fleksural dan ketahanan korosi spesimen tersebut masih rendah dibandingkan dengan tulang manusia. Paparan terhadap material komposit ini membuat lingkungan sekitar material menjadi bersifat alkali.
Diskusi: Konsolidasi antar partikel dan ukuran partikel masih kurang baik karena terbentuknya pori mikrostruktural, yang kemungkinan disebabkan oleh lapisan Mg(OH)2 dan proses oksidasi saat sintering. Hal ini menyebabkan sifat biomekanik yang rendah dan laju korosi yang tinggi. Penggunaan uji berbasis reduksi tetrazolium dapat memberikan hasil false positive, disebabkan sifat produk korosi magnesium yang bersifat reduktan. Kondisi alkali yang disebabkan material ini dapat bermanfaat bagi penyembuhan tulang dan luka. Komposit logam magnesium dan biokeramik karbonat apatit mempunyai potensi yang besar untuk menjadi material dasar implan orthopaedi biodegradabel. Modifikasi teknik fabrikasi perlu dilakukan untuk bisa meningkatkan konsolidasi antar partikel, mengecilkan ukuran partikel, meningkatkan kekuatan biomekanika, mengurangi produk korosi, serta menurunkan laju degradasi.

ABSTRACT
Introduction. The search for biodegradable orthopaedic implant is on the rally. Biomaterial for orthopaedic implant must fulfill some criteria, especially the degradation rate must be paralleled with normal bone healing timeline. Magnesium is a natural micronutrient as well as biodegradable metal with biomechanical characteristics close to that of bone. However, the degradation rate of this metal is very high and releasing H2 gas by-product as well as alkali environment. Carbonate apatite is a biological apatite which has good osteoconductivity and allow bone healing without fibrotic tissue. Fabrication of magnesium and carbonate apatite composite is expected able to produce a new biodegradable biomaterial that can be used as the base material of biodegradable orthopaedic implant.
Methods. We fabricated magnesium composite specimens containing various content of carbonate apatite by powder metallurgy, various milling time (3, 5, 7 hours) at 200 RPM, warm compaction at 300°C and pressure of 265 MPa, sintering at 550°C, holding time of 1 hour, heating rate of 5°C/minutes and room atmosphere cooling. Biomechanical tests, biotoxicity tests (MTT assay and direct contact), and corrosion test were conducted.
Results. We were able to fabricate magnesium-carbonate apatite composites with good density that is comparable with human bone. Magnesium composite with 10% content of carbonate apatite had good biocompatibility. Although, its flexural stress, flexural strain, flexural elasticity modulus and corrosion resistance were lower than human bone. Additionally, exposure to this material also turn the surrounding environment into alkali.
Discussion: Interparticle consolidation and grain size were dissatisfactory due to microstructural pores that are possibly formed by Mg(OH)2 layer and oxidation process during sintering. These characteristics affect the low biomechanical properties and high corrosion rate. Additionally, the use of tetrazolium-based assay (MTT) may give a false positive result, as the magnesium corrosion products are reducing agent. Meanwhile, alkali condition caused by the material corrosion by-product might be beneficial for bone healing and wound healing process. Magnesium and carbonate apatite composite has enormous potential to be used as the orthopaedic biodegradable material. Modification on fabrication parameters need to be done in order to improve the interparticle consolidation, refining the grain size, improve biomechanical strength, reduce corrosion products, as well as improve the degradation rate."
Depok: Fakultas Kedokteran Universitas Indonesia, 2019
SP-Pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Ika Maria Ulfah
"ABSTRAK
Pengembangan material implan gigi berbasis titanium yaitu Ti-6Al-4V dan Ti-6Al-7Nb termodifikasi TiO2 nanotube TiNT berdopan logam Ag, telah dipelajari dalam penelitian ini. Kondisi di dalam mulut yang minim energi foton perlu adanya modifikasi material implan gigi tersebut dengan TiNT terdopankan logam Ag. Kombinasi TiNT dan pendopanan logam Ag dilakukan dengan metode Photo-Assisted Deposition PAD dapat berperan sebagai electron trapper dan menghasilkan radikal hidroksil sehingga memiliki sifat menghambat pertumbuhan biofilm. Selain itu juga meningkatkan hidrofilitas permukaan material implan gigi dan dapat meningkatkan osseointegrasi antara sel osteoblas dan implan gigi. Kemampuan titanium untuk melekat dengan sel atau jaringan hidup disekitarnya osseointegrasi dapat diamati dari pertumbuhan sel osteoblas secara in vitro. Pembuktian sifat ossointegrasi dilakukan dengan uji viabilitas sel untuk mengetahui kemampuan sel ostoblas dalam bertahan hidup menggunakan 3- 4,5-dimethylthiazol-2-yl -2,5-diphenyltetrazolium bromide MTT assay serta uji Alkaline Phosphatase ALP assay untuk mengetahui aktivitas enzim ALP yang dapat membentuk jaringan keras gigi dan tulang pada waktu inkubasi 7 dan 14 hari. Karakterisasi bahan dilakukan dengan XRD, FESEM/EDX dan Contact Angle Meter. Hasil uji in vitro yang optimum adalah Ti-6Al-4V dan Ti-6Al-7Nb dengan konsentrasi dopan logam Ag 0,10 M yang memiliki persentase viabilitas sel masing-masing sebesar 113,72 dan 99,68 dalam waktu inkubasi 14 hari. Modifikasi material implan gigi ini mampu meningkatkan pertumbuhan sel osteoblas sehingga memiliki sifat osseointegrasi yang baik.

ABSTRACT
The development of dental implant material based titanium Ti 6Al4V and Ti 6Al 7Nb modified with TiO2 nanotube array TiNT metal doped Ag, have been studied in this research. The oral condition which has less photon of energy will inhibit activation of photocatalyst. Combination between composition of metal doped and method Photo Assisted Deposition PAD can serve as electron trapper and produces hydroxyl radicals that have the properties of inhibiting the growth of biofilm. Furthermore, this modivication can increase hidrophilicity and osseointegration cell dental implant. Osseointegration denotes the formation of interface between the bone and implant surface an can be osbserved by the growth of osteoblast cells. The surface morphology of titanium alloys was characterized using XRD, FESEM EDX and Contact Angle Meter. Moreover, the results was investigated by a test to obtain the viability of osteoblasts growth in vitro method with 3 4,5 dimethylthiazol 2 yl 2,5 diphenyltetrazoliumbromide MTT assay and Alkaline phosphatase ALP assay to reflect osteoblast activity and is thought to play a major role in bone formation and mineralization. As a coclusion, Ti 6Al 4V and Ti 6Al 7Nb doped Ag 0,10 M improves 113,72 and 99,68 of viability osteoblast cell, respectively."
2017
T48240
UI - Tesis Membership  Universitas Indonesia Library
cover
Tentues Immanuel Pratama
"Pelepasan ion Al dan V pada produk komersial implan medis Ti-6Al-4V dapat menyebabkan permasalahan kesehatan karena bersifat toksik. Selain itu modulus elastisitas implan medis Ti-6Al-4V relatif lebih tinggi dari modulus elastisitas tulang manusia, sehingga dapat menyebabkan fenomena stress shielding effect. Oleh sebab itu, dilakukan pergantian unsur Al dan V dengan unsur Nb dan Mo yang tidak bersifat toksik. Kemudian ditambahkan kembali unsur low cost Mn dengan variasi 2%, 4%, dan 6% untuk mensubtitusi unsur Nb dan Mo yang termasuk unsur yang relatif mahal. Unsur Nb, Mo dan Mn merupakan unsur penstabil fasa β yang memiliki nilai modulus elastisitas lebih rendah dibanding Ti-6Al-4V. Fasa β merupakan fasa yang stabil pada suhu tinggi, sehingga dilakukan perlakuan panas untuk menstabilkan fasa ini dengan homogenisasi pada 3, 6 dan 12 jam untuk mengetahui pengaruhnya.
Hasil penelitian membuktikan bahwa penambahan komposisi Mn pada paduan menyebabkan penurunan efek toksisitas dengan menstabilkan pembentukan lapisan pasif pada permukaan logam. Lalu, didapatkan perolehan fraksi volume fasa β yang meningkat seiring penambahan komposisi unsur Mn sehingga didapatkan nilai modulus elastisitas yang menurun. Pada proses perlakuan panas, waktu 6 jam merupakan waktu yang optimal untuk memperoleh fasa β yang lebih homogen dengan mengeliminasi sisa fraksi volume fasa α yang ada pada paduan.
Dapat disimpulkan penambahan komposisi unsur paduan Mn akan meningkatkan perolehan fasa β dan perlakuan panas perlu dilakukan untuk mendapatkan fasa β yang stabil dan homogen, sehingga didapatkan paduan yang lebih inert dengan nilai modulus elastisitas mendekati nilai modulus elastisistas tulang manusia.

The release of Al and V ions in commercial products of Ti-6Al-4V medical implants can cause health problems because they are toxic. In addition, the modulus of elasticity of Ti-6Al-4V medical implants is relatively higher than the modulus of elasticity of human bones, so that it can cause stress shielding effect phenomena. Therefore, al and V elements are replaced with Nb and Mo elements which are not toxic. Then the low cost Mn element was added with variations of 2%, 4%, and 6% to substitute Nb and Mo elements which included relatively expensive elements. Nb, Mo and Mn elements are β phase stabilizers which have a modulus of elasticity lower than Ti-6Al-4V. The β phase is a phase that is stable at high temperatures, so heat treatment is carried out to stabilize this phase by homogenization at 3, 6 and 12 hours to determine its effect.
As a result, the addition of the Mn composition to the alloy causes a decrease in the effect of toxicity by stabilizing the formation of a passive layer on the metal surface. Then, the acquisition of β phase volume fraction obtained increases with the addition of the composition of the element Mn so that the modulus of elasticity decreases. In the heat treatment process, 6 hours is the optimal time to obtain a more homogeneous β phase by eliminating the remaining α phase volume fraction present in the alloy.
It can be concluded that the addition of Mn alloy element composition will increase β phase acquisition and heat treatment needs to be done to obtain a stable and homogeneous β phase, so that more inert alloys with elastic modulus values ​​are obtained close to the human bone elastic modulus.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aryasatya Ardhana
"Implan logam berbahan stainless steel memilki sifat mekanik yang baik namun mempunyai kelemahan seperti toksiksitas dan rentan terhadap kolonisasi bakteri. Alternatif seperti biomaterial keramik untuk pelapis logam menunjukkan potensi yang sangat baik dalam memberikan kemampuan mekanis dan biokompatibilitas yang tinggi untuk implan load-bearing serta mampu mendukung pertumbuhan sel tulang, dan membentuk ikatan yang kuat pada jaringan keras maupun lunak. Hidroksiapatit (HA), serta hidroksiapatit tersubstitusi seng (Zn-HA) dan fluor (F-HA) merupakan kandidat pelapis biomaterial logam yang cocok untuk tulang. Penelitian ini bertujuan untuk melihat karakteristik fisik dan mikrostruktural dari substrat SS 316L yang dilapisi dengan bifasik hidroksiapatit dengan kalsium pirofosfat (HA/β-CPP) yang tersubstitusi seng (Zn-HA), fluor (F-HA), dengan metode sol-gel. Nanopartikel disintesis melalui metode sol-gel dan substrat SS 316L dilapis dengan teknik dip-coating secara manual. Kristalografi dan gugus fungsi dievaluasi masing-masing dengan spektroskopi X-Ray Diffraction (XRD) dan Fourier Transform Infrared (FTIR). Ditunjukkan bahwa HA/β-CPP dan Zn-HA terdiri dari fase hidroksiapatit murni dan β-CPP (β-calcium pyrophosphate) menunjukkan sifat bifasik dari kedua serbuk tersebut. F-HA memiliki fase yang mendekati fluorapatit dan tidak ditemukannya fase β-CPP. Substitusi ion seng menurunkan kristalinitas, ukuran kristal, serta stabilitas struktur apatit dari HA sedangkan substitusi ion fluor mampu meningkatkan kristalinitas, ukuran kristal, serta stabilitas struktur apatit dari HA. Ukuran kristal terbesar didapatkan dari F-HA sebesar 215,58 Å dengan indeks kristalinitas 0,295. Substitusi ion seng dan fluor ditunjukan dengan adanya pergeseran dan perubahan intensitas pola infrared (IR). Penelitian ini menunjukkan bahwa struktur atom HA memungkinkan untuk terjadinya substitusi. Hasil SEM dari ketiga lapisan sampel menunjukkan persentase porositas dari sampel HA/β-CPP, Zn-HA, dan F-HA masing-masing adalah 52,98%, 50,27%, dan 53,29% serta ukuran pori sampel sebesar 108,78 μm, 131,77 μm, dan 100.29 μm. Ini menunjukkan struktur permukaan yang halus, lebih padat (dengan struktur mikro yang lebih rapat) dengan homogenitas yang baik dan porositas yang sesuai dalam aplikasi medis.

Metal implants made of stainless steel have good mechanical properties but have weaknesses such as toxicity and susceptible to bacterial colonization. Alternatives such as ceramic biomaterials for metallic coatings show great potential in providing high mechanical properties and biocompatibility for load-bearing implants as well as being able to support bone cell growth, and form strong bonds to both hard and soft tissues. Hydroxyapatite (HA), as well as zinc substituted hydroxyapatite (Zn-HA) and fluorine substituted hydroxyapatite (F-HA) are suitable metal biomaterial coating candidates for bone. This study aims to examine the physical and microstructural characteristics of SS 316L coated with biphasic hydroxyapatite and calcium pyrophosphate (HA/β-CPP), zinc substituted hydroxyapatite (Zn-HA), and fluorine substituted hydroxyapatite (F-HA) using the sol-gel method. The nanoparticles were synthesized using the sol-gel method and the SS 316L substrate was coated with a manual dip-coating technique. Crystallography and functional groups were evaluated by X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) spectroscopy, respectively. It was shown that HA and Zn-HA consisted of pure hydroxyapatite phase and β-CPP (β-calcium pyrophosphate) showed the biphasic nature of the two powders. F-HA has a phase close to fluorapatite but there is no β-CPP phase found on it. Zinc ion substitution decreased the crystallinity, crystal size, and stability of the apatite structure of HA, while fluorine ion substitution was able to increase the crystallinity, crystal size, and stability of the apatite structure of HA. The largest crystal size was obtained from F-HA of 215.58 Å with a crystallinity index of 0.295. The substitution of zinc and fluorine ions was indicated by a shift and a change in the intensity of the infrared (IR) pattern. This study shows that the atomic structure of HA allows for substitution. The SEM results from the three sample layers showed that the porosity percentages of the HA/β-CPP, Zn-HA, and F-HA samples were 52.98%, 50.27%, and 53.29%, respectively, and the sample pore size was 108.78 μm, 131.77 μm, and 100.29 μm. It exhibits a smoother, denser surface structure (with a denser microstructure) with good homogeneity and porosity suitable in medical applications."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>