Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 109638 dokumen yang sesuai dengan query
cover
Alva Andhika Sa`Id
"Degenerasi makula atau Age-Related Macular Degeneration (AMD) adalah penyakit mata yang menyebabkan kebutaan pada bagian tengah mata yang merusak kinerja retina pada bagian makula yang berfungsi untuk mempertajam penglihatan untuk beberapa aktivitas, seperti membaca, menulis, dan mengenali wajah seseorang. Penderita AMD akan mengalami penglihatan yang buram, distorsi penglihatan, atau bahkan kehilangan penglihatannya. Dalam mendiagnosis AMD dapat digunakan oftalmoskopi, beberapa metodenya yaitu Ocular Coherence Tomography (OCT) dan fotografi fundus sudah banyak dilakukan untuk membantu diagnosis AMD. Namun, diagnosis AMD dengan mengandalkan ahli dapat berlangsung lama dan memungkinkan terjadinya error subjektivitas oleh pendiagnosis. Diagnosis awal diperlukan untuk mendeteksi adanya kemungkinan terjadinya AMD pada tahap awal yang gejalanya tidak dirasakan oleh penderita. Pendekatan diagnosis AMD salah satunya dapat dilakukan dengan pendekatan machine learning. Machine learning sudah berperan besar dalam sektor medis membantu permasalahan klasifikasi diagnosis penyakit seperti metode Support Vector Machines (SVM) dan Twin Support Vector Machines (TSVM). Salah satu cabang machine learning yang sangat baik dalam klasifikasi penyakit lewat gambar adalah deep learning. Metode yang digunakan deep learning untuk permasalahan klasifikasi data citra salah satunya adalah Convolutional Neural Network (CNN). Pada penelitian ini, akan digunakan metode Convolutional Neural Network – Twin Support Vector Machines (CNN-TSVM) untuk mengklasifikasi penyakit AMD menggunakan data citra fundus yang diperoleh dari Ocular Disease Recognition (ODIR-5K) 2019, dengan 227 data citra fundus normal dan 227 data citra fundus penyakit AMD. Evaluasi kinerja metode CNN-TSVM menggunakan teknik hold-out validation dengan membagi data latih dan data uji dengan proporsi 10% - 90% dan metrik akurasi, presisi, dan recall. Hasil kinerjanya dibandingkan dengan metode CNN dan Convolutional Neural Network – Support Vector Machines (CNN-SVM). Hasil yang diperoleh menunjukkan CNN-TSVM menggunakan kernel RBF memberikan akurasi dan recall terbaik, sementara CNN-TSVM menggunakan kernel polinomial memberikan presisi terbaik.

Age-related Macular Degeneration (AMD) is an eye disease that causes blindness in the middle of the eye that impairs retinal performance in the macula that serves to sharpen vision for some activities, such as reading, writing, and recognizing a person's face. AMD sufferers will experience blurred vision, vision distortion, or even loss of vision. In AMD diagnosed, ophthalmology can be used, several methods of ophthalmology including Ocular Coherence Tomography (OCT) and fundus photography have been widely done to help the diagnosis of AMD. However, AMD diagnosis by relying on experts can be long-lasting and allow subjective errors to occur in the diagnosis. An initial diagnosis is needed to detect the possibility of AMD occurrence at an early stage where symptoms are not felt by the sufferer. One of AMD diagnosis approach can be done with machine learning approach as one of artificial intelligence methods. Machine learning method has played a major role in the medical sector helping classification problems of disease diagnosis such as Support Vector Machines (SVM) and Twin Support Vector Machines (TSVM). One of the excellent branches of machine learning in the classification of diseases through images is deep learning. The suitable method used by deep learning for image data classification problems is convolutional neural network (CNN). In this study, Convolutional Neural Network–Twin Support Vector Machines (CNN-TSVM) method will be used to classify AMD diseases using fundus image data obtained from Ocular Disease Recognition (ODIR-5K) 2019, with 227 normal fundus image data and 227 fundus image data of AMD disease. Performance evaluation of CNN-TSVM method using hold-out validation techniques by dividing training data and testing data by a proportion of 10% - 90% and metrics of accuracy, precision, and recall. The performance results will be compared to CNN and Convolutional Neural Network – Support Vector Machines (CNN-SVM). The results showed CNN-TSVM using RBF kernel provided the best accuracy and recall, while CNN-TSVM using polynomial kernel provided the best precision."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ely Sudarsono
"Indonesia merupakan salah satu negara dengan penduduk terbanyak yang mengalami kebutaan yang disebabkan oleh katarak sebesar 77,7 %. Pendeteksian terhadap pasien katarak dapat dilakukan menggunakan citra fundus dengan metode komputasi. Salah satu metode komputasi populer dalam klasifikasi citra fundus adalah deep learning yang merupakan salah satu pendekatan machine learning. Pada tesis ini, model convolutional neural network (CNN) yang digunakan adalah arsitektur AlexNet dengan Lookahead-diffGrad optimizer. Data yang digunakan dalam penelitian ini diambil dari situs Kaggle yang berisi citra fundus katarak. Selanjutnya, dilakukan tahap pra-pengolahan pada citra seperti menerapkan resize dan menerapkan normalisasi agar semua citra dapat diinput ke dalam model dengan ukuran yang sama serta meningkatkan kinerja model. Hasil penelitian ini menunjukkan CNN dengan Lookahead-diffGrad optimizer pada dataset citra retina katarak dapat mengklasifikasikan data menjadi dua kelas, yaitu normal dan katarak, sehingga dapat membantu untuk mendiagnosis penyakit tersebut dengan baik. Selain itu, hasil terbaik juga diperoleh oleh CNN dengan Lookahead-diffGrad optimizer berdasarkan nilai loss sebesar 0,0010 dan akurasi 100 % dibandingkan berbagai optimizer lainnya untuk mengklasifikasikan dataset citra retina katarak.


Indonesia is one of the countries with the most people experiencing blindness due to cataracts at up to 77.7% of the population. Detection of cataract patients can be done using fundus images with computational methods. One of the popular computational methods in the classification of fundus images is deep learning, which is one of machine learning approaches. In this thesis, the convolutional neural network (CNN) model used is the AlexNet architecture with Lookahead-diffGrad optimizer. The data used in this study were taken from the Kaggle website which contains the images of cataract fundus. Furthermore, the pre-processing stage of the image is carried out such as applying resizing and applying normalization so that all images can be inputted into the model with the same size and improve the performance of the model. The results of this study indicate that CNN using the Lookahead-diffGrad optimizer on the retinal cataract image dataset can classify the data into two classes, namely normal and cataracts, so that it can help diagnose the disease properly. In addition, the best results were obtained by CNN with the Lookahead-diffGrad optimizer based on a loss value of 0.0010 and 100% accuracy compared to other optimizers for classifying the retinal cataract image dataset."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Sitorus, Yusuf Beltsazar
"Tanaman karet merupakan salah satu komoditas utama ekspor Indonesia. Namun, dalam beberapa tahun terakhir, produksi karet di Indonesia mengalami penurunan. Hal tersebut disebabkan karena adanya penyakit gugur daun yang disebabkan oleh jamur Pestalotiopsis sp.. Berkembangnya teknologi artificial intelligence dengan pendekatan deep learning mampu melakukan pendeteksian pada penyakit ini dengan menggunakan data citra. Convolutional Neural Network (CNN) merupakan algoritma deep learning yang diterapkan pada data berbentuk visual atau citra. Pada penelitian ini, peneliti menggunakan metode Convolutional Neural Network (CNN) dengan arsitektur Residual Network 50 (ResNet-50). Pada penelitian ini juga digunakan Transfer Learning yang merupakan sebuah model yang dapat diajarkan dan disempurnakan untuk suatu kegiatan dan kemudian bisa diterapkan pada kegiatan lain. Dataset yang digunakan pada penelitian ini adalah data daun karet yang berjumlah 1629 data yang dibagi dalam 5 kelas yaitu level 0 atau sehat merupakan daun yang sehat, level 1 merupakan daun yang telah terbentuk bercak coklat yang merupakan gejala dari penyakit namun belum memiliki tanda-tanda perubahan warna, level 2 merupakan daun yang telah terbentuk banyak bercak cokelat disertai dengan adanya perubahan warna pada daun, level 3 merupakan daun yang mengalami kerusakan jaringan, perubahan warna menjadi cokelat atau kuning namun masih memiliki sedikit bagian daun yang berwarna hijau, level 4 merupakan daun yang mengalami kerusakan jaringan cukup parah, dipenuhi bercak cokelat dan telah berwarna cokelat menyeluruh. Dari hasil simulasi yang dilakukan, diperoleh hasil terbaik dengan rata-rata accuracy 96,01%, recall 95,888%, dan precision 96,184% dengan running time rata-rata running time 69,759 detik.

Rubber plants are one of Indonesia's main export commodities. However, in recent years, rubber production in Indonesia has experienced a decline. This is due to the presence of the leaf fall disease caused by the Pestalotiopsis sp. fungus. The advancement of artificial intelligence technology using deep learning approaches enables the detection of this disease using image data. The Convolutional Neural Network (CNN) is a deep learning algorithm applied to visual or image data. In this study, researchers utilized the Convolutional Neural Network (CNN) method with the Residual Network 50 (ResNet50) architecture. Transfer Learning was also employed in this research, which involves training and refining a model for one task and then applying it to another task. The dataset used in this study consists of 1629 rubber leaf samples divided into 5 classes: level 0, representing the healthy leaves; level 1, indicating leaves with brown spots, a symptom of the disease, but without major visible color changes; level 2, comprising of leaves with numerous brown spots accompanied by slight color changes; level 3, representing leaves with tissue damage, a color change from green to brown or yellow, but still retaining some green parts; and level 4, depicting leaves with severe tissue damage, extensively covered in brown spots and having turned completely brown. The simulation results showed the best outcome with an average accuracy of 96.01%, recall of 95.888%, and precision of 96.184%, with an average running time of 69.759 seconds."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hepatika Zidny Ilmadina
"Leptomeningeal metastatis merupakan indikasi keganasan yang terjadi pada pasien leukemia. Meskipun hanya memiliki porsi 30-40% yang menyebabkan kekambuhan keganasan pada pasien leukemia, hal tersebut yang dijadikan dasar dalam menentukan pengobatan terbaik yang diberikan kepada mereka. Leptomeningeal metastasis lebih baik dideteksi dengan menggunakan Magnetic Resonance Imaging (MRI) karena sensitivitasnya yang tinggi dalam citra neuraxis. Kemampuan expert yang tinggi untuk melihat dan menganalisis sangat diperlukan dalam membaca hasil Brain MRI pasien leukemia dengan suspek leptomeningeal metastasis. Oleh karena itu, klasifikasi akan memakan waktu yang lama dan memungkinkan kesalahan pembacaan hasil. Berbagai metode telah banyak diusulkan dan dikembangkan dalam klasifikasi Brain MRI untuk mendapatkan hasil terbaik namun tantangan dalam penelitian ini adalah leptomeningeal metastasis yang karakteristiknya lebih sudah dikenali dibandingkan tumor pada otak. Oleh karena itu peneliti mengusulkan pengklasifikasian leptomeningeal metastasis dengan menggunakan metode CNN via transfer learning. Dengan berbagai skenario yang dilakukan, hasil akurasi terbaik adalah implementasi metode CNN (ResNet50) via transfer learning mencapai 82,22%.

Leptomeningeal metastasis is an indication of malignancy that occurs in leukemia patients. Although it only has a 30-40% portion, which causes recurrence of malignancy in leukemia patients, it is the basis for determining the best treatment given to them. Leptomeningeal metastases are better detected by using Magnetic Resonance Imaging (MRI) because of their high sensitivity in neuroaxis images. A high expert ability to see and analyze is needed in reading the brain MRI results of leukemia patients with suspected leptomeningeal metastasis. Therefore, the classification will take a long time and may an incorrect reading of the results. Various methods have been proposed and developed in the brain MRI classification to get the best results, but the challenge in this research is leptomeningeal metastasis, whose characteristics are more not recognizable than tumors in the brain. Therefore, we propose the classification of leptomeningeal metastasis using the CNN method via transfer learning. With various scenarios done, we obtained the best accuracy result is the implementation of the CNN (ResNet50) method via transfer learning, up to 82.22%."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Athia Asparini
"Degenerasi makula yang berhubungan dengan penuaan (age-related macular degeneration: AMD) adalah kelainan degeneratif pada makula yang ditandai oleh satu atau lebih dari beberapa gejala berikut, yaitu pembentukan drusen, kelainan epitel pigmen retina yang berupa hipopigmentasi atau hiperpigmentasi, atrofi geografik epitel pigmen retina dan koriokapiler yang melibatkan bagian sentral fovea, makulopati neovaskular (eksudatif). AMD terbagi menjadi 2 tipe, dry AMD dengan angka kejadian mencapai 80-90% kasus AMD, dan sisanya adalah tipe kedua yaitu wet AMD. Pengobatan dry AMD sendiri, hingga saat ini belum menunjukkan hasil efektif dalam mencegah progresifitasnya. Dry AMD sampai saat ini belum memiliki pengobatan standar, disebabkan oleh patofisiologi penyakit yang belum terlalu jelas, oleh karena itu penelitian untuk menemukan terapi untuk dry AMD terus dilakukan. Akupunktur terbukti dapat mengurangi gejala dry AMD, meningkatkan visus sehingga dapat meningkatkan kualitas hidup pasien. Elektroakupunktur merupakan intervensi yang menstimulasi titik akupunktur menggunakan aliran listrik. Dibandingkan dengan akupunktur manual, elektroakupunktur memiliki kelebihan seperti stimulasi yang dihasilkan lebih intensif, terukur dan konstan. Penelitian ini menilai efek elektroakupunktur terhadap perubahan gambaran foto fundus makula dan perubahan visus pada pasien dry AMD. Tiga puluh empat pasien dibagi secara acak menjadi dua kelompok, kelompok elektroakupunktur (n = 17) dan kelompok elektroakupunktur sham (n = 17). Kedua kelompok menerima sesi elektroakupunktur yang sama, 2 kali/minggu selama 6 minggu. Penilaian gambaran foto fundus makula dan penilaian visus dilakukan sebelum dan sesudah sesi terapi. Hasil menunjukkan terdapat perbedaan bermakna pada perubahan foto fundus makula (p=0,001, CI 95%) dan perubahan visus (p=0,001, CI 95%) antara kelompok elektroakupunktur dan kelompok elektroakupunktur sham sebelum dan sesudah sesi terapi. Penemuan ini menunjukkan bahwa terapi elektroakupunktur memberikan efek yang baik terhadap gejala klinis dan visus pasien dry AMD.

Age-related macular degeneration or known as AMD is a macular degeneration that posts certain symptoms such drusens, hypopigmentation or hyperpigmentation on retinal pigment epithelium, geographic atrophy and choroidal capillary that affects fovea centralis, and neovascular maculopathy (exudative). Two types of AMD are dry AMD that covers 80-90% cases of AMD and wet AMD. Until now, dry AMD treatment has not been effective to prevent its progression. Since the pathophysiology has been cleared, the research to cure dry AMD must be conducted. Acupuncture is proven to prevent the symptoms of dry AMD, increase the visual acuity, and patients life quality. Electroacupuncture is a form of intervention that stimulates the point using electric current. Compared to manual acupuncture, electroacupuncture can produce more intensive, measurable and constant. This research assesses the changes in the macular fundus photography and visual acuity on dry AMD patient. Thirty-four patients are divided into two groups; Electroacupuncture group (n=17) and sham group (n=17). Both groups receive the same amount of electroacupuncture session which is twice a week for six weeks. Assessment towards the macular fundus photography and visual acuity will be conducted before and after a session. The result shows differences in macular fundus photography (p=0,001, CI 95%) and visual acuity (p=0,001, CI 95%) between electroacupuncture group and sham group before and after sessions. The findings show that electroacupuncture gives positive results towards symptoms in fundus photography and visual acuity of dry AMD patients."
2019: Fakultas Kedokteran Universitas Indonesia, 2019
T57668
UI - Tesis Membership  Universitas Indonesia Library
cover
Nafizatus Salmi
"ABSTRACT
Kanker telah dikenal sebagai penyakit yang terdiri dari beberapa jenis berbeda. Kanker adalah penyakit yang mengancam jiwa di dunia saat ini. Ada begitu banyak jenis kanker di dunia, salah satunya adalah kanker usus besar, di mana kanker ini adalah salah satu pembunuh nomor satu di dunia. Banyak pembelajaran mesin telah diterapkan dalam klasifikasi kanker. Penulis membandingkan model Naïve Bayes Classifier dan Support Vector Machine (SVM) dalam klasifikasi kanker usus besar. Naïve Bayes Classifier adalah teknik prediksi berbasis probabilitas sederhana berdasarkan pada penerapan teorema Bayes (atau aturan Bayes) dengan asumsi kemandirian yang kuat. Sedangkan konsep dasar metode SVM adalah membentuk bidang atau hyperplane optimal yang memisahkan data menjadi bidang-bidang yang memisahkan data ke dalam setiap kelas. Kedua metode menghasilkan akurasi tinggi hingga 95,24% untuk Naïve Bayes Classifier dan 94,05% untuk SVM dengan kernel linier.

ABSTRACT
Cancer has been known as a disease that consists of several different types. Cancer is a life-threatening disease in the world today. There are so many types of cancer in the world, one of which is colon cancer, where this cancer is one of the number one killers in the world. Much machine learning has been applied in the classification of cancer. The author compares the Naïve Bayes Classifier and Support Vector Machine (SVM) models in the classification of colon cancer. Naïve Bayes Classifier is a simple probability-based prediction technique based on the application of the Bayes theorem (or Bayes rule) with a strong assumption of independence. While the basic concept of the SVM method is to form an optimal plane or hyperplane that separates data into fields that separate data into each class. Both methods produce high accuracy up to 95.24% for Naïve Bayes Classifier and 94.05% for SVM with linear kernels."
2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wahyu Nugroho Ramadhan
"Setiap tahun, ada sekitar 7.8 juta ton sampah plastik yang tidak dikelola di Indonesia. Metode yang banyak digunakan dalam pengolahan sampah tersebut adalah reduce, recycling, dan reusing. Dari ketiga metode tersebut, recycling menjadi solusi terbaik dalam penanganan sampah plastik karena kapasitas pengelolaan yang besar. Botol plastik menjadi jenis plastik yang paling banyak di recycling karena tingkat kemurnian material plastiknya tinggi. Namun, masalah terbesar dalam recycling sampah botol plastik adalah klasifikasi sampah plastik berdasarkan material penyusunya. Proses recycling saat ini sudah dimudahkan karena memanfaatkan machine learning. Machine learning dapat melakukan suatu pekerjaan tanpa harus diberi perintah berulang sehingga dapat dimanfaatkan untuk melakukan klasifikasi sampah botol plastik. Salah satu metode dalam Machine learning yang digunakan adalah Convolutional Neural Network karena dapat mengklasifikasikan sampah botol plastik PET, HDPE, LDPE, dan PP. Diperoleh akurasi testing PET terbaca sepuluh kali dari sepuluh percobaan sedangkan HDEP, LDPE, dan PP terbaca sembilan kali dari sepuluh percobaan. Selain itu, metode tersebut juga mampu mengklasifikasi sampah botol plastik dengan beberapa kondisi yaitu botol yang menggunakan tutup, kotor, serta remuk. Diperoleh akurasi testing untuk ketiga kondisi terbaca sepuluh kali dari sepuluh percobaan.

There are around 7.8 million tons of unmanaged plastic waste in Indonesia each year. Solving the problem there are three method that are widely used in processing the waste namely reduce, recycle, and reuse. From those methods, Recycling is the best solution in handling plastic waste because of its large management capacity. Plastic bottles are the type of plastic that is most widely recycled because of the high level of purity of the plastic material. However, the biggest problem in recycling plastic bottle waste is the classification of plastic waste based on its materials. The recycling process is now much easier because it utilizes machine learning. Machine learning can do a job without having to be given repeated orders so that it can be used to classify plastic bottle waste. One of the machine learning methods used is convolutional neural network because it can classify PET, HDPE, LDPE, and PP plastic bottles. PET testing accuracy was read ten times from ten times testing while HDPE, LDPE, and PP read nine times from ten times testing. In addition, this method is also able to classify plastic bottle waste under several conditions, namely using a lid, dirty, and crumbling. Obtained testing accuracy for all three condition read ten times from ten time testing."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abdul Azis Abdillah
"Diabetes is one of the most serious health challenges in both developed and developing countries. Early detection and accurate diagnosis of diabetes can reduce the risk of complications. In recent years, the use of machine learning in predicting disease has gradually increased. A promising classification technique in machine learning is the use of support vector machines in combination with radial basis function kernels (SVM-RBF). In this study, we used SVM-RBF to predict diabetes. The study used a Pima Indian diabetes dataset from the University of California, Irvine (UCI) Machine Learning Repository. The subjects were female and ? 21 years of age at the time of the index examination. Our experiment design used 10-fold cross-validation. Confusion matrix and ROC were used to calculate performance evaluation. Based on the experimental results, the study demonstrated that SVM-RBF shows promise in aiding diagnosis of Pima Indian diabetes disease in the early stage."
Depok: Faculty of Engineering, Universitas Indonesia, 2016
UI-IJTECH 7:5 (2016)
Artikel Jurnal  Universitas Indonesia Library
cover
Livia Meristya Fitriani
"Diabetes melitus merupakan peningkatan kadar gula darah disertai dengan gangguan metabolisme karbohidrat, lipid, dan protein sebagai akibat fungsi insulin yang tidak mencukupi. Pada tahun 2021 jumlah kematian akibat diabetes melitus di Indonesia mencapai 236.711 orang, menempati urutan keenam dunia dan pertama di Asia Tenggara. Di Indonesia penyakit ini meningkat sebesar 8,5% di tahun 2014 pada orang berusia di atas 18 tahun. Banyak faktor yang menjadi pemicu antara lain umur, jenis kelamin, serta diagnosa dokter terhadap penyakit bawaan. Meningkatnya jumlah kasus kematian akibat diabetes melitus setiap tahunnya membuat perusahaan asuransi harus mengantisipasi keadaan tersebut, termasuk menghitung cadangan klaim. Tulisan ini bertujuan untuk menghitung prediksi klaim yang dapat disiapkan dengan menggunakan batasan variabel umur, jenis kelamin, dan diagnosa dokter terhadap penyakit bawaan lainnya dengan melakukan klasifikasi menggunakan K-Modes clustering dan Metode Heuristik. Setelah mengklasifikasikan data, dilanjutkan dengan menghitung prediksi klaim menggunakan algoritma Random Forest, Naïve Bayes, dan Support Vector Machine. Hasil penelitian ini menunjukkan bahwa prediksi model terbaik diperoleh dengan menggunakan algoritma Naive Bayes, sedangkan kelompok klasifikasi terbaik menggunakan model Heuristik. Hasil penelitian ini diharapkan dapat menjadi pedoman bagi perusahaan asuransi dalam menentukan estimasi jumlah klaim yang mungkin terjadi.

Diabetes mellitus is an increase blood sugar levels accompanied by impaired metabolism of carbohydrates, lipids, and proteins as a result of insufficient insulin function. In 2021 the number of deaths due to diabetes mellitus in Indonesia reached 236,711 people, this is ranked sixth in the world and first in Southeast Asia. This disease increased by 8.5% in 2014 people over 18 years of age. Many factors influence this disease, including age, gender, also the doctor's diagnosis of congenital diseases. The increasing number of death from diabetes mellitus every year causes insurance companies anticipate the situation calculating claim reserves. This paper aims to calculate prediction of claims that can be generated using the variable limits of age, gender, and doctor's diagnosis of other congenital diseases by doing classification using K-Modes clustering and Heuristic Method. After that we calculate claim predictions using Random Forest, Naïve Bayes, and Support Vector Machine algorithms. The results of this study indicate that the best model predictions are using the Naive Bayes algorithm, while the best classification group uses the Heuristic model. The results of this study are expected to be a guideline for insurance companies in determining the estimated amount of claims that may occur."
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Kevin Harijanto
"Sebagai salah satu cara untuk memindahkan risiko, banyak orang menginginkan produk asuransi sebagai jaminan proteksi atas dirinya. Pada masa digital ini dimana internet, media sosial dan media komunikasi digital lainnya sudah menjadi bagian dari kehidupan sehari-hari. Perusahaan asuransi juga perlu untuk mengetahui preferensi pelanggannya untuk menjangkau pelanggan potensial dan mengoptimalkan model bisnisnya. Terlebih di masa pandemi COVID-19 yang dialami oleh seluruh dunia, perusahaan jasa transportasi sedang dilanda kesulitan. Namun hal ini merupakan potensi yang sangat besar untuk penjualan asuransi perjalanan ketika pandemi sudah berakhir dan perjalanan dimulai kembali. Salah satu cara untuk mendapatkan preferensi pelanggan adalah dengan studi historikal terkait data-data pelanggan sebelumnya. Masalah preferensi ini dapat disederhanakan menjadi klasifikasi biner, dan sudah banyak metode yang umum digunakan untuk masalah ini seperti Logistic Regression, Gradient Boosting Machine dan Random forest. Namun, belum banyak yang menyelesaikan masalah tersebut menggunakan metode Convolutional Neural Network (CNN). Metode ini memanfaatkan algoritma tabular convolution untuk mengubah data tabular menjadi bentuk citra yang kemudian diklasifikasikan menggunakan CNN. Dari hasil simulasi diperoleh bahwa penggunaan metode ini dapat menyaingi akurasi metode Logistic Regression, Gradient Boosting Machine dan Random Forest dengan iterasi yang cukup rendah.

Many people seek insurance products as a guarantee of protection for themselves, as a way to transfer the risk that they are facing. In this digital era where the internet, social media and other digital communication media have become a part of everyday life, insurance companies also need to know their customers’ preferences to reach potential customers and optimize their business models. Especially during the COVID- 19 pandemic experienced by the whole world, transportation service companies are experiencing many difficulties. But due to this pandemic, there lies a huge potential of travel insurance when the pandemic ends and demands surge for travel business. One way to get customer preferences is by historical studies related to previous customer data. This preference problem can be reduced to binary classification with many methods commonly used to address this problem, such as Logistic Regression, Gradient Boosting Machines and Random Forest. However, not many has solved this problem using the Convolutional Neural Network (CNN) method. This method utilizes the tabular convolution algorithm to convert tabular data into image form which will then be classified using CNN. The results obtained that the use of this method can compete with Logistic Regression, Gradient Boosting Machine and Random Forest with a fairly low iteration.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>