Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 169336 dokumen yang sesuai dengan query
cover
Aldila Ananda Firstia
"Crowdsourced Delivery Two-Echelon Vehicle Routing Problem with Truck and Trailer Routing Problem (2E-VRP TTRP) merupakan masalah pencarian rute kendaraan untuk mengirim barang ke pelanggan melalui dua pusat distribusi yang berbeda, yaitu depot dan titik transfer. Pada eselon pertama, barang akan dikirimkan dari depot ke titik transfer atau langsung ke pelanggan dengan menggunakan truk. Sementara, pada eselon kedua, barang akan dikirim dengan menggunakan sistem crowdsourced delivery, yaitu dengan menggunakan jasa kurir pekerja lepas dengan jadwal yang fleksibel dan mengunakan transportasi pribadi. Kurir tersebut akan mengambil barang yang telah diantar oleh truk ke titik transfer dan selanjutnya meneruskan pengantaran ke pelanggan. Pada skripsi ini digunakan Metode Adaptive Large Neighborhood Search (ALNS) untuk menyelesaikan permasalahan tersebut dengan menggunakan perangkat lunak. Konsep dari metode ini adalah memperbaharui struktur lingkungan melalui destroy dan repair operator dengan menggunakan probabilitas bahwa suatu operator tententu dipilih disesuaikan kembali sesuai dengan kinerja selama iterasi sebelumnya. Solusi yang ingin dicapai adalah solusi dengan total biaya pengiriman yang minimum. Berdasarkan hasil percobaan, dengan menggunakan 50 pelanggan, 1 depot, 9 titik transfer, 20 pelanggan yang dilayani sistem crowdsourced delivery, dan 3000 iterasi, diperoleh bahwa Metode ALNS dapat digunakan untuk mengoptimalkan masalah Crowdsourced Delivery 2E-VRP TTRP dengan penghematan total biaya perjalanan sebesar 40,76%.

Crowdsourced Delivery Two-Echelon Vehicle Routing Problem with Truck and Trailer Routing Problem (2E-VRP TTRP) is a problem where goods must be sent to customers through two different distribution centers, namely depot and transfer point. In the first echelon, the goods will be sent from the depot to the transfer points or directly to the customers by trucks. Meanwhile, in the second echelon, the goods will be sent using a crowdsourced delivery system, by using couriers that have flexible schedule and using their own transportations. The couriers will pick up the goods that have been delivered by the trucks to the transfer points and deliver it to the customers. In this final project, the Adaptive Large Neighborhood Search (ALNS) Method is used to solve the problem by using software. The concept of this method is to update the neighborhood structure through the destroy and repair operators by using the probability that a certain operator is selected to be readjusted according to performance during the previous iterations. The solution to be achieved is a solution with a minimum total delivery cost. Based on the experimental results, using 50 costumers, 1 depot, 9 transfer points, 20 costumers served by the crowdsourced delivery system, and 3000 iterations, it is found that the ALNS Method was be used to optimize the Crowdsourced Delivery 2E-VRP TTRP with a total travel cost savings of 40,76%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aldila Ananda Firstia
"Crowdsourced Delivery Two-Echelon Vehicle Routing Problem with Truck and Trailer Routing Problem (2E-VRP TTRP) merupakan masalah pencarian rute kendaraan untuk mengirim barang ke pelanggan melalui dua pusat distribusi yang berbeda, yaitu depot dan titik transfer. Pada eselon pertama, barang akan dikirimkan dari depot ke titik transfer atau langsung ke pelanggan dengan menggunakan truk. Sementara, pada eselon kedua, barang akan dikirim dengan menggunakan sistem crowdsourced delivery, yaitu dengan menggunakan jasa kurir pekerja lepas dengan jadwal yang fleksibel dan mengunakan transportasi pribadi. Kurir tersebut akan mengambil barang yang telah diantar oleh truk ke titik transfer dan selanjutnya meneruskan pengantaran ke pelanggan. Pada skripsi ini digunakan Metode Adaptive Large Neighborhood Search (ALNS) untuk menyelesaikan permasalahan tersebut dengan menggunakan perangkat lunak. Konsep dari metode ini adalah memperbaharui struktur lingkungan melalui destroy dan repair operator dengan menggunakan probabilitas bahwa suatu operator tententu dipilih disesuaikan kembali sesuai dengan kinerja selama iterasi sebelumnya. Solusi yang ingin dicapai adalah solusi dengan total biaya pengiriman yang minimum. Berdasarkan hasil percobaan, dengan menggunakan 50 pelanggan, 1 depot, 9 titik transfer, 20 pelanggan yang dilayani sistem crowdsourced delivery, dan 3000 iterasi, diperoleh bahwa Metode ALNS dapat digunakan untuk mengoptimalkan masalah Crowdsourced Delivery 2E-VRP TTRP dengan penghematan total biaya perjalanan sebesar 40,76%.

.Crowdsourced Delivery Two-Echelon Vehicle Routing Problem with Truck and Trailer Routing Problem (2E-VRP TTRP) is a problem where goods must be sent to customers through two different distribution centers, namely depot and transfer point. In the first echelon, the goods will be sent from the depot to the transfer points or directly to the customers by trucks. Meanwhile, in the second echelon, the goods will be sent using a crowdsourced delivery system, by using couriers that have flexible schedule and using their own transportations. The couriers will pick up the goods that have been delivered by the trucks to the transfer points and deliver it to the customers. In this final project, the Adaptive Large Neighborhood Search (ALNS) Method is used to solve the problem by using software. The concept of this method is to update the neighborhood structure through the destroy and repair operators by using the probability that a certain operator is selected to be readjusted according to performance during the previous iterations. The solution to be achieved is a solution with a minimum total delivery cost. Based on the experimental results, using 50 costumers, 1 depot, 9 transfer points, 20 costumers served by the crowdsourced delivery system, and 3000 iterations, it is found that the ALNS Method was be used to optimize the Crowdsourced Delivery 2E-VRP TTRP with a total travel cost savings of 40,76%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ainna Salsabila
"Crowdsourced delivery merupakan suatu upaya dalam mengatasi masalah peningkatan kebutuhan jasa pengiriman barang akibat dari tren berbelanja online pada masyarakat yang meningkat secara signifikan. Crowdsourced delivery didefinisikan sebagai proses pengiriman barang yang melibatkan individu dengan latar belakang profesi bukan sebagai kurir untuk memenuhi kebutuhan last mile delivery. Diibaratkan kurir tersebut merupakan pekerja lepas (freelance) dari perusahaan pengiriman logistik. Last-mile delivery merupakan tahap akhir dari proses distribusi pengiriman barang dimana barang akhirnya sampai kepada pelanggan. Pada skripsi ini dilakukan perencanaan last-mile delivery dengan menggunakan integrasi crowdsourcing parsial, dimana permasalahan tersebut membutuhkan titik singgah sementara dalam proses pengiriman barang. Crowdsourcing parsial merupakan gabungan permasalahan two-echelon vehicle routing problem (2-EVRP) dan truck trailer routing problem (TTRP). Two-echelon vehicle routing problem adalah pencarian rute vehicle routing problem dengan dua tingkat jaringan distribusi. Tingkat jaringan distribusi pertama berupa rute perjalanan truk dan tingkat jaringan distribusi kedua berupa perjalanan kurir crowdsourced. Truck trailer routing problem merupakan variasi tambahan permasalahan 2-EVRP agar pelanggan dapat dilayani menggunakan truk dan juga kurir crowdsourced, jika hanya 2-EVRP saja maka pelanggan hanya dapat dilayani oleh crowd-worker. Pada permasalahan ini digunakan metode simulated annealing untuk mencari pendekatan terhadap solusi optimal rute pengiriman barang. Proses simulated annealing bekerja dengan mencari suatu posisi pada suatu temperatur tertentu untuk mereduksi rute yang tidak diperlukan dan memperbaiki solusi agar menjadi optimal. Dalam skripsi ini digunakan data sebanyak 63 titik koordinat lokasi, di mana terdiri dari 1 depot, 12 titik transfer, dan 50 pelanggan. Hasil terbaik dari beberapa kasus yang dijalankan yaitu untuk kasus 19 pelanggan dilayani truk dan 31 dilayani oleh crowd-worker, dapat menghemat biaya perjalanan sebesar 25,9748%.

Crowdsourced delivery is an effort to overcome the problem of increasing the need for goods delivery services due to the trend of online shopping in the community, which has increased significantly. Crowdsourced delivery is defined as the process of delivering goods that involve individuals with professional backgrounds not as couriers, to fulfill last-mile delivery needs. The courier is likened to a freelancer from a logistics delivery company. Last-mile delivery is the final stage of the distribution process where the goods finally arrive at the customer. In this thesis, last-mile delivery planning is carried out using partial crowdsourcing integration, where the problem requires a temporary stopover point in the process of delivering goods. Partial crowdsourcing combines the two-echelon vehicle routing problem (2-EVRP) and the truck trailer routing problem (TTRP). The two-echelon vehicle routing problem is a route-finding vehicle routing problem with two levels of distribution network. The first distribution network level is a truck route, and the second distribution network level is a crowdsourced courier. The truck trailer routing problem is an additional variation of the 2-EVRP problem to serve customers using crowdsourced trucks and couriers. If it is only 2-EVRP, then customers can only be served by crowd-workers. In this problem, the simulated annealing method is used to find an approach to the optimal solution of the shipping route. The simulated annealing process works by finding a position at a specific temperature to reduce unnecessary routes and improve the solution to become optimal. In this thesis, the data used are 63 coordinate location points, consisting of 1 depot, 12 transfer points, and 50 customers. The best results from several cases that were carried out were for cases where 19 customers were served by trucks and 31 were served by crowd-workers. It could save travel costs by 25.9748%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ainna Salsabila
"Crowdsourced delivery merupakan suatu upaya dalam mengatasi masalah peningkatan kebutuhan jasa pengiriman barang akibat dari tren berbelanja online pada masyarakat yang meningkat secara signifikan. Crowdsourced delivery didefinisikan sebagai proses pengiriman barang yang melibatkan individu dengan latar belakang profesi bukan sebagai kurir untuk memenuhi kebutuhan last mile delivery. Diibaratkan kurir tersebut merupakan pekerja lepas (freelance) dari perusahaan pengiriman logistik. Last-mile delivery merupakan tahap akhir dari proses distribusi pengiriman barang dimana barang akhirnya sampai kepada pelanggan. Pada skripsi ini dilakukan perencanaan last-mile delivery dengan menggunakan integrasi crowdsourcing parsial, dimana permasalahan tersebut membutuhkan titik singgah sementara dalam proses pengiriman barang. Crowdsourcing parsial merupakan gabungan permasalahan two-echelon vehicle routing problem (2-EVRP) dan truck trailer routing problem (TTRP). Two-echelon vehicle routing problem adalah pencarian rute vehicle routing problem dengan dua tingkat jaringan distribusi. Tingkat jaringan distribusi pertama berupa rute perjalanan truk dan tingkat jaringan distribusi kedua berupa perjalanan kurir crowdsourced. Truck trailer routing problem merupakan variasi tambahan permasalahan 2-EVRP agar pelanggan dapat dilayani menggunakan truk dan juga kurir crowdsourced, jika hanya 2-EVRP saja maka pelanggan hanya dapat dilayani oleh crowd-worker. Pada permasalahan ini digunakan metode simulated annealing untuk mencari pendekatan terhadap solusi optimal rute pengiriman barang. Proses simulated annealing bekerja dengan mencari suatu posisi pada suatu temperatur tertentu untuk mereduksi rute yang tidak diperlukan dan memperbaiki solusi agar menjadi optimal. Dalam skripsi ini digunakan data sebanyak 63 titik koordinat lokasi, di mana terdiri dari 1 depot, 12 titik transfer, dan 50 pelanggan. Hasil terbaik dari beberapa kasus yang dijalankan yaitu untuk kasus 19 pelanggan dilayani truk dan 31 dilayani oleh crowd-worker, dapat menghemat biaya perjalanan sebesar 25,9748%.

Crowdsourced delivery is an effort to overcome the problem of increasing the need for goods delivery services due to the trend of online shopping in the community, which has increased significantly. Crowdsourced delivery is defined as the process of delivering goods that involve individuals with professional backgrounds not as couriers, to fulfill last-mile delivery needs. The courier is likened to a freelancer from a logistics delivery company. Last-mile delivery is the final stage of the distribution process where the goods finally arrive at the customer. In this thesis, last-mile delivery planning is carried out using partial crowdsourcing integration, where the problem requires a temporary stopover point in the process of delivering goods. Partial crowdsourcing combines the two-echelon vehicle routing problem (2-EVRP) and the truck trailer routing problem (TTRP). The two-echelon vehicle routing problem is a route-finding vehicle routing problem with two levels of distribution network. The first distribution network level is a truck route, and the second distribution network level is a crowdsourced courier. The truck trailer routing problem is an additional variation of the 2-EVRP problem to serve customers using crowdsourced trucks and couriers. If it is only 2-EVRP, then customers can only be served by crowd-workers. In this problem, the simulated annealing method is used to find an approach to the optimal solution of the shipping route. The simulated annealing process works by finding a position at a specific temperature to reduce unnecessary routes and improve the solution to become optimal. In this thesis, the data used are 63 coordinate location points, consisting of 1 depot, 12 transfer points, and 50 customers. The best results from several cases that were carried out were for cases where 19 customers were served by trucks and 31 were served by crowd-workers. It could save travel costs by 25.9748%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Leli Nurlaeli
"Persaingan di industri rokok sangat ketat dilihat dari semakin banyaknya jumlah industri rokok yang ada di Indonesia. Perusahaan mulai menyadari bahwa logistik mempunyai pengaruh yang cukup berarti terhadap biaya. Kontribusi biaya transportasi dalam sistem distribusi perusahaan mencapai 1/3 hingga 2/3 dari total biaya distribusi. Dengan demikian diperlukan etisiensi pada sistem transportasi untuk mengurangi beban biaya operasional perusahaan. Pada kenyataannya di lapangan masalah yang sering ditemui adalah Vehicle Routing Problem (VRF). Banyak metode yang digunakan untuk menyelesaikan permasalahan ini. Salah satu metode dalam menyelesaikan masalah VRP ini adalah Adaptive Large Neighborhood Search yang mempunyai kelebihan dalam menyelesaikan masalah yang berbeda dalam VRP, yaitu The Vehicle Routing Problem with Time Windows (VRPTW) dan The Capacitated Vehicle Routing Problem (CVRP). Metode ini diharapkan akan memperbaiki sistem transportasi, khususnya penemuan rute yang akan menurunkan biaya pengiriman produk ke konsumen.
Penerapan Metode Adaptive Large Neighborhood Search ini menggunakan studi kasus. PT. X untuk pengiriman produk dari depot ke konsumen-konsumennya yang tersebar di sekitar wilayah Cirebon, Jawa Barat. Penyelesaian dilakukan menggunakan program komputer menggunakan bahasa pemrograman matlab. Selanjutnya data pengiriman selama 1 bulan diolah menggunakan peranti lunak ini dan menghasilkan rute dengan penurunan jarak tempuh sebesar 709.1 km atau sebesar 8.2%, terjadi penurunan biaya pengiriman sebesar Rp. 1.056.934,80 jika dipersentasekan adalah sebesar 8.2% dan terjadi penurunan jumlah trip Sebanyak 8 trip atau sekitar 6.35%.

Competition in cigarettes industries is very tight which is looked from the number of cigarettes industries in Indonesia. Companies realize that logistic have enough influence to expense. The transportation cost contribution on distribution system in a company typically range between one third and two thirds of total logistics costs. Because of that, efficiency is needed to decrease company?s operational cost on distribution. Problems that oiten occurs in practice what is called Vehicle Routing Problem (VRP). Many methods used to solve this kind of problem. One of the method in Vehicle Routing Problems is Adaptive Large Neighborhood Search Algorithm which can solve different problems in VRP such as The Vehicle Routing Problem with Time Windows (VRPT W) and The Capacitated Vehicle Routing Problem (CVRP). This method is hoped will improve the transportation system, especially route determining which will reduce cost of delivery to customer.
The implementation of Adaptive Large Neighborhood Algorithm use case PT. X for product shipment from depot to its consumers which spread among Cirebon, West Java. Computer programming is used to solve the problem then it is developed with Matrix Laboratory Language. Then the data for 1 month shipment is processed by this software and resulting improvement that is 709.1 km distance reduction or 8.2%, Rp. Rp. I.O56.934,80 cost reduction or 8.2% from total transportation cost and the number of trip is decrease until 8 trips or about 6.35%."
Depok: Fakultas Teknik Universitas Indonesia, 2006
T16945
UI - Tesis Membership  Universitas Indonesia Library
cover
Leli Nurlaeli
Depok: Fakultas Teknik Universitas Indonesia, 2006
T41075
UI - Tesis Membership  Universitas Indonesia Library
cover
Putri Rahayu
"Transportasi darat, khususnya truk, merupakan penyumbang utama biaya logistik secara keseluruhan, dibandingkan dengan kereta api dan udara. Untuk mengoptimalkan biaya logistik, kita perlu mengoptimalkan rute pengiriman. Namun, tantangan yang dihadapi adalah jumlah titik pengantaran juga berkembang dengan cepat seiring berkembangnya zaman, yang membuat banyak rute yang dapat dipilih untuk melakukan pengiriman dari depot ke tiap-tiap titik, sehingga meningkatkan kompleksitas untuk menemukan rute yang optimal. Masalah rute ini dapat didefinisikan sebagai VRP yang memiliki kendala kapasitas yaitu CVRP. Penelitian sebelumnya telah berhasil menyelesaikan CVRP skala besar dengan beberapa pendekatan algoritma. Dalam penelitian ini, penulis menggabungkan savings algorithm untuk meningkatkan solusi awal dengan Tabu Search yang sangat populer untuk menyelesaikan CVRP skala besar. Algoritma yang ditingkatkan ini diuji pada benchmark CVRP Arnold et al. [5] dan terbukti memiliki hasil yang cukup kompetitif dibandingkan dengan solusi terbaik yang diketahui.

Road transportation, particularly trucking, is the main contributor of logistic cost in total, compared to rail and air. To optimize the cost of road logistics, we need to optimize delivery routes. However, the challenges are that the number of delivery points are also growing rapidly, which makes many possible routes to deliver the package from the depot, and increasing the complexity to find the optimal one. This route problem could be defined as CVRP. Previous research has already proved to solve very large scale CVRP with several approaches to the algorithm. In this paper, we’re combining a Saving Algorithm to improve the initial solution and the very popular Tabu Search to solve very large scale CVRP. This improved algorithm is tested into Arnold et. al. [5] CVRP benchmark and proved to have competitive results compared to the best known solutions."
Jakarta: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Amelia Zenita
"Perkembangan e-commerce di Indonesia mengalami peningkatan yang sangat signifikan sehingga volume permintaan pelanggan akan pengiriman barang menjadi sangat besar. Hal tersebut menyebabkan efisiensi pengiriman barang dari pusat distribusi terdekat ke tujuan akhir (last mile delivery) menjadi tantangan bagi berbagai platform e-commerce. Salah satu solusi untuk meningkatkan efisiensi last mile delivery, yaitu Vehicle Routing Problem with Roaming Delivery Locations (VRPRDL). VRPRDL merupakan masalah optimasi penentuan rute kendaraan dalam pendistribusian barang ke sejumlah pelanggan yang memiliki lebih dari satu lokasi pengiriman. Pengiriman barang dapat dilakukan ke lokasi rumah pelanggan atau lokasi cadangan (roaming delivery). Metode Iterated Local Search (ILS) akan digunakan untuk menyelesaikan permasalah tersebut. Percobaan pada skripsi ini menggunakan 30 pelanggan dengan setiap pelanggan memiliki 2 lokasi pengiriman, yaitu lokasi rumah pelanggan dan lokasi cadangan. Hasil percobaan menunjukkan bahwa metode ILS dapat memperbaiki hasil himpunan rute pada solusi awal dengan meminimumkan total waktu perjalanan sekitar 32.28% untuk home delivery, 32.8% untuk roaming delivery, dan dapat mengurangi kendaraan yang beroperasi. Selain itu, hasil percobaan juga menunjukkan bahwa roaming delivery dapat menjadi salah satu alternatif pengiriman yang efektif dengan mengurangi biaya pengiriman sekitar 16.37% serta waktu tempuh dan jumlah kendaraan yang digunakan lebih kecil dibanding home delivery.

The development of e-commerce in Indonesia has experienced a very significant increase so that the volume of customer demand for shipping goods is very large. This makes the efficiency of delivering goods from the nearest distribution center to the final destination (last mile delivery) a challenge for various e-commerce platforms. One solution to improve last mile delivery efficiency is the Vehicle Routing Problem with Roaming Delivery Locations (VRPRDL). VRPRDL is an optimization problem for determining vehicle routes in the distribution of goods to customers who have more than one delivery location. Delivery of goods can be done to the customer's home location or a backup location (roaming delivery). The Iterated Local Search (ILS) method will be used to solve the problem. The experiment in this thesis uses 30 customers with each customer having 2 delivery locations, namely the customer's home location and the backup location. The experimental results show that the ILS method can improve the results of the route set in the initial solution by minimizing the total travel time of around 32.28% for home delivery, 32.8% for roaming delivery and can reduce operating vehicles. In addition, the experimental results also show that roaming delivery can be an effective delivery alternative by reducing shipping costs by around 16.37%, reduce the travel time and number of vehicles used is smaller than home delivery."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Amalia Rahmadienna
"Kegiatan berbelanja secara online di e-commerce akhir-akhir ini sedang ramai dilakukan karena dinilai lebih praktis dan tidak membuang banyak waktu. Hal ini berbanding lurus dengan banyaknya permintaan pengiriman yang harus dipenuhi oleh pihak last-mile delivery. Last-mile delivery adalah proses pengiriman langsung ke lokasi pelanggan. Pihak last-mile delivery harus melakukan pengiriman dengan biaya yang seminimal mungkin. Biaya perjalanan dapat semakin meningkat apabila terjadi pengiriman berulang yang disebabkan pelanggan tidak berada di rumah saat dilakukan pengiriman. Alternatif pengiriman roaming delivery dapat menjadi solusi dari permasalahan tersebut karena dapat mengurangi jarak dan waktu tempuh serta mengurangi emisi serta kemacetan. Vehicle Routing Problem with Roaming Delivery Locations adalah permasalahan permintaan transportasi dengan pelanggan dapat memiliki lebih dari satu lokasi pengiriman. Pada skripsi ini, digunakan metode Multiple Ant Colony System (MACS) untuk membentuk solusi yang optimal. Multiple Ant Colony System terinspirasi dari perilaku koloni semut dalam mencari sumber makanan. Dalam membentuk sebuah solusi, dibutuhkan data pelanggan berupa koordinat lokasi pengiriman serta time window masing-masing lokasi dan banyaknya permintaan pelanggan. Sebelum dibentuk solusi terbaik menggunakan MACS, dibutuhkan solusi awal yang akan dibentuk dengan menggunakan Nearest Neighbor Heuristic. Berdasarkan simulasi program yang dilakukan pada skripsi ini, dengan data yang digunakan sebanyak 30 pelanggan dengan masing-masing pelanggan memberikan dua lokasi pengiriman, didapatkan alternatif pengiriman roaming delivery memiliki biaya perjalanan yang lebih kecil dibandingkan home delivery yang merupakan pengiriman yang hanya dapat dilakukan ke rumah pelanggan, dengan selisih sebesar 46%.

Nowadays, online shopping in e-commerce caught more attention than offline shopping because considered more practical and does not waste much time. This has led to increasing the demand for shipments made by last-mile delivery. Last-mile delivery is the final step of the delivery process, the delivery made by sending directly to the customer's house. The package must be delivered using the least-costed routes. Missed deliveries caused by customers are not at home while the deliveries made, can increase the total travel cost. There is an alternative of deliveries that can overcome this problem, i.e., roaming delivery. Roaming delivery can be a solution to these problems because it can reduce distance and travel time as well as reduce emissions and congestion. Vehicle routing problem with roaming delivery location is the variant of vehicle routing problem which each customer can have more than one delivery locations. This thesis proposed multiple ant colony system methods to find the optimum solution of vehicle routing problems with roaming delivery locations. Multiple Ant Colony System is a method inspired by the foraging behavior of colonies of ants. The input of this method is a set of customers' data, i.e., locations' coordinates, time window of each location, and the number of demands. Multiple Ant Colony System requires an initial solution constructed by the nearest neighbor heuristic which is then optimized by reducing the number of vehicles and total travel time. Based on the simulation that use 30 customers where each of the customers gives 2 different locations, the total cost of roaming delivery is cheaper than home delivery up to 46%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siregar, Esraminar
"Vehicle Routing Problem with Roaming Delivery Locations (VRPRDL) adalah masalah pencarian rute pengiriman barang yang optimal dengan mempertimbangkan lokasi pengiriman ke rumah pelanggan (home delivery) atau lokasi cadangan lain yang telah ditunjuk oleh pelanggan (roaming delivery). Jenis pengiriman tersebut dapat menjadi inovasi bagi pihak logistik dalam proses akhir pengiriman barang hingga sampai pada pelanggan (last mile delivery). Kerugian-kerugian seperti pencurian barang ataupun kerusakan barang karena pelanggan tidak berada di rumah dapat dihindari dan biaya operasional pengiriman dapat diminimalkan. Pada skripsi ini, digunakan metode algoritma genetika untuk mencari solusi dari VRPRDL. Data untuk simulasi percobaan terdiri dari 1 lokasi depot dan 30 pelanggan dengan masing-masing pelanggan memiliki 2 lokasi pengiriman yaitu 1 lokasi rumah dan 1 lokasi cadangan. Lokasi-lokasi pelanggan dan depot yang digunakan berada di provinsi DKI Jakarta. Hasil percobaan dengan menggunakan ukuran populasi 30, jumlah generasi 100, crossover rate (Cr) 0.7, dan mutation rate (Mr) 0.5 menunjukkan adanya penghematan total biaya menggunakan roaming delivery sebesar 18,90% dibandingkan dengan home delivery.

Vehicle Routing Problem with Roaming Delivery Locations (VRPRDL) is the problem of finding the optimal route for delivery of goods by considering the delivery location to the customer's house (home delivery) or other backup locations designated by the customer (roaming delivery). This type of delivery can be an innovation for logistics in delivering goods to the customer's last location or last-mile delivery. Such loss like theft of goods or damage to goods because the customer is not at home, can be avoided, and the operational shipping cost can be minimized. In this thesis, a genetic algorithm method is used to find a route solution for the problem. The data for the experimental simulation consists of 1 depot location and 30 customers with each customer having 2 delivery locations, namely one home location and one backup location. The locations of customers and depot used are in the province DKI Jakarta. The experimental result by using a population size of 30, the number of generations of 100, crossover rate (Cr) 0.7, and mutation rate (Mr) 0.5 indicates a total cost saving of using roaming delivery for 18.90% compared to home delivery."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>