Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 64963 dokumen yang sesuai dengan query
cover
Farashinta Dellarosa Nanda Pratama
"Modifikasi TiO2 dalam produksi hidrogen secara fotokatalitik telah luas dipelajari untuk mengatasi keterbatasannya dalam pemanfaatan sinar tampak dan rekombinasi electron- hole, salah satunya melalui kombinasi graphene dan dopan Fe. Penelitian ini mengkaji pengaruh variasi konsentrasi Fe pada fotokatalis Fe-graphene/TiO2 dan variasi sacrificial agent polialkohol terhadap produksi hidrogen. Karakterisasi fotokatalis dilakukan pada TiO2 P25 dan graphene/TiO2, Fe-graphene/TiO2 yang disintesis dengan metode impregnasi. Analisis XRD, SEM-EDX, UV-Vis DRS, dan FTIR menunjukkan keberadaan graphene dan dopan Fe pada TiO2 dengan ukuran kristal untuk TiO2 P25, graphene/TiO2, dan Fe-graphene/TiO2 masing-masing 17,68 nm, 17,66 nm, dan 15,16 nm. Uji produksi hidrogen dilakukan selama 5 jam dalam reaktor dengan pencahayaan internal, yang dilengkapi lampu UV 20W, buret dan cooling water. Analisis GC pada sampel gas buret mengkonfirmasi terjadinya pembentukan hidrogen. Akumulasi hidrogen yang diperoleh untuk konsentrasi Fe 0,2%, 0,5%, dan 0,7% berturut-turut sebesar 394 μmol, 315 μmol, dan 171 μmol, mengindikasikan 0,2% Fe pada Fe-graphene/TiO2 dengan band gap 3,03 eV memberikan produksi hidrogen hingga 80% lebih tinggi dari TiO2 P25. Produksi hidrogen secara fotokatalitik dengan Fe-graphene/TiO2 dan sacrificial agent alkohol terungkap menurun dalam urutan gliserol > etilen glikol > metanol > propilen glikol > n-propanol. Korelasi diperoleh antara produksi hidrogen dengan sifat alkohol yang menjadi kunci, terutama jumlah α-H, polaritas, dan potensial oksidasi dari alkohol.

Modifications of TiO2 in photocatalytic hydrogen production have been widely studied to resolve its limitation in utilizing visible light and electron-hole recombination, one of them is by the combination of graphene and Fe dopant. This study examines the effect of Fe concentration variations on Fe-graphene/TiO2 photocatalyst and polyalcohol sacrificial agent variations for hydrogen production. Photocatalyst characterization was conducted on TiO2 P25 and graphene/TiO2, Fe-graphene/TiO2 which were synthesized by impregnation method. XRD, SEM-EDX, UV-Vis DRS, and FTIR analysis showed the presence of graphene and Fe dopant on TiO2 with a crystal size for TiO2 P25, graphene/TiO2, and Fe-graphene/TiO2 were 17.68 nm, 17.66 nm, and 15.16 nm, respectively. Hydrogen production experiment was carried out for 5 hours in a reactor with internal illumination, equipped with 20W UV lamp, burette, and cooling water. GC analysis of gas sample on burette confirmed the formation of hydrogen. The accumulation of hydrogen products obtained for 0.2%, 0.5%, and 0.7% Fe were 394 μmol, 315 μmol, dan 171 μmol, respectively, indicating 0.2% Fe on Fe-graphene/TiO2 with a band gap of 3.03 eV provided up to 80% higher hydrogen production than TiO2 P25. Photocatalytic hydrogen production with Fe-graphene/TiO2 and alcohol as sacrificial agent was revealed to decrease in the order glycerol > ethylene glycol > methanol > propylene glycol > n- propanol. Correlations were established between hydrogen produced and key alcohol properties, notably the number of α-H, polarity, and oxidation potential of alcohol."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Haryadi Wibowo
"Produksi hidrogen dengan menggunakan metanol atau gliserol sebagai elektron donor pada fotokatalis TiO2, TiNT, Pt/TiO2 dan Pt/TiNT pada suhu reaksi dari 30 oC sampai dengan 70 oC telah diteliti. Metanol dan gliserol efektif sebagai elektron donor untuk produksi hidrogen secara fotokatalisis. Penggunaan metanol lebih unggul 10% dari gliserol pada semua katalis dalam total produksi hidrogen. Produksi hidrogen terbaik ditunjukkan oleh fotokatalis Pt(1%)/TiNT dengan metanol sebagai elektron donor, yaitu sebesar 2306 µmol/gcat, sementara total hidrogen dengan gliserol sebesar 2120 µmol/gcat. Penggunaan dopan Pt pada fotokatalis menghasilkan produksi hidrogen dua kali lebih besar dibandingkan dengan tanpa dopan.

Hidrogen production with methanol or glycerol as sacrificial agent using TiO2, TiO2 Nanotubes, Pt/TiO2 and Pt/TiO2 Nanotubes photocatalysts at reaction temperature 30 oC to 70 oC have been investigated. Methanol and glycerol were effective for hydrogen production and the best result was methanol with Pt(1%)/TiO2 that have 2306 µmol/gcat, meanwhile with glycerol only produce 2120 µmol/gcat. The other photocatalyst also have the same pattern, which metanol give 10% higher result on total hydrogen production. Catalyst with Pt give twice higher hydrogen production rather than with no Pt.
"
Depok: Fakultas Teknik Universitas Indonesia, 2012
T40844
UI - Tesis Open  Universitas Indonesia Library
cover
Jenny Azzahra
"Salah satu teknologi produksi hidrogen yang ramah lingkungan adalah pemisahan air secara fotokatalitik dengan TiO2. Modifikasi TiO2 dengan dopan logam transisi Ni memerlukan bantuan promotor untuk memaksimalkan produksi hidrogen. Grafena dan g-C3N4 dapat berperan sebagai promotor bagi TiO2 karena memiliki kesamaan struktur 2D namun memiliki peran yang berbeda dalam produksi hidrogen secara fotokatalitik. Pada penelitian ini, loading Ni divariasikan pada Ni-G/TiO2 hingga diperoleh loading Ni terbaik dengan produksi hidrogen tertinggi, kemudian akan digunakan pada Ni-g-C3N4/TiO2 untuk membandingkan pengaruh promotor grafena dan g-C3N4. Karakterisasi fotokatalis dilakukan dengan analisis XRD, UV-Vis, dan FTIR. Uji produksi hidrogen dilakukan selama 4 jam dalam reaktor menggunakan lampu UV 20W dengan pencahayaan internal. Hasil uji produksi hidrogen untuk variasi loading Ni (0%, 0,5%, 1%, 2%, dan 4%) pada Ni-G/TiO2 berturut-turut sebesar 407,95 μmol, 450,62 μmol, 418,87 μmol, 477,89 μmol, dan 507,38 μmol. Sementara hasil uji produksi hidrogen pada TiO2 P25, g-C3N4, dan 4% Ni-g-C3N4/TiO2 berturut-turut sebesar 327,02 μmol, 291,93 μmol, dan 358,81 μmol. Hasil penelitian ini menunjukkan bahwa komposit 4% Ni-G/TiO2 merupakan alternatif yang menjanjikan untuk produksi hidrogen secara fotokatalitik karena menghasilkan hidrogen hingga 55% lebih tinggi dari TiO2 P25.

One of environmentally friendly hydrogen production technologies is photocatalytic water-splitting with TiO2. Modification of TiO2 with transition metal Ni requires the help of promoter to maximize hydrogen production. Graphene and g-C3N4 can act as promoters for TiO2 because they have the same 2D structure but have different roles in photocatalytic hydrogen production. In this study, Ni loading was varied on Ni-G/TiO2 to obtain the best Ni loading with the highest hydrogen production, then it would be used on Ni-g-C3N4/TiO2 to compare the effect of graphene and g-C3N4 promoters. Photocatalyst characterization was carried out by XRD, UV-Vis, and FTIR analysis. Hydrogen production test was carried out for 4 hours in a reactor using 20W UV lamp with internal lighting. The results of the hydrogen production test for variations in Ni loading (0%, 0.5%, 1%, 2%, and 4%) on Ni-G/TiO2 were 407.95 μmol, 450.62 μmol, 418.87 μmol, 477.89 μmol, and 507.38 μmol. Meanwhile, the results of the hydrogen production test on TiO2 P25, g-C3N4 and 4% Ni-g-C3N4/TiO2 were 327.02 μmol, 291.93 μmol, and 358.81 μmol. The results of this study indicate that 4% Ni-G/TiO2 is a promising alternative for photocatalytic hydrogen production because it produces up to 55% higher than TiO2 P25.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Indar Kustiningsih
"Optimasi berbagai parameter untuk preparasi fotokatalis TiO2 nanotubes dan TiO2 nanowires telah dilakukan, diantaranya dengan kombinasi proses sonikasi dan hidrotermal yang dilanjutkan dengan post treatment (kalsinasi atau hydrothermal post treatment) dan penambahan dopan logam (Cu, Pt) dan dopan nonlogam (N). Karakterisasi terhadap hasil sintesis dilakukan dengan menggunakan analisa TEM, SEM, BET, DRS dan XRD. Dari hasil analisa TEM dan SEM menunjukkan proses kombinasi sonikasi hidrothermal menggunakan NaOH diperoleh morfologi nanotubes dengan diameter luar 40 nm, sedangkan dengan KOH diperoleh struktur nanowires dengan diameter luar sebesar 6 nm. Hasil pengujian XRD menunjukkan fasa kristal baik untuk nanotubes maupun nanowires yang dihasilkan adalah anatase. Uji aktifitas katalis untuk produksi hidrogen menggunakan sacrificial agent metanol.
Dari hasil pengujian menunjukkan modifikasi TiO2 dari nanopartikel menjadi nanotubes dapat meningkatkan produksi hidrogen menjadi dua sampai tiga kalinya, sedangkan modifikasi ke bentuk nanowires menjadi dua kali dibandingkan TiO2 P25. Luas permukaan yang tinggi dan morfologi berongga pada nanotubes menyebabkan dispersi dopan Pt pada TiO2 nanotubes menjadi lebih baik sehingga mampu meningkatkan aktivitas fotokatalis dalam memproduksi hidrogen dari air hingga delapan belas kali lebih tinggi dibandingkan tanpa dopan platina. Pemberian dopan nitrogen pada fotokatalis TiO2 nanotube belum mampu menggeser panjang gelombang absorbansi secara signifikan sehingga dengan sumber foton sinar tampak belum dapat menghasilkan hidrogen yang cukup tinggi.

Optimization of various parameters on the preparation of TiO2 nanotubes and TiO2 nanowires have been conducted, such as combination of sonication and hydrothermal process followed by post-treatment (calcination or hydrothermal post treatment) and the addition of dopant metal (Cu, Pt) and non-metallic dopants (N). The modified catalysts were characterized using TEM, SEM, BET, DRS and XRD. The TEM and SEM analysis showed that the sonication-hydrothermal treatment with aqueous NaOH and KOH lead to the formation of nanotubes and nanowires morphology with an average outer diameter of 40 nm and 6 nm, respectively. XRD analysis showed that the both morphologies have anatase crystalline phase. Performance of the prepared photocatalyst on hydrogen production was examined by using methanol as sacrificial agent.
The results indicated the modification of TiO2 nanoparticles into nanotubes could increased in producing hydrogen two-three fold, while the modification to the nanowires into two fold comparing to that of unmodified TiO2 (P25). Larger surface area and porous morphology in nanotubes enhanced the Pt dopant dispersion on TiO2 NT to increase the photocatalyst activity. Furthermore, this increased the production of hydrogen by 18 fold compared to that of non doped TiO2 nanotubes. However introduction of N dopant to the TiO2 nanotubes was not able to shift the absorbtion band toward visible region. Therefore, the high yield of hydrogen production was not achieved by as prepared N doped TiO2, when visible light was used as the photon source."
Depok: Fakultas Teknik Universitas Indonesia, 2013
D1502
UI - Disertasi Membership  Universitas Indonesia Library
cover
Abigail Shekinah Glory
"Penggunaan fotokatalis TiO2 dan modifikasinya dalam produksi hidrogen secara fotokatalitik merupakan salah satu teknologi yang ramah lingkungan. Salah satu solusi untuk mengatasi keterbatasan TiO2 dalam pemanfaatan sinar tampak adalah penambahan g-C3N4 dan grafena yang memiliki kesamaan struktur 2D dengan peran yang berbeda dalam meningkatkan aktivitas fotokatalis. Penelitian ini mengkaji pengaruh loading g-C3N4 dan grafena pada TiO2 serta kombinasinya terhadap kinerja produksi hidrogen secara fotokatalitik. Sintesis katalis pada penelitian ini dilakukan dengan metode impregnasi. Karakterisasi fotokatalis dilakukan pada TiO2 P25, g-C3N4, variasi dari g-C3N4/TiO2 dan G/TiO2, serta g-C3N4/G/TiO2 dengan karakterisasi XRD, UV-Vis, dan FTIR. Uji produksi Hidrogen dilakukan dalam reaktor dengan pencahayaan internal yang dilengkapi lampu UV 20W, dan buret dengan karakterisasi produk H2 menggunakan GC. Akumulasi hidrogen yang diperoleh dengan katalis TiO2 P25, 1% g-C3N4/TiO2, 0,3% G/TiO2, dan g-C3N4/G/TiO2 secara berturut-turut sebesar 327,22 µmol, 661,43 µmol, 727,99 µmol, dan 491,2 µmol mengindikasikan bahwa 0,3% G/TiO2 adalah katalis dengan efektivitas tertinggi dengan band gap 2,97 eV yang dapat meningkatkan produksi hidrogen hingga 2,22 kali lebih tinggi dari TiO2 P25. Kombinasi g-C3N4/G/TiO2 tidak menunjukkan performa maksimal karena keberadaan g-C3N4 dan grafena secara bersamaan diduga menyebabkan adanya efek yang menghambat peran dari masing-masing promotor tersebut dalam memperbaiki performa TiO2 dalam memproduksi H2 secara fotokatalitik.

The modification of TiO2 as a photocatalyst in photocatalytic hydrogen production is one of the environmentally friendly technologies. One of the solutions to resolve its limitation in utilizing visible light efficiently of TiO2 is the addition of Graphitic Nitride and Graphene that have a similar 2D structure with different role to improve the photocatalytic activity. This study examines the effect of loading g-C3N4 and Graphene in TiO2 along with the combination of those materials to the performance of photocatalytic hydrogen production. The synthesis process on this study was done by an impregnation method. The photocatalyst characterization was conducted on TiO2 P25, g-C3N4, variations of g-C3N4/TiO2 and G/TiO2, also g-C3N4/G/TiO2 with the method of XRD, UV-Vis, and FTIR. Hydrogen production experiment was carried out in a reactor with with 20W UV lamp, and burette with the GC analysis for the product’s characterization. The accumulation of hydrogen products for TiO2 P25, 1% g-C3N4/TiO2, 0,3% G/TiO2, and g-C3N4/G/TiO2 were 327,22 µmol, 661,43 µmol, 727,99 µmol, dan 491,2 µmol, respectively, indicating that 0.3% G/TiO2 is the most effective catalyst with a band gap of 2.97 eV that can improve the hydrogen production up to 2.22 times of TiO2 P25. The g-C3N4/G/TiO2 was not performed maximally because of the presence of g-C3N4 and Graphene simultaneously suspected could block the roles of each promoter to improve the photocatalytic performance of TiO2 in producing H2."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
I Gede Wibawa Putra
"Bahan bakar hidrogen sebagai energi terbarukan berpotensi untuk dimanfaatkan sebagai sumber energi baru dan menggantikan bahan bakar fosil karena menghasilkan emisi rendah dan tidak berdampak negatif terhadap lingkungan. Produksi hidrogen dapat dilakukan dengan reaksi pemisahan air. Dalam penelitian ini, akan diamati reaksi pemisahan air pada sistem Sel Fotoelektrokimia Tersensitasi Zat Warna (DSPEC) menggunakan nanopartikel TiO2 untuk menghasilkan hidrogen 2H+ + 2e− → H2 (0,198 V NHE pada pH 7). Film FTO/TiO2 dipreparasi dan dikarakterisasi dengan XRD dan SEM. Pewarna komersial D102 dan D131 serta pewarna Rumbipy (kompleks) digunakan sebagai zat warna tersensitasi yang akan dibandingkan dalam elektroda kerja FTO/TiO2/pewarna; faktor-faktor seperti waktu loading zat warna, hole mobility (h+), dan adanya EDTA sebagai agen sacrificial akan diinvestigasi. Produksi hidrogen optimal diperoleh pada waktu loading 3 jam untuk D102 dan Rumbipy, sementara 2 jam untuk D131, hole mobility D102, D131, dan Rumbipy masing-masing adalah 6.42, 5.25, dan 11.01 (10-10 cm2s-1). Percobaan menghasilkan produksi hidrogen dalam sistem dengan adanyaEDTA sebagai berikut, Rumbipy > D102 > D131 dengan mol hidrogen terbesar mencapai 226,4 μmol dengan efisiensi faradaic 98,88% pada zat warna Rumbipy. Sedangkan dalam sistem tanpa adanya EDTA produksi hidrogen menghasilkan D131 > D102 > Rumbipy dengan mol hidrogen terbesar hanya mencapai 0,353 μmol dengan efisiensi faradaic 2,537% pada zat warna D131, selama waktu pengukuran 550 detik dengan iradiasi 100 mWcm-2.
Hydrogen fuel as renewable energy has a potency to be utilized as new energy sources and replace fossil fuels cause it resulted low emission and having no negative impact to the environment. Hydrogen production can be carried out by water splitting. In this study, we will observe the reaction of water splitting on Dye-Sensitizer Photoelectrochemical Cell (DSPEC) system using TiO2 nanoparticles to produce hydrogen 2H+ + 2e− → H2 (0,198 V NHE in pH 7). FTO/TiO2 film was prepared and characterized by XRD and SEM. Commercial dyes D102 and D131 are used as well as Rumbipy (complex) dyes as dye sensitizer which will compared in working electrode FTO/TiO2/dyes; factors such as dye loading time, hole mobility, and with or without EDTA as sacrificial agent were studied. The optimal hydrogen production was achieved at 3 hours dye loading time for D102 and Rumbipy dyes, while 2 hours for D131 dyes, hole mobility of D102, D131, and Rumbipy dyes was 6.42, 5.25, and 11.01 (10-10 cm2s-1) respectively. The experiment resulted hydrogen production in the system with the presence of EDTA as follow Rumbipy > D102 > D131 with the largest mol hydrogen reached 226.4 μmol with faradaic efficiency 98.88% in Rumbipy dyes. Whereas in the system without EDTA the hydrogen production resulted D131 > D102 > Rumbipy with the largest mol hydrogen only reached 0.35 μmol with faradaic efficiency 2.54% in D131 dyes, during measurements time 550 seconds with irradiation 100 mW cm-2."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alif Ahmadsyah Gibran
"Biosolar™ adalah salah satu produk bahan bakar diesel di Indonesia dengan kandungan sulfur hingga 2.500 ppm. Kandungan ini masih jauh di atas standar low-sulfur diesel (LSD) dengan batas maksimal 500 ppm sulfur maupun standar ultra-low-sulfur diesel (ULSD) dengan batas maksimal 15 ppm sulfur. Kerugian yang diakibatkan oleh tingginya kadar sulfur dalam bahan bakar ialah memperpendek umur mesin dan pencemaran lingkungan. Salah satu mekanisme pengurangan kandungan sulfur yang telah banyak dilakukan oleh penelitian lainnya adalah reaksi desulfurisasi oksidatif atau oxidative desulfurization (ODS) yang dikombinasikan dengan ekstraksi pelarut polar. Penelitian ini berfokus pada pengaruh suhu terhadap performa oksidasi dengan mengadopsi beberapa penelitian terdahulu. Titik sampel adalah pada suhu oksidasi 30oC, 50oC, dan 70oC. Proses ODS dilakukan dengan oksidator hidrogen peroksida, katalis asam asetat, dan pelarut polar metanol. Untuk mengetahui kadar sulfur sebelum dan setelah perlakuan, digunakan instrumen FTIR yang dinormalisasi dengan ASTM D 4294. Metode FTIR ternormalisasi ini teruji cukup akurat dengan penyimpangan sebesar 5,9%. Secara umum, performa desulfurisasi meningkat dari suhu 30oC menuju 50oC, namun berangsur turun ketika melewati 50oC hingga 70oC. Performa desulfurisasi terbaik didapat pada suhu oksidasi 50oC, rasio volumetrik pelarut:sampel 1:4, dan waktu ekstraksi 40 menit dengan desulfurisasi sebesar 28,2%.

Biosolar™ is a diesel fuel in Indonesia with sulfur content up to 2,500 ppm. This number is still far above low-sulfur diesel (LSD) standard with 500 ppm maximum limit of sulfur and ultra-low-sulfur diesel (ULSD) standard with 15 ppm maximum limit of sulfur. Disadvantages gained due to usage of high-sulfur content fuel are shortening of the machine lifetime and environmental pollution. One of the mechanisms for reducing sulfur content in fuel that has been carried out by other studies is oxidative desulfurization (ODS) reaction. This study focuses on the effect of temperature on oxidation performance by adopting several previous studies. The sample points are at the oxidation temperature of 30oC, 50oC, and 70oC. The ODS process was carried out with hydrogen peroxide as an oxidizing agent, acetic acid catalyst, and methanol as a polar solvent. To determine the sulfur content before and after treatment, the FTIR instrument normalized with ASTM D 4294 was used. This normalized FTIR method was tested to be quite accurate with a deviation of 5.9%. In general, the desulfurization performance increased from 30oC to 50oC, but gradually decreased as it passed 50oC to 70oC. The best desulfurization performance was obtained at an oxidation temperature of 50oC, a volumetric ratio of solvent:sample 1:4, and an extraction time of 40 minutes with desulfurization of 28.2%."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Laily Fitri Pelawi
"Dalam penelitian ini dilakukan kombinasi proses elektrokoagulasi dan fotokatalisis dan melihat efek dopan CuO dalam TiO2 nanotubes untuk mendokolorisasi limbah pewarna dan sekaligus menghasilkan H2. Dekolorisasi dan produksi hidrogen secara simultan dilakukan dalam reaktor yang terbuat dari akrilik yang dilengkapi dengan power supply dan lampu UV. H2 dihasilkan dari reduksi ion H+ dalam larutan pada katoda stainless steel dan watersplitting oleh fotokatalisis secara bersamaan. Dekolorisasi tartrazin diperoleh dari kombinasi adsorpsi dengan elektrokoagulasi dan degradasi dengan fotokatalisis. TiO2 nanotubes disintesis dengan metode anodisasi, kemudian dimodifikasi dengan memberi dopan CuO dengan metode SILAR (Successive Ionic Layer Adsorption and Reaction). Hasil SEM dengan adanya dopan CuO 0,04 M; 0,05 M; dan 0,06 M mengkonfirmasi bahwa struktur nanotubes masih terbentuk dengan baik dengan diameter rata-rata berturut-turut 149 nm, 158 nm, dan 166 nm dan ketebalan tabung rata-rata berturut-turut 44 nm, 50 nm, dan 52 nm. Kehadiran Cu terdeteksi oleh analisis dengan EDX, yang berjumlah 0,4% wt, 1,09% wt dan 1,68% wt berturut-turut untuk dopan CuO 0,04 M; 0,05 M; dan 0,06 M pada TiO2 nanotubes. Hasil XRD menunjukkan bahwa TiO2 nanotubes berada dalam fase anatase dengan ukuran kristal 27,8 nm; 27 nm; dan 26,9 nm. Energi band gap dihitung menggunakan persamaan Kubelka-Munk dari hasil karakterisasi UV-Vis DRS. Hasil perhitungan menunjukkan bahwa, energi band gap dari CuO-TiO2 nanotubes berkurang dari band gap TiO2 nanotubes murni. Konversi dekolorisasi tartrazin berturut-turut pada sistem elektrokoagulasi, fotokatalisis dan elektrokoagulasi-fotokatalisis dalam waktu 4 jam reaksi adalah 87,6%; 32,3% dan 99,3%. Baku mutu pada sistem tunggal elektrokoagulasi 50 V dapat dicapai sekitar 1,3 jam reaksi dan jika dikombinasikan dengan sistem fotokatalisis CuO-TiO2 nanotubes hanya dibutuhkan waktu kurang dari 1 jam. Akumulasi produk H2 yang dihasilkan berturut-turut pada sistem elektrokoagulasi, fotokatalisis, dan kombinasinya yaitu sebesar 0,997 mmol, 0,008 mmol, dan 1,841 mmol. Hal ini menunjukkan dengan mengkombinasikan sistem fotokatalisis pada elektrokoagulasi dapat meningkatkan kemampuan dalam mendekolorisasi sebanyak 21,7% sehingga dapat mempercepat waktu dalam mencapai baku mutu dan produksi H2 sebanyak 83%. Kinetika dekolorisasi tartrazin pada sistem fotokatalisis dan elektrokoagulasi 50 V mengikuti persamaan laju reaksi orde dua, dengan konstanta laju reaksi berturut-turut 0,006 L/mg.jam dan 0,080 L/mg.jam sedangkan sistem kombinasi mengikuti persamaan laju reaksi adsorpsi Langmuir dengan konstanta laju reaksi sebesar 1,202 jam-1. Dari data kinetika dapat disimpulkan sistem kombinasi elektrokoagulasi-fotokatalisis dengan CuO-TiO2 nanotubes merupakan sistem yang paling efektif dari sistem tunggal elektrokoagulasi dan fotokatalisis.

In this study a combination of electrocoagulation and photocatalysis processes was carried out and observed at the effect of CuO dopant in TiO2 nanotubes to decolorize the dye waste and simultaneously produce H2. The simultaneous decolorization and production of hydrogen is carried out in an acrylic reactor equipped with a power supply and UV lamps. H2 is produced from the combination of the reduction of H+ ions in solution at a stainless steel cathode and watersplitting by photocatalysis. Tartrazine decolorization is obtained from the combination of adsorption by electrocoagulation and degradation by photocatalysis. TiO2 nanotubes were synthesized by anodizing method, then modified by giving CuO dopant by SILAR (Successive Ionic Layer Adsorption and Reaction) method. SEM results in the presence of 0.04 M CuO dopants; 0.05 M; and 0.06 M confirmed that the nanotubes structure was still well formed with an average diameter of 149 nm, 158 nm, and 166 nm and an average tube thickness of 44 nm, 50 nm and 52 nm, respectively. The presence of Cu was detected by analysis with EDX, which amounted to 0.4% wt, 1.09% wt and 1.68% wt respectively for 0.04 M CuO dopants; 0.05 M; and 0.06 M on TiO2 nanotubes. The XRD results showed that TiO2 nanotubes were in the anatase phase with a crystal size of 27.8 nm; 27 nm; and 26.9 nm. Band gap energy is calculated using the Kubelka-Munk equation from the results of UV-Vis DRS characterization. The calculation results show that, the band gap energy of CuO-TiO2 nanotubes is reduced from pure TiO2 nanotubes band gap. Conversion of tartrazine decolorization respectively for the electrocoagulation, photocatalysis and electrocoagulation-photocatalysis systems within 4 hours of reaction was 87.6%; 32.3% and 99.3%. The quality standard in a single 50 V electrocoagulation system can be achieved in about 1.3 hours of reaction and when combined with a photocatalysis system CuO-TiO2 nanotubes only takes less than 1 hour. The accumulation of H2 products produced in the electrocoagulation, photocatalysis, and combination system is 0.997 mmol, 0.008 mmol and 1.841 mmol. This shows that by combining the photocatalysis system in electrocoagulation can increase the ability to decolorize by 21.7% so it will accelerate the time in achieving quality standards and H2 production by 83%. The reaction kinetics in the 50 V photocatalysis and electrocoagulation system follows the second order reaction rate equation, with reaction rate constants of 0.006 L/mg.hour and 0.080 L/mg.hour while the combination system follows the Langmuir adsorption reaction rate equation with reaction rate constants 1,202 hour-1. From the kinetics data it can be concluded that the combination of electrocoagulation-photocatalysis systems with CuO-TiO2 nanotubes is the most effective system than a single system of electrocoagulation and photocatalysis."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dianah Salsha Dilla
"Sistem kombinasi elektrokoagulasi yang ditambahkan fotokatalisis dalam mendegradasi limbah metilen biru dan antibiotik siprofloksasin sekaligus memproduksi hidrogen secara simultan dilakukan untuk melihat efek dopan Fe dalam nanopartikel TiO2. Proses degradasi maupun produksi hidrogen secara simultan berlangsung di dalam reaktor akrilik yang dilengkapi dengan power supply serta lampu Philips 250 Watt. Degradasi metilen biru dan siprofloksasin dihasilkan dari kombinasi adsorpsi koagulan melalui elektroagulasi serta degradasi langsung oleh permukaan fotokatalis. Nanokomposit disintesis melalui metode sonofotodeposisi dengan larutan Fe(NO3)3. Hasil XRD menunjukkan bahwa dopan Fe3+ berhasil masuk kedalam kisi kristal nanopartikel TiO2. Hasil karakterisasi dengan UV-Vis DRS menunjukkan bahwa energi celah pada nanokomposit Fe-TiO2 berkurang dari TiO2 murni serta dapat meningkatkan absorbansi pada spektrum cahaya tampak. Hasil FTIR menunjukkan bahwa penambahan dopan Fe dapat memberikan nilai peak yang lebih tinggi pada ikatan O-H karena peningkatan hidroksilasi pada permukaan katalis. Sistem elektrokoagulasi, fotokatalisis, dan kombinasi keduanya setelah 4 jam reaksi memiliki konversi degradasi untuk metilen biru sebesar 84,67%; 98,5%; dan 98%, sedangkan untuk degradasi siprofloksasin memiliki konversi sebesar 68,20%; 94%; dan 92,5%. Penurunan konsentrasi untuk metilen biru mencapai standar baku mutu dalam waktu sekitar 2,5 jam pada sistem tunggal elektrokoagulasi 20 V, sedangkan untuk siprofloksasin sama sekali tidak mencapai baku mutu. Namun jika dikombinasikan dengan fotokatalis Fe-TiO2, standar baku mutu metilen biru hanya memerlukan sekitar 30 menit reaksi, sedangkan untuk siprofloksasin mencapai 3,5 jam reaksi. Produksi hidrogen yang dihasilkan pada sistem elektrokoagulasi, fotokatalisis, dan kombinasi keduanya berturut-turut sebesar 0,61 mmol; 0,0001 mmol; dan 0,98 mmol. Dengan mengkombinasikan fotokatalisis dengan elektrokoagulasi mampu mendegradasi metilen biru sebanyak 16% dan 27,6% untuk siprofloksasin serta memproduksi hidrogen sebesar 60,67% lebih banyak dibandingkan sistem elektrokoagulasi tunggal.

The combined electrocoagulation system which added photocatalysis in degrading methylene blue waste and the antibiotic ciprofloxacin while simultaneously producing hydrogen was carried out to see the effect of Fe dopant in TiO2 nanoparticles. The process of degradation and production of hydrogen simultaneously takes place in an acrylic reactor equipped with a power supply and 250 Watt Philips lamp. The degradation of methylene blue and ciprofloxacin resulted from a combination of coagulant adsorption via electroagulation and direct degradation by the photocatalyst surface. Nanocomposites were synthesized by sonophotodeposition method with Fe(NO3)3 solution. The XRD results showed that the Fe3+ dopant successfully entered the crystal lattice of TiO2 nanoparticles. The results of characterization with UV-Vis DRS showed that the gap energy in Fe-TiO2 nanocomposites was reduced from pure TiO2 and could increase the absorbance in the visible light spectrum. The FTIR results show that the addition of Fe dopant can give higher peak values in the O-H bond due to the increase in hydroxylation on the catalyst surface. The electrocoagulation system, photocatalysis, and the combination of the two after 4 hours of reaction had a degradation conversion for methylene blue of 84.67%; 98.5%; and 98%, while for ciprofloxacin degradation has a conversion of 68.20%; 94%; and 92.5%. The decrease in concentration for methylene blue reached the quality standard in about 2.5 hours on a single 20 V electrocoagulation system, while for ciprofloxacin it did not reach the quality standard at all. However, when combined with Fe-TiO2 photocatalyst, the standard quality standard for methylene blue only requires about 30 minutes of reaction, while for ciprofloxacin it reaches 3.5 hours of reaction. The production of hydrogen produced in the electrocoagulation system, photocatalysis, and the combination of the two were 0.61 mmol, respectively; 0.0001 mmol; and 0.98 mmol. By combining photocatalysis with electrocoagulation, it was able to degrade 16% and 27.6% of methylene blue for ciprofloxacin and produce 60.67% more hydrogen than a single electrocoagulation system.
Keywords: Fe-TiO2 nanocomposite, electrocoagulation-photocatalysis, hydrogen, ciprofloxacin, methylene blue.
"
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rahayu Lestari Sugihartini
"Siprofloksasin (CIP) sebagai antibiotik yang banyak digunakan di rumah sakit ditemukan di berbagai perairan dengan konsentrasi yang beragam. Saat didegradasi, CIP berpotensi sebagai hole scavenger yang mampu meningkatkan kinerja fotokatalis dalam menghasilkan gas hidrogen sebagai sumber energi alternatif. Metode elektrokoagulasi dan fotokatalisis yang telah dikembangkan untuk pengolahan limbah siprofloksasin belum memiliki efektivitas yang optimal. Kombinasi kedua metode tersebut berpotensi menghasilkan efektivitas yang lebih baik dalam mendegradasi siprofloksasin dan menghasilkan gas hidrogen secara simultan. Pada penelitian ini dilakukan sintesis komposit CdS/TiO2 nanotube arrays (CdS/TiNTAs) dengan metode anodisasi dan metode SILAR (Successive Ionic Layer Adsorption Reaction) dengan memvariasikan komposisi CdS pada komposit (0,05M; 0,1M; 0,2M). Kinerja fotokatalis terbaik dihasilkan oleh 0,1M CdS/TiNTAs dengan kemampuan degradasi siprofloksasin mencapai 20,43% dan produksi hidrogen sebesar 23,5µmol/m2. Karakterisasi UV-Vis DRS menunjukkan bahwa pembentukan komposit CdS/TiNTAs menurunkan energi celah pita dari 3,16 eV menjadi 2,92 eV. Pengujian XRD membuktikan komposit CdS/TiNTAs yang disintesis berada dalam fasa anatase. FESEM-EDS menunjukkan fotokatalis memiliki morfologi nanoturbular dan mengkonfirmasi adanya unsur Cd dan S pada fotokatalis. Proses kombinasi elektrokoagulasi dan fotokatalisis dilakukan dengan menggunakan fotokatalis CdS/TiO2, anoda Aluminium, dan katoda stainless steel 316 pada tegangan 20 V selama 240 menit dengan efisiensi mencapai 87% dan produksi hidrogen mencapai 2,6 mol/m2.

Ciprofloxacin (CIP) as the most widely used antibiotics in hospitals is found in various waters with varying concentrations. When degraded, CIP has the potential to act hole scavengers that can improve photocatalyst performance in producing hydrogen gas as an alternative energy source. The electrocoagulation and photocatalysis methods that have been developed for the treatment of ciprofloxacin waste have not yet had optimal effectiveness. The combination of the two methods has the potential to produce better effectiveness in degrading ciprofloxacin and producing hydrogen gas simultaneously. In this study, the synthesis of composite CdS / TiO2 nanotube arrays (CdS / TiNTAs) is done by anodization and SILAR (Successive Ionic Layer Adsorption Reaction) method was carried out by varying the composition of CdS on composites (0.05M; 0.1M; 0.2M). The best photocatalyst performance is achieved by 0.1M CdS/TiNTAs with CIP degradation efficiency of 20.43% and hydrogen production of 23.5μmol/m2. The UV-Vis characterization of the DRS shows that CdS/TiNTAs decreased the band gap energy from 3.16 eV to 2.92 eV. XRD proved that the synthesized CdS/TiNTAs were in anatase phase. FESEM-EDS shows photocatalysts have a nanoturbular morphology and confirms the presence of Cd and S elements. The combined process of electrocoagulation and photocatalysis was carried out using CdS/TiO2 photocatalysts, Aluminum anodes, and stainless steel-316 cathode at 20 V for 240 minutes with an efficiency of 87% and hydrogen accumulation of 2.6 mol/m2."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>