Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 2503 dokumen yang sesuai dengan query
cover
cover
Gerald Mayo Leopold
"ABSTRACT
Saat ini energi dianggap sebagai kebutuhan utama di dunia. Sayangnya, energi dari bahan bakar fosil menghasilkan karbon dioksida dalam jumlah besar sehingga meningkatkan efek rumah kaca di dunia ini. Untuk mengatasi masalah ini, banyak negara berkembang telah mengkonversi bahan bakar fosil ke gas alam. Selanjutnya, gas alam masih mengandung zat pengotor, sehingga pemurnian gas alam dari zat pengotor sangat penting. Penelitian ini akan membangun simulasi pemurnian yang dicapai dengan dua simulasi yang berbeda. Pada simulasi pertama komponen akan terdiri dari metana, nitrogen dan karbon dioksida dengan persentase komposisi 80% metana dan 10% dari karbon dioksida dan nitrogen masing-masing. Simulasi kedua akan terjadi tanpa nitrogen dan dengan persentase 80% metana dan 20% dari karbon dioksida. Hasil penelitian menunjukkan bahwa karbon dioksida dapat terserap awal 50%. Di sisi lain metana tidak dapat dimurnikan dengan baik ketika ada nitrogen ada dalam proses adsorpsi.

ABSTRACT
Nowadays energy is considered as primary requirement in the world. Unfortunately, the energy from fossil fuel emits large number of carbon dioxide increasing the greenhouse effect in this world. In order to overcome this problem, many develop countries are converting fossil fuel into natural gas. Furthermore, natural gas is still occupied with impurities, therefore purification of Natural gas from impurities are very important. This study will observe the purification simulation process which attained with two different run. The first run components will consist of methane, nitrogen and carbon dioxide with percentage composition 80% of methane and 10% of carbon dioxide and nitrogen respectively. The second run will be occurred without nitrogen and with percentage 80% of methane and 20% of carbon dioxide. Result show that carbon dioxide can be adsorbed early 50 %. On the other hand methane cannot be well purified when there is nitrogen exist in the adsorption process."
Depok: Fakultas Teknik Universitas Indonesia, 2013
S46592
UI - Skripsi Open  Universitas Indonesia Library
cover
Arnetta Revieri
"Gas rumah kaca, yang didominasi oleh gas CO2 dan CH4, telah menjadi fokus intensif dalam upaya global untuk mengatasi perubahan iklim yang cepat. Solusi seperti penggunaan sumber energi terbarukan, pengelolaan limbah yang efisien, dan pengembangan teknologi ramah lingkungan, termasuk metode seperti dry reforming of methane (DRM), menjadi fokus utama dalam upaya global untuk mengurangi emisi CO2 dan CH4. Cadangan gas alam Natuna, yang mengandung 70% CO2 dan 30% CH4, memberikan peluang yang menjanjikan untuk memproduksi gas sintetis (syngas) melalui proses DRM. DRM adalah proses katalitik yang mengubah CH4 dan CO2 menjadi campuran gas sintesis hidrogen (H2) dan karbon monoksida (CO). Proses DRM bersifat katalitik dan memerlukan penggunaan katalis untuk memfasilitasi reaksi. Katalis yang digunakan biasanya adalah katalis berbasis nikel karena katalis ini telah terbukti memiliki kinerja yang tinggi pada proses DRM. Dalam penelitian ini, penentuan parameter kinetika pada reaktor unggun diam ditetapkan sebagai landasan untuk mengembangkan kondisi operasi proses DRM. Pemodelan pada penelitian ini mengikuti mekanisme Langmuir-Hinshelwood dengan reaksi permukaan sebagai Tahap Penentu Laju (TPL). Hasil penelitian menunjukkan bahwa data simulasi dengan literatur memiliki nilai error di bawah 5% yang menunjukkan bahwa parameter kinetika yang digunakan dalam simulasi valid untuk pemodelan reaktor. Pemodelan kemudian dilakukan dengan menggunakan model ideal 1D homogen semu. Berdasarkan hasil simulasi, komposisi umpan CO2:CH4 = 70:30 akan menghasilkan konversi CH4 yang lebih tinggi dibandingkan dengan komposisi CO2:CH4 = 50:50. Namun, di saat yang sama, konversi CO2 dan rasio H2/CO yang dihasilkan akan lebih rendah. Pada komposisi umpan CO2:CH4 = 50:50 pada 700°C, dihasilkan konversi CH4, konversi CO2, dan rasio H2/CO masing-masing sebesar 79,01%, 85,99%, dan 0,915. Sedangkan pada komposisi umpan CO2:CH4 = 70:30 pada suhu yang sama, dihasilkan konversi CH4, konversi CO2, dan rasio H2/CO masing-masing sebesar 97,10%, 57,40%, dan 0,68. Simulasi proses DRM dengan rasio CO2:CH4 = 70:30 juga dilakukan menggunakan model 1D homogen semu dengan pencampuran aksial. Hasil simulasi menunjukkan bahwa pada penelitian ini, faktor difusi tidak mempengaruhi konversi reaktan dan rasio produk, tetapi hanya meningkatkan kebutuhan volume reaktor.

Greenhouse gases, dominated by CO2 and CH4 gases, have become an intensive focus in the global effort to address rapid climate change. Solutions such as the use of renewable energy sources, efficient waste management, and the development of environmentally friendly technologies, including methods like dry reforming of methane (DRM), are key in the global effort to reduce CO2 and CH4 emissions. The Natuna natural gas reserve, containing 70% CO2 and 30% CH4, offers a promising opportunity to produce synthetic gas (syngas) through the DRM process. DRM is a catalytic process that converts CH4 and CO2 into a mixture of synthesis gas, hydrogen (H2), and carbon monoxide (CO). The DRM process is catalytic and requires the use of a catalyst to facilitate the reaction. Nickel-based catalysts are commonly used due to their proven high performance in the DRM process. In this study, the determination of kinetic parameters in a fixed bed reactor was established as the foundation for developing operating conditions for the DRM process. The modeling in this research followed the Langmuir-Hinshelwood mechanism with the surface reaction as the rate-determining step (RDS). The results showed that the simulation data had an error value below 5%, indicating that the kinetic parameters used in the simulation are valid for reactor modeling. Modeling was then conducted using a basic 1D pseudohomogeneous model. Based on the simulation results, a feed composition of CO2:CH4 = 70:30 will result in higher CH4 conversion compared to a composition of CO2:CH4 = 50:50. However, at the same time, the CO2 conversion and the H2/CO ratio produced will be lower. With a feed composition of CO2:CH4 = 50:50 at 700°C, CH4 conversion, CO2 conversion, and the H2/CO ratio were 79.01%, 85.99%, and 0.915, respectively. Meanwhile, with a feed composition of CO2:CH4 = 70:30 at the same temperature, CH4 conversion, CO2 conversion, and the H2/CO ratio were 97.10%, 57.40%, and 0.68, respectively. Simulation of the DRM process with CO2:CH4 = 70:30 was also carried out using a 1D pseudohomogeneous model with axial mixing. The simulation results show that in this study, the diffusion factor does not affect reactant conversion and product ratio, but only increases the required reactor volume."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gerald Mayo Leopold
"Saat ini energi dianggap sebagai kebutuhan utama di dunia. Sayangnya, energi dari bahan bakar fosil menghasilkan karbon dioksida dalam jumlah besar sehingga meningkatkan efek rumah kaca di dunia ini. Untuk mengatasi masalah ini, banyak negara berkembang telah mengkonversi bahan bakar fosil ke gas alam. Selanjutnya, gas alam masih mengandung zat pengotor, sehingga pemurnian gas alam dari zat pengotor sangat penting.
Penelitian ini akan membangun simulasi pemurnian yang dicapai dengan dua simulasi yang berbeda. Pada simulasi pertama komponen akan terdiri dari metana, nitrogen dan karbon dioksida dengan persentase komposisi 80% metana dan 10% dari karbon dioksida dan nitrogen masing-masing. Simulasi kedua akan terjadi tanpa nitrogen dan dengan persentase 80% metana dan 20% dari karbon dioksida. Hasil penelitian menunjukkan bahwa karbon dioksida dapat terserap awal 50%. Di sisi lain metana tidak dapat dimurnikan dengan baik ketika ada nitrogen ada dalam proses adsorpsi.

Nowadays energy is considered as primary requirement in the world. Unfortunately, the energy from fossil fuel emits large number of carbon dioxide increasing the greenhouse effect in this world. In order to overcome this problem, many develop countries are converting fossil fuel into natural gas. Furthermore, natural gas is still occupied with impurities, therefore purification of Natural gas from impurities are very important.
This study observed the purification simulation process which attained with two different run. The first run components were consists of methane, nitrogen and carbon dioxide with percentage composition 80% of methane and 10% of carbon dioxide and 10 % nitrogen respectively. The second run occurred without nitrogen and with percentage 80% of methane and 20% of carbon dioxide. Result show that carbon dioxide can be adsorbed nearly 50 %. On the other hand methane cannot be well purified when there is nitrogen exist in the adsorption process.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S46592
UI - Skripsi Membership  Universitas Indonesia Library
cover
Marcho Rizal
"ABSTRAK
Nano Teknologi semakin berkembang sekarang ini. Reaksi dekomposisi katalitik metana merupakan salah satu cara untuk memproduksi nano karbon. Kendala dari proses produksi nano karbon dengan menggunakan reaksi dekomposisi katalitik metana berada pada parameter kinetika yang belum diketahui terutama jika memperhitungkan deaktivasi katalis. Penelitian ini dilakukan untuk mengembangkan model serta menentukan parameter kinetik dari reaksi-reaksi elementer dekomposisi katalitik metana dengan mengikutsertakan reaksi deaktivasi katalis yang akan diselesaikan dengan menggunakan regresi non linear, metode Marquadt. Model menghasilkan nilai pra eksponensial yang berkisar antara 0.00042 hingga 34.3, dengan kisaran nilai energy aktivasi antara 50,274 kJ/mol hingga 104,673kJ/mol

ABSTRACT
Nano technology is advancing right now. Catalytic Decomposition of Methane is one of many ways to produce Nano Carbon. The problem with this method is the kinetic parameter especially if we include the deactivation of the catalyst used. This research is done to develop a model to determine the parameter kinetic of catalytic decomposition of methane that includes the deactivation of catalyst and will be solved by using a non linear regression, the Marquadt method. This research gives the pre exponensial number ranging from 0.00042 to 34.3, with activation energy ranging from 50,274 kJ/mol to 104,673kJ/mol"
Fakultas Teknik Universitas Indonesia, 2012
S43181
UI - Skripsi Open  Universitas Indonesia Library
cover
Hutagalung, Winny Laura Christina
"ABSTRAK
Penelitian ini memodelkan sanitary landfill dalam dua buah bioreaktor yang memiliki tinggi 2 m dan diameter 0,83 m dan diisi dengan kerikil, tanah, dan geotekstil. Sampah yang digunakan adalah sampah organik pasar UPS Pasar Kemiri Muka Depok. Perlakuan yang diberikan adalah penambahan air pada kedua bioreaktor dan resirkulasi leachate pada bioreaktor 1. Resirkulasi leachate dapat meningkatkan kapasitas landfill dalam memproduksi gas. Parameter yang diteliti adalah kadar air, C/N, suhu dan pH sampah, pH leachate, gas metana dan karbon dioksida. Penelitian dilakukan selama 104 hari. Hasil penelitian menunjukkan bahwa kadar air dan C/N sampah bioreaktor 1 pada hari ke-104 lebih tinggi dibandingkan dengan bioreaktor 2. Suhu sampah bioreactor 1 memiliki rentang 28-340C, sedangkan untuk bioreactor 2, yaitu 28-330C. pH sampah bioreaktor 1 menunjukkan nilai 5,72 – 7,26 dan bioreactor 2, yaitu 5,23 – 7,24. Sedangkan untuk pH leachate, bioreactor 1 menunjukkan nilai 5,73 – 8,25 dan bioreactor 2, yaitu 5,92 – 8,94. Hasil analisa Gas Chromatography menunjukkan persentase tertinggi untuk gas metana dan karbon dioksida dari bioreaktor 1, yaitu 5,13% dan 41,94% serta merupakan lebih tinggi dibandingkan dengan bioreaktor 2. Oleh karena itu, untuk memproduksi gas metana dan karbon dioksida yang lebih besar dari landfill, maka perlakuan resirkulasi leachate dapat dilakukan.

ABSTRACT
Sanitary landfill modeling in this study use bioreactors which of a height of 2 m and diameter of 0.83 m. bioreactors fulfill with gravel, soil, and geotextile. Solid waste that used in this study is organic waste from Material Recovery Facility (MRF) Pasar Kemiri Muka, Depok. The treatments that were given were addition water on both the bioreactors and leachate recirculation in bioreactor 1. Leachate recirculation can enhance the capacity of landfill gas production. The parameters studied were water content, C/N, temperature and pH solid waste, pH leachate, methane gas and carbon dioxide. This study was conducted for 104 days. The result of this research showed that water content and C/N from solid waste in bioreactor 1 on day 104 is more than bioreactor 2. Temperature in bioreactor 1 has range from 280C until 340C and for bioreactor 2; 28-330C. pH of solid waste in bioreactor 1 has range 5.72 – 7.26 and bioreactor 2; 5.23 – 7.24. pH of leachate in bioreactor 1 has range 5.73 – 8.25 and for bioreactor 2; 5.92 – 8.94. Gas Chromatography analysis showed that the highest percentage of methane and carbon dioxide gas from bioreactor 1 is 5.13% and 41.94%. That number is higher than the bioreactor 2. So, to produce gas methane and carbon dioxide from the landfill, leachate recirculation treatment can be done."
Fakultas Teknik Universitas Indonesia, 2013
T36070
UI - Tesis Membership  Universitas Indonesia Library
cover
Widiatmini Sih Winanti
"Sebagai salah satu gas rumah kaca, gas CO2 dan CH4 akan dikonversikan menjadi gas yang berguna dalam reaktor plasma non-termal dengan konfigurasi umpan 3- lewatan, yang beroperasi pada suhu ruangan. Reaktor mempunyai keunggulan dapat sekaligus mendinginkan elektroda tegangan tinggi pada proses reaksinya dan memanaskan awal umpan sebelum masuk zona plasma. Laju alir gas CO2 yang digunakan adalah 500-1.500 mL/menit dengan Time on Stream (TOS) 2,1-8,4 menit, sedangkan pada reformasi gas CO2 digunakan campuran gas CO2/CH4 (1/1) dengan laju alir 9,19; 19,45 dan 85,43 mL/menit dengan TOS 140 menit, dan tegangan reaktor 12,27 kV.
Dekomposisi gas CO2 menghasilkan gas CO dan O2 dengan konversi rendah dan menurun kembali setelah TOS 2,1 menit, karena adanya reaksi berbalik. Dari reformasi gas CO2 dihasilkan gas sintesis, H2 dan CO, C2H6 serta komponen C3. Konversi CO2 dan CH4 tertinggi dicapai pada laju alir 9,19 mL/menit yaitu 36,73% dan 35,52%. Energi spesifik terbaik pada dekomposisi CO2 adalah 270 kJ/mol, sedangkan pada reformasi CO2 adalah 2.333,5 kJ/mol.
Analisis PSSH dapat memprediksi suhu lokal pada beberapa titik didalam reaktor, sebesar ratarata 1425 K. Penelitian ini perlu dikembangkan sampai skala komersial dengan konversi dan efisiensi tinggi, untuk digunakan juga pada gas alam dengan kandungan CO2 tinggi, menghasilkan gas sintesis dan juga hidrokarbon rantai panjang sebagai bahan bakar cair melalui proses Fischer Tropsch.

As one of the Greenhouse gas, CO2 and CH4 will be converted into valuable gas in the three-pass flow configuration of non-thermal plasma reactor that operated in the room temperature. Reactor has advantage can simultaneously cool the high voltage electrode during reaction process and preheat the feed before entering the plasma zone. The used of CO2 feed flow rates was 500-1,500 mL/minute with Time on Stream (TOS) between 2.1-8.4 minutes, and CO2 reforming used the mixture of CO2/CH4 (1/1) with the feed flow rates of 9.19, 19.45 and 85.43 mL/minute until TOS 140 minutes. The electrical voltage was 12.27 kV.
The CO2 decomposition produced CO and O2 with low conversion and dropped off after TOS 2.1 minutes, due to the occurrence of reverse reaction. The CO2 reforming process produced synthesis gas, C2H6 and C3 components. The highest CO2 and CH4 conversion reached 36.73% and 35.52%, respectively at the feed flow rate of 9.19 mL/minute. The best specific energy in the CO2 decomposition was 270 kJ/mol, while the CO2 reforming was 2,333.5 kJ/mol.
Analysis of PSSH identified the local spots temperature inside the reactor, by an average of 1425 K. This research need to be developed into a high performance and efficient commercial scale reactor, to be used also for high CO2 content natural gas, producing synthesis gas and also high chained of liquid fuel hydrocarbon through Fischer Tropsch processes.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
D1905
UI - Disertasi Membership  Universitas Indonesia Library
cover
Eliza Sinta Theresia
"ABSTRAK
Bioreaktor landfill dapat mempercepat proses dekomposisi sampah dan meminimalkan emisi gas CH4 dan CO2. Pada penelitian ini dimodelkan dua buah bioreaktor, salah satu bioreaktor diberi perlakuan aerasi, sedangkan yang lainnya tanpa perlakuan aerasi. Bioreaktor berisi sampah domestik, dengan presentase 70% organik dan 30% anorganik. Dari 150 hari penelitian, diperoleh bahwa penurunan ketinggian sampah pada bioreaktor aerobik, yaitu 32,17%, sedangkan pada bioreaktor anaerobik adalah 29,17%. Nilai maksimum volume gas CH4 pada bioreaktor aerobik adalah 392,70 mL, sedangkan gas CO2 adalah 238,21 mL. Pada bioreaktor anaerobik, nilai maksimum volume gas CH4 yang diperoleh adalah 54,70 mL, sedangkan gas CO2 adalah 6,72 mL.

ABSTRACT
Bioreactor landfill can accelerate waste decomposition and minimize emission of methane and carbon dioxide. This experiment, was conducted by modelling two bioreactor landfills, either with or without aeration were configurated. Bioreactors filled with domestic waste (70% organic waste, 30% inorganic waste). From 150th day research showed that height of waste in aerobic bioreactor was 32,17%, meanwhile in anaerobic was 29,17%. Maximum methane gas volume that produced in aerobic bioreactor was 392,70 mL, meanwhile maximum carbon dioxide gas volume was 238,21 mL. In anaerobic bioreactor, maximum methane gas volume was 54,70 mL, meanwhile maximum carbon dioxide gas volume was 6,72 mL.
"
2014
S61501
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hasibuan, Rafian Nauli
"ABSTRACT
The carbon dioxide laser is one of the most versatile types on the marked today. It emits infrared radiation between 9 and 11 micrometer (μm) either at a single line selected by the user or on the strongest line in untuned cavities. It can produce continuous output power output powers ranging from well under 1W for scientific applications to many kilowatts for material working.
It can generate pulses from the nanosecond to millisecond regimes. Custom made CO2 lasers have produced continues beams of hundreds of kilowatts for military laser weapon research (Hecht 1984) or nanosecond long pulses of 40 kilo joules (kj) for research in laser induced nuclear fusion (Los Alamos National Laboratory 1982).
This versatility comes from the fact that there are several distinct types of carbon dioxide lasers. While they share the same active medium, they have important differences in internal structure and more important to the user in lunch oral characteristic. In theory the structural variations could range over a really continuous spectrum, but manufactures have settled on a few standard configurations which meet most user needs. This users see several distinct types, such as waveguide, low power sealed tube, high power following gas, and pulsed transversely excited CO2 lasers.
On TEA lasers discharge instabilities make continuous wave operation impractical at gas pressures above about 100 torr (13,3 MPa). How everit is possible to produce pulses lasting tens of nanosecond to microseconds. Such lasers are called transversely excited atmospheric (TEA) lasers because they operate at or near atmospheric pressure, although same times the term is applied to pulsed transversely excited CO2 lasers which operate at higher or lower pressures. The TEA lasers prime attraction of high power per unit volume of laser gas and have fairly complex power requirements because of the nature of their pulsed operation. Typically same energy in the form of electrons or ultraviolet photons is discharged into the laser gas slightly before the main pulse to make it possible to obtain higher output power. In this thesis, basic theory of the Carbon dioxide laser are presented in section II.
Section III descibe Optical Transducer. Section IV contains the characterization of carbon dioxide laser with the results and graphs.
Finally some conclusion regarding our discussion are summarized in section V."
1994
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Amsterdam: Elsevier , 2004
546.681 2 CAR
Buku Teks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>