Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 11259 dokumen yang sesuai dengan query
cover
cover
Muhammad Riza Raihan Satrio
"Rasio kekuatan dan densitas aluminium yang tinggi serta ketahanan aluminium yang tinggi terhadap korosi membuat aluminium menjadi material yang populer digunakan oleh industri aviasi. Sebagai salah satu aplikasinya, aluminium kerap digunaakn sebagai komponen pada helikopter. Menurut Rashid, dkk rotor adalah komponen yang paling rentan pada helikopter. Lalu Weber, dkk mengatakan bahwa 65% pilot pernah menerbangkan helikopter dengan kondisi rotor yang rusak. Banyaknya faktor yang dapat menyebabkan kerusakan pada rotor mempersulit penemuan solusi untuk kegagalan komponen. Ketangguhan patah adalah ketahanan suatu material akan perambatan retak. Penambahan laju retak dapat terjadi karena beberapa mekanisme seperti fatigue, creep, kesalahan pemilihan material, SCC, dan lainnya. Karena itu, rekayasa material mengenai ketangguhan patah menarik sangat menarik untuk dipelajari. Metode eksperimental trial and error untuk rekayasa material memerlukan banyak waktu panjang, biaya tinggi, dan akurasi penelitian yang sangat ditentukan oleh kemampuan peneliti. Metode pembelajaran mesin regresi menggunakan data dokumentasi terdahulu sehingga dapat memangkas waktu dan biaya untuk rekayasa material. Pada penelitian ini berhasil dikembangkan model pembelajaran mesin dengan menggunakan algoritma XGBoost. Kemampuan prediksi cukup baik, dibuktikan dari perbandingan nilai aktual dan prediksi serta nilai metrik model sebesar 0,906.

The high strength-to-density ratio and corrosion resistance of aluminum have made it a popular material in the aviation industry. One of its applications is in helicopter components. According to Rashid et al., the rotor is the most vulnerable component in a helicopter. Furthermore, Weber et al. stated that 65% of pilots have flown helicopters with damaged rotors. The numerous factors that can cause rotor damage make finding solutions to component failures challenging. Fracture toughness is the resistance of a material to crack propagation. Increased crack propagation can occur due to various mechanisms such as fatigue, creep, material selection errors, SCC (Stress Corrosion Cracking), and others. Therefore, studying fracture toughness in materials engineering is highly interesting. Traditional trial-and-error experimental methods for materials engineering require extensive time, high costs, and research accuracy heavily dependent on the abilities of the researchers. Regression machine learning methods using past documentation data can help reduce time and costs in materials engineering. In this study, a machine learning model using the XGBoost algorithm was successfully developed. The predictive capability was quite good, as evidenced by the comparison between actual and predicted values, as well as a model metric value of 0.906. "
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Abdullah
"Paduan aluminium silikon eutektik merupakan salah satu paduan aluminium yang paling banyak digunakan dalam dunia pengecoran. Selain karena memiliki temperatur lebur yang rendah, pada kondisi eutektik paduan aluminium silicon akan memiliki sifat mampu cor dan fluiditas yang sangat baik. Akan tetapi, pada paduan ini akan terbentuk struktur silikon eutektik yang dapat memberikan efek kurang baik pada sifat mekanis aluminium silikon tersebut. Efek tersebut dapat diperbaiki dengan penambahan unsur modifier yang diantaranya adalah unsure phospor. Penambahan phospor umumnya hanya dilakukan pada paduan aluminium silikon hipereutektik. Pada paduan aluminium silikon eutektik, diyakini bahwa unsur phospor dapat mempengaruhi struktur mikro dan sifat mekanis dari paduan ini.
Penelitian dilakukan dengan melebur ingot AC8H yang kemudian ditambahkan sejumlah silikon untuk mencapai kondisi eutektik. Phospor ditambahkan dalam bentuk serbuk flux dan dilakukan di dalam ladel. Jumlah phospor yang ditambahkan adalah sebesar 0%P, 0.002%P, 0.004%P dan 0.006%P. Masing-masing dari paduan tersebut kemudian dilakukan pengujian karakterisasi seperti komposisi kimia, struktur mikro, kekuatan tarik, kekerasan dan ketahanan aus.
Hasil penelitian menunjukkan kandungan phospor yang berbeda dengan yang direncanakan, yaitu sebesar 0.0037%P, 0.0039%P, 0.0041%P, dan 0.0045%. Meski demikian, pengaruh penambahan phospor masih dapat diamati. Pada kandungan 0.0039%P didapatkan struktur silikon eutektik dan sifat mekanis yang terbaik. Kemudian kandungan phospor yang semakin tinggi akan menghasilkan struktur silikon eutektik yang semakin kasar dan sifat mekanis yang semakin menurun.

Eutectic aluminum silicon alloy is one of the aluminum alloys which used most in the world of casting. It?s because at eutectic condition, this alloy will have very low melting temperature, give good fluidity and castability. However, at eutectic condition this alloy will tend to form eutectic silicon structure that unfavourable effect for mechanical properties of aluminum silicon alloy. This effect can be impreoved by the addition of modifier element, the phosphorus element. Generally, the phosphorus?s addition only used in aluminum silicon hypereutectic alloy. In eutectic aluminum silicon alloy, it?s believed that phosphorus element can influence the microstructure and mechanical properties of this alloy.
This research is done by melting the AC8H ingots with enough of silicon content to reach the eutectic condition. Phosphorus was added in the form of flux powder into the treatment ladle. The amount variable of phosphorus additions is 0%P, 0.002%P, 0.004%P and 0.006%P. Eeach of that phosphorus contents has passed the characterization test including chemical composition, microstructure, tension strength, hardness and wear resistance.
The results show different phosphorus content with what have been planned, 0.0037%P, 0.0039%P, 0.0041%P, and 0.0045%. However, the influence of phosphorus additions can still be analyzed. At 0.0039%P, it?s shows best eutectic silicon structure and mechanical properties. Later, the more phosphorus content (0.0041% and 0.0045%) will cause the coarsening of the eutectic silicon structure and reducing the mechanical properties."
Depok: Fakultas Teknik Universitas Indonesia, 2008
S41673
UI - Skripsi Open  Universitas Indonesia Library
cover
Agung Baskoro
"Besi merupakan elemen pengotor dalam paduan aluminium tuang yang bersifat merusak jika kadarnya berlebih. Kehadiran elemen ini dalam paduan aluminium umumnya dihasilkan dari penggunaan peralatan baja dan penambahan material scrap saat proses pengecoran. Pada kondisi kesetimbangan, kelarutan padatan besi dalam larutan padat aluminium sangat rendah (~0,05%) sehingga akan membentuk fasa intermetalik di dalam paduan aluminium. Pada paduan Al-Si, fasa intermetalik yang umum terbentuk adalah ?-Al8Fe2Si, yang berbentuk chinese script, dan ?-Al5FeSi, yang berbentuk jarum. Kehadiran fasa intermetalik ini, terutama ?-Al5FeSi, dapat menurunkan sifat mampu cor dan sifat mekanis paduan Al-Si. Banyak faktor yang mempengaruhi pembentukan fasa intermetalik dalam paduan aluminium, antara lain komposisi paduan, superheat leburan, laju pendinginan, dsb. Penelitian ini memfokuskan pada pengaruh kadar besi dan temperatur tuang terhadap sifat mampu cor, khususnya nilai fluiditas serta morfologi fasa intermetalik yang terbentuk pada paduan Al-Si hipoeutektik. Pengujian nilai fluiditas paduan Al-Si hipoeutektik ini dilakukan dengan menggunakan alat uji fluiditas vakum. Kadar besi yang bervariasi, yaitu 0,5 wt%, 1,0 wt%, 1,4 wt% dan 1,8 wt%, ditambahkan ke dalam paduan Al-Si hipoeutektik untuk mengetahui pengaruh kadar besi terhadap nilai fluiditas. Pengujian fluiditas ini dilakukan pada temperatur tuang yang bervariasi, yaitu 660_C, 680_C, 700_C dan 720_C, sehingga pengaruh superheat leburan terhadap fluiditas juga dapat diketahui. Untuk mengetahui morfologi fasa intermetalik yang terbentuk dilakukan pengamatan sampel hasil uji fluiditas dengan menggunakan Scanning Electron Microscope (SEM). Hasil penelitian menunjukkan bahwa dengan peningkatan temperatur tuang maka nilai fluiditas paduan Al-Si hipoeutektik akan semakin meningkat, namun dengan penambahan kadar besi maka nilai fluiditas akan semakin menurun. Hal ini dikarenakan dengan penambahan kadar besi maka ukuran dan jumlah fasa intermetalik yang berbentuk jarum (?-Al5FeSi) akan semakin bertambah. Fasa intermetalik tersebut akan menghalangi saluran interdendritik sehingga logam cair semakin sulit untuk masuk ke dalam cetakan.

Iron is the most common and usually (at high level) detrimental impurity in aluminum casting alloys. The impurity in aluminum alloy results mainly from the use of steel tools and scrap material in casting process. As the equilibrium solid solubility of iron in the aluminum solid solution is rather low (~0,05%), iron exists in aluminum alloy in the form of Fe-rich intermetallic phases. In Al-Si hypoeutectic alloy, the most common intermetallic phases are ?-Al8Fe2Si (appears in the form of chinese script) and ?-Al5FeSi (appears in the form of platelet). The presence of intermetallic phases, especially ?-Al5FeSi, reduce castability and mechanical properties. Many factors that influence of intermetallic formation, such as alloy composition, melt superheating, cooling rate, etc. The research focused on effect iron content and pouring temperature on castability, especially fluidity and morphology intermetallic phases that form in Al-Si hypoeutectic alloy. Research on the fluidity in Al-Si hypoeutectic alloy was conducted by using the vacuum suction test. Varied iron levels, 0.5 wt%, 1.0 wt%, 1.4 wt% and 1.8 wt%, were introduced into Al-Si hypoeutectic alloy to find out their influences on the fluidity. The research was done at varied temperatures, 660_C, 680_C, 700_C and 720_C, so effect melt superheating on fluidity could be identified. Afterwards, sample of fluidity test are observed by using Scanning Electron Microscope (SEM) to identify size and morphology their intermetallic phases. The results obtained showed that the increasing pouring temperature improve the fluidity of Al-Si hypoeutectic alloy. On the other hand, the increasing iron content reduce the fluidity of Al-Si hypoeutectic alloy due to size and volume fraction of intermetallic phases, especially ?-Al5FeSi (needle-like), will increase. The intermetallic phases causes interdendritic flow channels blocked thus the flow of liquid metal more difficult to feed in the mold."
Depok: Fakultas Teknik Universitas Indonesia, 2007
S41708
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mohammad Kamiluddin
"Paduan Al-7wt%Si merupakan salah satu jenis paduan aluminium silikon yang memiliki aplikasi besar dalam dunia pengecoran khususnya proses die casting. Dalam aplikasi di dunia industri die casting terdapat problem yang disebut dengan die soldering. Die soldering adalah fenomena menempelnya aluminium cair pada permukaan material cetakan dan ada bagian benda casting yang tersisa ketika dikeluarkan dari cetakan. Reaksi die soldering biasanya terjadi pada pengecoran cetak tekan dengan tekanan tinggi dalam paduan aluminium dan membentuk lapisan intermetalik antara aluminium cair dan cetakan. Fenomena ini menyebabkan rusaknya cetakan serta mengakibatkan kualitas permukaan cetakan yang jelek, sedangkan biaya akan terus meningkat. Penelitian ini dilakukan untuk melihat karakteristik pembentukan ketebalan dan kekerasan dari lapisan intermetlic selama proses pencelupan.
Dalam penelitian ini, ditemukan adanya lapisan fasa binary dari lapisan intermetalik FeAl2, Fe2Al5, and FeAl3 yang ditemukan di permukaan baja. Penelitian ini bertujuan untuk mencari morfologi dan karakteristik dari lapisan AlxFeySiz yang meliputi ketebalan dan kekerasan selama proses pencelupan. Material cetakan untuk penelitian ini adalah baja perkakas H13 yang dicelup dengan Al-7wt%Si dengan temperatur holding 700°C, 720°C, dan 740°C serta penambahan mangan dengan 0.1, 0.3, 0.5, dan 0.7 %.
Dari hasil penelitian diperoleh bahwa penambahan mangan diatas 0.3% pada temperatur 700°C efektif menurunkan die soldering dari ketebalan lapisan 101 mikron sampai 86 mikron di kadar 0,5%Mn dan 54 mikron pada kadar Mn 0,7%. Fenomena tersebut juga terjadi pada temperatur 740°C. Sedangkan pada temperatur 720°C, penambahan Mn efektif menurunkan fenomena die soldering setelah penambahan 0.5%Mn.
Adapun kekerasan lapisan intermetalik sangat bervariasi, hal ini disebabkan karena ukuran kekerasan sangat tergantung terhadap kandungan paduan FexAly yang terdapat dalam lapisan. Semakin banyak kandungan Fe dalam paduan lapisan intermetalik FexAly, maka kekerasannya semakin meningkat, begitu juga sebaliknya. Dengan demikian, penambahan mangan terhadap Al-7wt%Si tidak mempunyai pengaruh yang signifikan terhadap kekerasan lapisan intermetalik.

Al-7wt%Si is one of aluminium alloys which have largest application in the world of casting, especially in die casting process. In the application of die casting technology, there is a dominant problem names die soldering. Die soldering is a phenomenon in which molten aluminium ?welds? to the die surface and remains there after the ejection of the part. Soldering reactions are commonly observed during high pressure die casting of aluminium alloys, and involve the formation and growth of interfacial intermetallic layers between the die and the cast alloy. This phenomenon resulting in damage to the die and poor surface quality of the casting, but increase the production cost. This research is done to study the thickness and hardness characteristic formation of the intermetallic layers during dipping test.
In this research, the appeared binary phase of intermetallic layer is FeAl2, Fe2Al5, and FeAl3 which available at steel?s surface. This research aim is investigating morphology and characteristic of AlxFeySiz intermetallic layer which consist thickness and hardness of the layer during immersing period. The testing material for this research is annealed tool steel H13 which is immersed at Al-7%Si with various holding temperature at 700°C, 720°C, and 740°C and also added by four types mangan (Mn) composition at each temperature. The compositions of this mangan are 0.1, 0.3, 0.5, and 0.7 %.
From the laboratory activity, it was clearly shown that additional Mn above 0.3% at 700°C can decrease die soldering effect significantly. This phenomenon can be seen from the intermetallic layer thickness formed with additional Mn at 101 to 86 micron for 0.5% Mn content and 54 micron for 0.7% Mn. This tendency is happen for 740°C reacting temperature also. But for 720°C reacting temperature, the effect of additional Mn for decreasing die soldering effect start from 0.5% Mn content.
Then, intermetallic layer formed are vary due to FexAly alloy content at layer itself. The more FexAly alloy content, the more hardness level formed; and vice versa. So that, additional Mn to Al-7wt%Si did not have significant effect to hardness of intermetallic layer formed due to spreading of random hardness level at each intermetallic layer.
"
Depok: Fakultas Teknik Universitas Indonesia, 2008
S41680
UI - Skripsi Open  Universitas Indonesia Library
cover
Abdul Syakur
"Besi merupakan pengotor alami yang umum ditemukan dalam paduan hasil coran alumunium yang banyak digunakan dalam industri otomotif. Unsur besi bersifat merugikan pada alumunium karena dapat menurunkan sifat mekanis dan mampu cor paduan dengan membentuk fasa kedua intermetalik. Untuk mengantisipasi sifat yang merugikan tersebut dilakukan modifikasi menggunakan Sr yang nantinya dapat merubah morfologi dan persebaran fasa intermetalik yang berkontribusi dalam memperbaiki sifat mekanis dan mampu cor alumunium. Sehingga nantinya dapat digunakan paduan alumunium dengan toleransi kadar Fe yang tinggi.
Peneltian ini bertujuan untuk mengidentifikasi fasa intermetalik pada paduan Al-11%Si dengan variabel modifier stronsium (0,015%; 0,030%; dan 0,045%) dan unsur besi (0,6%; 0,8%; dan 1% Fe). Pembuatan sampel dilakukan dengan melebur ingot Al-11%Si serta master alloy Al-80%Fe dan Al-10%Sr melalui perhitungan material balance terlebih dahulu sebelumnya. Setelah komposisi sesuai, pengambilan sampel dilakukan menggunakan alat uji fluiditas melalui pipa tembaga agar didapatkan kecepatan pendinginan yang sama. Kemudian preparasi sampel metalografi dilakukan agar dapat dilakukan pengamatan struktur mikro menggunakan SEM. Pengujian menggunakan XRD dilakukan untuk mengidentifikasi fasa intermetalik yang terbentuk. Perhitungan fraksi area fasa intermetalik dilakukan menggunakan software PICSARA. Sedangkan untuk mengidentifikasi dan menghitung kosentrasi fasa intermetalik digunakan software PowderX dan XPowder.
Hasil penelitian menunjukan bahwa morfologi struktur silikon yang terbentuk akan semakin halus dan tersebar merata seiring dengan penambahan modifier stronsium. Kemudian nilai fraksi area, panjang maksimal, dan kosentrasi fasa intermetalik yang terendah dicapai saat penambahan 0.03% Sr. Hal ini menunjukan bahwa penambahan modifier Sr yang sesuai dapat memodifikasi morfologi dan distribusi fasa intermetalik menjadi lebih halus serta dapat meningkatkan nilai mampu alir paduan. Sedangkan semakin tinggi unsur besi yang ditambahkan, maka nilai fraksi area, panjang maksimal, dan kosentrasi fasa intermetalik juga akan semakin tinggi yang berakibat pada menurunnya nilai mampu alir paduan.

Iron is a natural impurity which is commonly found in aluminum casting alloys that has been used for automotive industries. Iron element has unfavorable characteristic by forming second phase intermetallic. So it is necessary to modify the aluminum alloy by combining Sr modifier that can improve morphology and distribution of inter-metallic phase to increase castability and mechanical properties of aluminum alloys, consequently goals of this research, that aluminum alloys with highly contained Fe impurities still can be used with higher tolerance in casting process, can be achieved.
The goal of this research is to identify intermetallic phase in eutectic aluminum silicon alloy in addition of strontium modifier (0,015%; 0,030%; and 0,045%) and iron elements (0,6%; 0,8%; and 1%) as variables. Samples prepared by melting Al-11%Si ingot subsequently Al-80%Fe and Al-10%Sr master alloys. This process counted by using the material balance formula. After the appropriate chemical composition is achieved, the sample was taken at 720°C by using fluidity testing machine through a copper pipe in order to get the same cooling temperature rate in all chemical compositions. Then samples are prepared metallographically to observe microstructures using SEM. Observations using XRD is also had been done to identify intermetallic phase quantitatively and qualitatively.
Result of the research shows that the silicon structure morphology could form finer structures and spread evenly along with addition of Strontium modifier. The minimum value of % area fraction, maximum length, and concentration of intermetallic phase were achieved when 0,030% Sr added to alloys. The result also gives information that the appropriate strontium addition to alloys would modify the morphology and distribution of intermetallic phase which improve the fluidity of the alloy. The higher iron element added, the more value of % area fraction, maximum length, and concentration of inter-metallic phase which caused poor fluidity."
Depok: Fakultas Teknik Universitas Indonesia, 2008
S41678
UI - Skripsi Open  Universitas Indonesia Library
cover
"The performance of solar cell with various surface texture patterns was reported. Wet, RIE one and two dimensions texturing with and without the nitridi antireflection coating were compared...."
Artikel Jurnal  Universitas Indonesia Library
cover
Lia Andriyah
"Paduan Al-7wt%Si merupakan salah satu jenis paduan aluminium silikon yang memiliki aplikasi dalam dunia pengecoran khususnya proses die casting. Perhatian utama pada industri die casting adalah pada die soldering yaitu ketika aluminium cair menempel pada permukaan material cetakan dan ada bagian benda casting yang tersisa ketika dikeluarkan dari cetakan. Die soldering merupakan hasil dari reaksi permukaan antara aluminium cair dengan material cetakan. Karena afinitas aluminium terhadap besi tinggi menyebabkan besi dari cetakan terdifusi ke dalam aluminium cair dan membentuk lapisan intermetalik dari fasa biner Fe-Al dan ternary Fe-Al-Si di permukaan baja. Penelitian ini dilakukan untuk mempelajari morfologi dan karakteristik yang terdiri dari ketebalan dan kekerasan lapisan intermetalik AlxFeySiz yang terbentuk selama proses pencelupan. Benda uji yang digunakan yaitu baja perkakas H13 hasil annealing, yang dicelup pada Al-7%Si dengan temperatur tahan 710_C dengan kandungan besi yang berbeda-beda, yaitu 1.68%Fe, 1.765%Fe, dan 1.798%Fe. Dalam penelitian ini dihasilkan dua lapisan intermetalik pada permukaan baja H13 yang merupakan compact intermetallic layer dan broken intermetallic layer. Hasil penelitian menunjukkan nilai ketebalan lapisan intermetalik AlxFeySiz yang terbentuk pada pencelupan baja H13 ke dalam paduan Al-7%Si pada temperatur tahan 710_C dengan kandungan Fe yang berbeda-beda, yaitu 1.68%Fe, 1.765%Fe, dan 1.798%Fe, berturut-turut sebesar 85,71 _m; 81,495 _m; dan 77,49 _m. Dengan meningkatnya kandungan Fe dalam paduan alumunium dapat menurunkan total ketebalan dari lapisan intermetalik. Nilai kekerasan lapisan intermetalik AlxFeySiz yang terbentuk pada pencelupan baja perkakas H13 ke dalam paduan Al-7%Si pada temperatur tahan 710_C dengan kandungan Fe yang berbeda-beda, yaitu 1.68%Fe, 1.765%Fe, dan 1.798%Fe, berturut-turut sebesar 269,14 HVN; 217,89 HVN; dan 487,58 HVN. Nilai kekerasan dalam setiap lapisan intermetalik tergantung dari kandungan Fe yang berdifusi dari substrat baja H13. Nilai tersebut memperlihatkan prediksi model yang mendekati hasil pengamatan yang dilakukan.

Al-7wt%Si is one of aluminum silicon alloys which have application in the world of casting, especially in die casting process. A major concern in the die casting industry is die soldering when molten aluminum sticks to the surface of the die material and remains there after the ejection of the part. Die soldering is the result of an interface reaction between the molten aluminum and the die material.Due to the high affinity that aluminum has for iron causes the iron from the steel diffuses into the aluminum melt resulting in the formation of intermediate layers of binary Fe-Al and ternary Fe-Al-Si phases on the die surface. This research is done to study the morphology and the thickness and hardness characteristic formation of the AlxFeySiz intermetallic layer formed during dipping test. The sample is as-anneal H13 tool steel that dipped into the molten Al-7%Si at holding temperature 710_C with different iron content that is 1,68%Fe, 1,765%Fe, and 1,798%Fe. The investigation resulted two intermetallic layers in the surface of H13 tool steel, compact intermetallic layer containing AlxFey phase and broken intermetallic layer containing AlxFeySiz phase. The results show the total thickness of the intermetallic layer in the process of H13 tool steel immersion in molten Al-7%Si at holding temperature 710_C with different iron content that is 1,68%Fe, 1,765%Fe, and 1,798%Fe, are 85,71 _m; 81,495 _m; and 77,49 _m, and that a higher iron content reduces the total thickness of intermetallic layer. The hardness of the AlxFeySiz intermetallic layer in the process of H13 tool steel immersion in molten Al-7%Si at holding temperature 710_C with different iron content that is 1,68%Fe, 1,765%Fe, and 1,798%Fe, are 269,14 HVN; 217,89 HVN; and 487,58 HVN. The hardness value in the intermetallic layer depends on the content of the iron diffuse from H13 substrate. These values shows similar model to results of research that has been done."
Depok: Fakultas Teknik Universitas Indonesia, 2007
S41771
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tony Hardi
"Unsur besi selalu merugikan didalam paduan alumunium tuang, didalam alumunium unsur tersebut membentuk fasa intermetalik yang tidak dapat dipisahkan baik secara kimia maupun secara thermodinamika. Dengan tingginya kandungan besi didalam alumunium maka sifat mekanis dan fluiditas dari alumunium menurun. Sementara itu fluiditas sangat mempengaruhi castability, jika nilai fluiditas rendah maka nilai castability juga menurun dan akan menimbulkan berbagai cacat pada proses pengecoran seperti keropos dan shrinkage. Dari permasalahan tersebut maka dilakukanlah penambahan modifier stronsium (Sr) dalam jumlah kecil kedalam paduan aluminium silikon eutektik yang bertujuan untuk mendapatkan nilai fluiditas atau mampu alir yang baik. Penelitian ini secara khusus ditujukan untuk mempelajari pengaruh variasi persentase penambahan besi (0.6 wt%, 0.8wt%, 1.0 wt%) dan penambahan persentase stronsium (0.015 wt %, 0.03 wt.% dan 0.045 wt%) terhadap modifikasi paduan aluminium besi silikon eutektik pada temperatur tuang yang bervariasi (660_C, 680 _C, 700 _C, 720 _C) dengan menggunakan metode fluiditas vakum (vacuum suction technique). Hasil penelitian ini menunjukkan bahwa peningkatan temperatur tuang (derajat superheat) cairan 660 _C hingga 720 _C akan meningkatkan nilai fluiditas paduan aluminium besi silikon eutektik. Sementara pada penggunaan modifier stronsium (Sr) sebanyak 0.015 wt %, 0.03 wt.% dan 0.45 wt %, terhadap penambahan besi sebanyak 0.6 wt%, 0.8wt%, 1.0 wt% , nilai fluiditas optimum dicapai saat penambahan 0.03 wt.%. Hal ini menunjukkan bahwa penggunaan modifier yang tepat akan menurunkan temperatur undercooling (_Tn dan _Tg ) dan menghasilkan struktur eutektik yang lebih bulat dan halus (fully modified) dan memodifikasi fasa intermetalik menjadi lebih kecil dan sehingga didapatkan sifat mampu alir yang semakin baik atau nilai fluiditas yang semakin tinggi.

Iron suffers more disadvantages in aluminium casting alloy. In aluminium, it formed chemically and thermodynamically inseparable intermetalic phase. Fluidity and mechanical properties of aluminium decreased, due to increasing of iron content in it. Meanwhile the fluidity extremely influenced the castability. Value of castability decreased, due to the decreasing value of fluidity, and it caused shringkage, porosity and other disadvantages in foundry process. Because of that case, it is necessary to reach value of fluidity by modifier added of insignificant number of strontium into eutectic silicon aluminium alloy. This experiment especially did for studying conservation a variety of iron percentage added (0.6 wt%, 0.8wt%, 1.0 wt%) and strontium percentage added (0.015 wt %, 0.03 wt.% dan 0.045 wt%) concerning modification of eutectic silicon iron aluminium alloy, at a variety of casting temperature (660 _C, 680 _C, 700 _C, 720 _C) by using vacuum suction technique. The result showed that value of eutectic silicon iron aluminium alloy fluidity increased, due to the increasing of casting temperature (superheat degree) from 660 _C up to 720 _C. Meanwhile in modifier added of strontium of 0.015 wt%, 0.03 wt% and 0.045 wt%, concerning iron added of 0.6 wt%, 0.8 wt%, 1.0 wt%, optimum value of fluidity was reached when adding 0.03 wt% Sr. It showed that by using efficient modifier would decreased undercooling temperature (Tn and Tg) and would resulted fully modified of eutectic structure and intermetalic phase modified to become smaller, lead on the longer the value of fluidity."
Depok: Fakultas Teknik Universitas Indonesia, 2007
S41668
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sianturi, Romega
"Kepala silinder merupakan salah satu komponen penting pada mesin pembakaran internal yang membutuhkan sifat kekuatan dan kekerasan untuk dapat melakukan fungsinya, baik pada temperatur ruang dan temperatur tinggi. Kekerasan, dalam hal ini, khususnya diperlukan agar kepala silinder dapat dilakukan proses permesinan dan perakitan. Paduan aluminium-silikon hipoeutektik AC2C sebagai material kepala silinder digunakan untuk mencapai sifat tersebut yang diproduksi dengan metode low pressure die casting (LPDC). Karena melalui proses penuangan, kepala silinder akan memiliki struktur mikro yang khas, yaitu dendritik, di mana ukuran dendrite arm spacing sekunder (SDAS) pada struktur dendritik sangat dipengaruhi oleh kecepatan pendinginan dan akan sangat memengaruhi kekerasan kepala silinder. Penelitian dilakukan untuk melihat pengaruh ukuran SDAS terhadap kekerasan kepala silinder. Proses LPDC kepala silinder, pengukuran ukuran SDAS, serta pengujian kekerasan dilakukan di sebuah perusahaan manufaktur di Karawang. Struktur mikro SDAS diamati pada enam titik dari tiga sampel kepala silinder menggunakan mikroskop digital, sementara itu ukuran SDAS diukur menggunakan perangkat lunak. Kekerasan juga diukur pada enam titik terkait pada ketiga sampel. Melalui analisis dihasilkan dua buah persamaan, yaitu persamaan matematis dan fisis. Diperoleh persamaan HB = -0,0048λ₂3 + 0,4614λ₂2 - 14,311λ₂ + 220,62 sebagai persamaan matematis yang dapat digunakan dalam hal-hal praktis serta persamaan tipe Hall-Petch HB = 721,64λ₂ - 39,065 sebagai persamaan fisis yang dapat menjelaskan fenomena atau mekanisme yang terjadi di antara ukuran SDAS dan kekerasan. Melalui persamaan fisis tersebut, ukuran SDAS memiliki hubungan yang terbalik dengan kekerasan, di mana SDAS yang kecil akan menghasilkan kekerasan yang tinggi, dan begitu sebaliknya.

Cylinder head is one of the important components in an internal combustion engine which requires strength and hardness properties to be able to perform its function, both at room temperature and high temperature. Hardness, in this case, is particularly necessary so that the cylinder head can be machined and assembled. AC2C hypoeutectic aluminum-silicon alloy as cylinder head material is used to achieve these properties which is produced by the low pressure die casting (LPDC) method. Since the cylinder head is produced by casting method, it will have a unique microstructure, namely dendritic, where the size of the secondary dendrite arm spacing (SDAS) in the dendritic structure is greatly influenced by the cooling rate and will greatly affect the hardness of the cylinder head. The research was conducted to see the effect of SDAS size on cylinder head hardness. The LPDC process of the cylinder head, SDAS size measurement, and hardness testing were carried out in a manufacturing company in Karawang. The microstructure of the SDAS was observed at six points from three cylinder head samples using a digital microscope, meanwhile the SDAS size was measured using a software. Hardness was also measured at the corresponding points in all three samples. Through the analysis, two equations are generated, namely mathematical and physical equations. An equation HB = -0.0048λ₂3 + 0.4614λ₂2 - 14.311λ₂ + 220.62 was obtained as a mathematical equation that can be used in practical matters as well as the Hall-Petch type equation HB = 721.64λ₂ - 39.065 as a physical equation that can explain phenomena or the mechanism that occurs between SDAS size and hardness. Through this physical equation, the size of SDAS has an inverse relationship with hardness, where small SDAS will produce high hardness, and vice versa."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>