Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 47214 dokumen yang sesuai dengan query
cover
cover
cover
Barkah Yusuf Widodo
"Tulisan ini berisi laporan hasil eksperimen pengenalan wajah tiga dimensi dengan sudut pandang vertikal-horisontal yang beragam. Eksperimen ini menggunakan Jaringan Syaraf Tiruan (JST) Hemispheric Structure of Hidden Layer (HSHL). HSHL adalah struktur JST dengan lapis tersembunyi berbentuk hemisfer. HSHL dirancang untuk mengenali obyek tiga dimensi dengan sudut pandang vertikalhorisontal beragam. Pelatihan dilakukan menggunakan metode-metode optimasi seperti penggunan fungsi kesalahan cross entropy dan penggunaan momentum. Pada tulisan ini juga, diaplikasikan langkah optimasi berupa modifikasi pada struktur lapis tersembunyi HSHL. Modifikasi dilakukan dengan menambahkan neuron-neuron antara di setiap ring hemisfer. Struktur turunan ini disebut HSHL multiplied. Eksperimen ini menyimpulkan bahwa HSHL dengan tipe jaringan multiplied memiliki performa lebih baik dibandingkan tipe normal dalam hal kecepatan pembelajaran. Tulisan ini juga menyimpulkan bahwa pelatihan dengan sudut pandang citra yang simetris memberikan hasil yang lebih baik."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2004
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bayu Adianto Prabowo
"Cylindrical Hidden Multi-Layer Perceptron Back Propagation (CHMLP-BP) adalah sistem jaringan syaraf tiruan berdasarkan multy-layer perceptron untuk mengenali objek 3 dimensi secara horizontal. Arsitektur CHMLP-BP dikembangkan lebih lanjut menjadi Hemisphere Structure of Hidden Layer (HSHL) sehingga mampu mengenali objek 3 dimensi secara vertikal dan horizontal dengan lingkup ½ bola. Efektifitas HSHL mendorong disempurnakannya arsitektur HSHL agar dapat mengenali objek 3 dimensi dengan lingkup 1 bola penuh. menjadi Spheric Structure of Hidden Layer. Dalam pengembangan SSHL dilakukan juga penambahan pemrosesan pada citra masukan dengan melakukan inversi dan perentangan nilai piksel citra masukan. Dilakukan juga modifikasi pada metode pengklasifikasian kelas pada neuron keluaran dari penggunaan batas treshold ½ untuk menentukan apakah neuron harus dibaca sebagai 1 atau 0 menjadi menggunakan metode greedy dengan harapan proses pembelajaran menjadi lebih mudah dan pengenalan objek 3 dimensi menjadi lebih baik. Metode eksperimen yang dilakukan pada SSHL menggunakan Percentage of Learning/Testing Paradigm. Kemampuan pengenalan objek 3 dimensi terbaik didapatkan pada jenis jaringan Multiplied untuk arsitektur SSHL Tunggal maupun Jamak dengan prosentase data pelatihan sebesar 47% didapatkan pengenalan sekitar 94% - 95% khususnya menggunakan Multiplied 3 Lapis yang mencapai 95.87%. Pengenalan terburuk pada SSHL didapatkan pada SSHL Tunggal Normal dengan prosentase data pelatihan sebesar 26% diperolah hasil pengenalan mencapai 81.02%."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2004
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mulyahari Zen
"Skripsi ini bertujuan untuk mengoptimalkan korelasi antara Transformasi Paket Wavelet dan jaringan Syaraf Tiruan topologi propagasi-balik umpan-maju dengan menggunakan pendekatan tingkah laku manusia dalam memahami obyek yang diamati. Tingkah laku ini dapat bersifat obyektif maupun subyektif tergantung dari keadaan dan tujuan pengamatan tersebut. Parameter obyektif menggunakan seluruh ciri sebagai dasar dalam melakukan klasiflkasi, sedangkan parsmeter subjektif hanya memanfaatkan ciri-ciri yang sesuai untuk memenuhi klasifikasi.
Hasil pengujian yang dilakukan menunjukkan bahwa tingkat keakuratan berkisar antara 92,861% - 97,86% jika digunakan untuk mengklasifikasikan obyek bidang datar. Sedangkan untuk tekstur antara 94,37% - 98,444%. Kemampuan perangkat lunak untuk mengenal obyek yang mengalami gangguan, yaitu maksimum sebesar 96% pada obyek yang tertranslasi, 90% pada obyek terrotasi, dan 92% pada obyek yang mengalami noise. Selain dari pada itu, kecepatan pembelajaran menjadi sangat singkat dengan rata-rata iterasi maksimal sebanyak 9134,8 kali dan waktu rata-rata kurang dari 261,726 detik.
Pengujian keseluruhan memberikan kesimpulan bahwa penambahan informasi-informasi tertentu yang berkaitan dengan ciri-ciri obyek, akan membantu dalam menghasilkan pembelajaran yang optimal dan pendeteksian yang maksimal."
Depok: Fakultas Teknik Universitas Indonesia, 2000
S39595
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ignatius Denny Wicaksono
"Skripsi ini melakukan percobaan untuk implementasi sebuah sistem pengenalan suara dengan jaringan syaraf tiruan dengan DSP Starter Kit(DSK) TMS320C6713. Implementasi pengenalan suara ini hanya terbatas pada empat angka dengan satu orang pembicara. DSK TMS320C6713 adalah suatu alat real-time yang dapat mensimulasikan DSP C6713 yang sebenarnya. Pemilihan platform DSK board disebabkan oleh banyaknya aplikasi dari pengenalan suara yang portable dan real time.
Jaringan syaraf tiruan merupakan salah satu metode yang dapat digunakan untuk pengenalan suara. Proses pengenalan suara dapat dibagi menjadi dua proses. Proses pertama adalah pelatihan. Proses pelatihan akan menghasilkan besar bobot dan bias. Proses kedua adalah proses pengenalan. Proses pengenalan diterapkan dalam DSP starter kit (DSK) TMS320C6713, dengan menggunakan bobot dan bias yang sudah dilatih.
Pada percobaan akan dilakukan perubahan node pada hidden layer dan input layer. Suara yang digunakan untuk pengenalan adalah suara real-time yang telah di-training dan suara real-time yang belum di-training. Melalui percobaan yang dilakukan didapatkan tingkat dari akurasi yang cukup tinggi. Tingkat akurasi dapat mencapai 100 %.

This final project designed and constructed speech recognition that implemented neural network processing DSP Starter Kit (DSK) TMS320C6713. The such speech recognition was built for four digit numbers that produced by one speaker. DSK TMS320C6713 is a real-time device which can simulate the real TMSC6713. The reason why DSK was choosen because there were so many applications of speech recognition was constructed portability and processing in the real time condition.
Neural network is one kind of method that can be used to recognize the observed speech. The speech recognition was built in two processes. The first was training process. The training processing would produced the weights and bias figures. The second process was recognition processing. The recognition was processed in the DSK TMS320C6713 that used the trained weights and bias figures.
The testing was done with several size of the hidden layer`s and input layer`s node. The voice which was used for recognition was divided into two kind, namely trained real time speech and untrained real time speech. The accuracy could reach 100 %.
"
Depok: Fakultas Teknik Universitas Indonesia, 2007
S40359
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Danu Widatama
"Biometrik adalah proses identifikasi dan autentikasi berdasarkan atribut unik yang dimiliki oleh manusia. Salah satu atribut manusia yang dapat digunakan untuk biometrik adalah iris. Iris adalah bagian dari mata yang mengatur banyaknya cahaya yang masuk mengenai retina. Iris berbentuk lingkaran dan memiliki karakteristik yang unik pada setiap orang. Penelitian ini adalah tentang pengenalan iris untuk biometrik.
Dalam penelitian ini pembuatan vektor masukan untuk pengenalan dilakukan dengan cara yang berbeda dari biasanya yaitu dengan melingkar, sesuai bentuk iris. Untuk pengenalannya digunakan metode pattern matching dan jaringan syaraf tiruan. Dengan pembuatan vektor masukan secara melingkar, tingkat pengenalan yang dihasilkan cukup tinggi terutama jika metode pengenalan yang digunakan adalah dengan pattern matching.

Biometric is the process of identification and authentication based on many unique attributes of human. One of the usable human attributes for biometric is iris. Iris is a part of the human eye which controls the amount of light going to the retina. Iris is circular and each person has a different iris characteristics. This research is about iris recognition for biometrics.
In this research, the input vector for recognition is created with a different way from the usual. The input vector is created by following iris shape which is circular. The recognition process is done by using pattern matching and artificial neural network. The creation of input vector by circling yields a high recognition rate, especially when pattern matching is used for the recognition process.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Sitinjak, Hermanto
"Suara denyut jantung memiliki pola khusus yang bersesuaian dengan kondisi jantung seseorang. Jantung yang tidak normal akan menimbulkan suara khas yang disebut murmur. Murmur disebabkan oleh berbagai hal yang menunjukkan kondisi jantung seseorang. Melalui Phonocardiogram (PCG) dapat dilihat gelombang sinyal denyut jantung seseorang. Spektrum denyut jantung abnormal memiliki pola spektrum yang khas. Sehingga melalui pola spektrum tersebut dapat diketahui kelainan jantung apa yang diderita oleh seseorang. Penelitian ini akan membuat suatu program simulasi yang akan mengenali tiga jenis kelainan jantung. Program simulasi ini menggunakan metode Jaringan Syaraf Tiruan dalam mengidentifikasi ketiga jenis kelainan jantung tersebut. Data yang akan digunakan sebagai database yaitu berupa sampel suara denyut jantung dengan format .wav, mono. Metode pelatihan Jaringan Syaraf Tiruan yang dibuat ini menggunakan fungsi traingdx yang terdapat pada Neural Network Toolbox MATLABTM. Adapun penggunaan fungsi traingdx ini karena waktu pelatihannya lebih cepat. Berdasarkan hasil pengujian pengenalan beberapa sampel kelainan jantung diperoleh akurasi rata-rata sebesar 82.2% dalam mengenali tiga jenis kelainan jantung tersebut.

Heartbeat has a unique pattern which corresponding to heart condition. Abnormal heart has a unique sounds which called murmurs. An murmur can be caused by something that indicates heart condition. It can be shown as a signal waveform of heartbeats by Phonocardiogram (PCG). Abnormal heartbeat has a unique spectral pattern. So with that spectral pattern it can be identify what kind of murmur types. This research make a simulation program which will identify 3 kinds of murmur heartbeats. This simulation program use Artificial Neural Network (ANN) to identify that murmurs. ANN database will use some murmurs heartbeats which record in .wav, mono fomat. Training method in this ANN use traingdx function which provided by Neural Network Toolbox MATLABTM. Traingdx function is a faster training method. This simulation program has 82.2% accuracy to detect 3 kinds of heartbeat murmur."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51434
UI - Skripsi Open  Universitas Indonesia Library
cover
A. Dipri A.
"Penyakit pada jantung merupakan salah satu penyebab kematian pada manusia di seluruh dunia. Salah satunya merupakan serangan jantung yang disebabkan adanya kelainan pada katup jantung yang dapat dideteksi melalui suara murmur pada detak jantung penderita. Skripsi ini merancang sistem pengenalan penyakit jantung dengan menggunakan metode Jaringan Syaraf Tiruan. Jaringan Syaraf Tiruan (JST) adalah suatu metode komputasi untuk memodelkan suatu sistem. Bentuk dan sifat JST yang sangat flexible memungkinkan JST digunakan untuk memodelkan, merancang dan menganalisis pengenalan penyakit jantung. Metode yang digunakan adalah backpropagation yang terdiri atas lapisan masukan, lapisan tersembunyi dan lapisan keluaran. Pada penelitian ini analisis yang dilakukan adalah training data dengan fungsi gradient (traingd) serta menggunakan fungsi aktivasi purelin. Hasil dari pengujian kelainan jantung yang diperoleh akurasi rata-ratanya sebesar 82,22 %.

Heart disease is one of dead effect of human being in the world. One of them is heart attack which is cause by valve heart disease which can be detected by murmur sound of heartbeat patients. This Final Project is design of heart disease recognition system using Neural Network method. Neural Network is a computing method for modeling the system. Neural Network configuration and characteristic is very flexible enable which used for modeling, design dan analysing heart disease recognition. The methods which used is backpropagation which consist of input layer, hidden layer and output layer. In this research the analysis that has been done is file training with gradient function (traingd) and using purelin activation function. The result from testing heart disease is obtained average accuracy about 82,22 %."
Depok: Fakultas Teknik Universitas Indonesia, 2009
S51421
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>