Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 160371 dokumen yang sesuai dengan query
cover
cover
"Pada sistem kelistrikan PLTN, daya listrik disuplai menggunakan dua sistem transmisi luar yang pertama dari main transformer dan house service transformer dan kedua dari reserve transformet. Beban listrik pada sistem ini diklasifikasikan masing-masing sistem listrik dengan safety dan sistem listrik tanpa safety. Pada sistem bolak balik dengan safety dan tanpa safety masing-masing terdapat empat bus tegangan mengengah 6,9 kv dan empat bus sistem tegangan rendah 480v. Pada sistem arus searah dengan safety terdiri dari empat sistem daya 125 v dan sistem tanpa safety dengan dua sistem daya 125 v. Peralatan pada sistem kelistikan turbin generator utama GTG safety, GTG alternate, UPS dan sistem batrai dan lain-lain. Untuk melindungi peralatan dan bangunan dari gangguan sambaran langsung dan tidak langsung maka dipasang sistem pembumian netral dan penangkal petir dan untuk melindungi personel terhadap tegngan sentuh dipasang sistem pembumian peralatan dan stasiun."
PRIMA 6:11 (2010)
Artikel Jurnal  Universitas Indonesia Library
cover
"Sistem kelistrikan pembangkit listrik tenaga nuklir. Pada sistem iini daya listrik disuplai dari2 sistem transmisi luar.yang pertama dari main transformer dan house service masing-masngsistem listrik dg safety dan sistem list tanpa safety.Pd sistem bolak balik dengan safety dan tanpa sfety masin2 trdapt embat bus tegangan menengah 6,9 KV dan empat bus sistem tegangan rendah 480 V. Pada sistem arus searah dg safety terdiri empat sistem daya 125 V dan sisitem tanpa safety terdiri dari dua sisitem daya 125V. Peralatan pada sisitem kelistrikan ini turbin generator utama, GTG safety, GTG alternate, UPS dan sisitem bateri dll. Untuk melindungi peralatan dan bangunan ini trdapat gangguan sanbaran langsubg dan tdk langsung dipasang sisitem pembunian netral dan peneangkal petir dan untuk melindungi personil thd tgangan sentuh dipasang sisitem pembumian peralatan dan pemumian stasiun. Sistem pembumian penangkal petir dihubungkan kesistem pumbumian stasiun."
Artikel Jurnal  Universitas Indonesia Library
cover
Choirul Saleh
"Pada pengoperasian sistem tenaga listrik untuk keadaan beban yang bagaimanapun, sumbangan daya dari tiap pembangkit harus ditentukan sedemikian rupa agar daya yang disuplai menjadi minimum. Biaya bahan bakar merupakan komponen biaya terbesar pada pembangkit thermis, oleh sebab itu maka biaya produksi tenaga listrik thermis, diusahakan menggunakan bahan bakar sehemat mungkin.
Metode meminimasi biaya pembangkitan akan gagal, bila tidak mencakup rugi daya pada saluran transmisi, sebab meskipun biaya bahan bakar inkremental suatu pembangkit mungkin lebih rendah dari pembangkit lainnya, akan tetapi karena terletak jauh dari pusat beban, biaya rugi-rugi transmisinya besar. Untuk mengoptimalkan biaya bahan bakar dan rugi daya pada saluran, penyelesaiannya adalah dengan menggunakan persamaan koordinasi, karena pada persamaan ini biaya pembangkitan yang optimal akan tercapai bila biaya bahan bakar inkremental total dikalikan dengan faktor penalti bernilai sama untuk semua pembangkit.
Dari hasil perhitungan optimasi didapatkan bahwa, pada beban sesaat yang sama didapatkan basil pembangkitan yang lebih rendah, hal ini disebakan karena adanya penurunan rugi daya pada saluran yang cukup signifikan, sehingga diperoleh penghematan biaya pembangkitan dibandingkan jika sistem dioperasikan manual, besar penghematan per kWh nya adalah Rp 17,0789 atau 12.97 % dari biaya pembangkitan sebelumnya, sedang rugi daya pada saat sebelum optimasi adalah 80.697 MW padasaat dioptimasi rugi dayanya sebesar 24.804 MW atau prosentasenya sebesar 225.30 %.

In order to get a minimum generation-cost of interconnected power-plants, each power plant generated power should be adjusted at a certain value depending on the load of each substations at that time. Fuel cost is the main cost portion of a thermal power plant , so to achieve a minimum cost, the thermal power plantfue consumtion should be manage efficiently.
Calculation of generation cost optimation in between power plant connected over interconnected transmision line will not be accurate if not involving transmission linespower losses. Incremental fuel cost of a power plant may be lower then another, because its location is more far away from the load centre comparied to the another power plant, the total generation cost will be higher. To get an optimal generation cost involving transmission lines power losses a coordination equation will be used. By this equation we will get the optimum generation cost while the total fuel incremental cost multiplied by penalty factor has the same value for all power plants connected to results transmission lines.
From the optimation-calculations we get lower power generation comparied to manual adjustments by load dispatch center operators, because of decreasing total transmission lines losses, also total generation cost per kWh decrease significanly. The real saving generation cost by this optirnation is Rp 10,747.00 or 8.17 % as before.
"
Depok: Fakultas Teknik Universitas Indonesia, 2000
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
"Keberhasilan operasi sistem pembangkit tenaga listrik sangat ditentukan oleh kemampuan untuk memberikan pelayanan yang handal dan kelancaran pasokan kepada konsumen. Keandalan pasokan memberikan dampak yang sangat penting dari hanya sekedar tersedianya pelayanan kepada konsumen. Idealnya, beban harus dipasok listrik dengan tegangan dan frekuensi yang konstan sepanjang waktu. Secara praktis ini berarti bahwa tegangan dan frekuensi harus dipertahankan pada toleransi yang dUjinkan dengan derajat kestabilan yang ting~ sehingga perala tan yang digunakan oleh konsum~n dapat bekerja secara memuaskan. Stabilitas sistem pembangkit secara luas didefinisikan sebagai kemampuan dari sistem pembangkit untuk mempertahankan keseimbangan operasi pada kondisi normal dan dapat mengembalikan pada kondisi yang dapat diterima setelah terjadinya gangguan. Sistem kontrol pembangkit tenaga listrik adalah merupakan proses multivariable orde tinggi yang beroperasi pada kondisi di mana perubahan akibat kondisi lingkungan terjadi secara rutin. Pada struktur yang luas sistem kontrol otomatik bekerja mengendalikan sistem pembangkit tenaga listrik yang terdiri darl kontrol unit pembangkit, kontrol sistem transmisi dan kontrol sistem pembangkitan. Sistem kontrol otomatik untuk semua peralatan dan sistem pada prinsipnya adalah sistem kontrol umpan balik yang mampu mempertahankan kestabilan sistem berdasarkan nilai presetnya setelah terjadi gangguan. Sistem kontrol pada unit pembangkit dan sistem transmisi pada dasarnya adalah suatu problem tunggal yang dapat dianalisa dengan sistem kontrol umpan batik. Pada paper ini akan disajikan analisa sistem kontrol umpan balik dengan metoda root locus untuk mengetahui rentang kestabilan sistem kontrol kecepatan turbin dengan menggunakan data parameter pokoknya."
537 JIEK 1:1 (2008)
Artikel Jurnal  Universitas Indonesia Library
cover
Agus R. Utomo
"Studi pengembangan sistem tenaga listrik perlu dilakukan secara hati-hati agar hasil yang didapatkan mencapai nilai optimum. Demikian pula dengan halnya dengan studi mengenai pengembangan sistem pembangkitan tenaga listrik. Dari sekian banyak alternatif yang memungkinkan, jika pemilihannya dilakukan secara hati-hati dengan memperhatikan aspek-aspek terkait, niscaya hasilnyapun akan optimum pula. Sehingga tujuan dari program/proyek yang dari semula telah dicanangkan dapat mencapai sasarannya. Bukan hanya aspek-aspek teknis yang ditinjau, aspek-aspek ekonomispun memegang peranan penting dalam studi tersebut, termasuk kondisi geografis dari suatu daerah/wilayah yang menjadi obyek studi. Sehingga proyek yang sudah diprogramkan tersebut tidak akan mengalami kerugian dan menjadi layak keberadaan maupun pengoperasiannya."
Depok: Fakultas Teknik Universitas Indonesia, 1992
03 Uto s
UI - Laporan Penelitian  Universitas Indonesia Library
cover
"Electric power plant system design in oil palm factory should consider the contunuity and quality of power supply, reliability of all equipments and its safety and economical value of the system..."
Artikel Jurnal  Universitas Indonesia Library
cover
Zuhal
"Permasalahan yang perlu dijawab didalam merencanakan suatu pengembangan sistem pembangkit tenaga listrik adalah bagaimana suatu investasi optimum dapat ditentukan untuk memenuhi keputusan pertambahan beban, menghadapi berbagai kendala (constraints) baik bersifat teknis-ekonomis, maupun yang berupa keterbatasan sumber daya energi.
Banyak sekali kemungkinan atau alternatif konfigurasi gabungan pembangkit tenaga listrik (generation mix) yang dapat diikut sertakan didalam suatu perencanaan jangka panjang, dan setiap jenis unit pembangkit mempunyai perbedaan yang cukup berarti dilihat dari aspek biaya modal (capital cost), biaya operasi (operating cost) maupun efisiensinya.
Disamping itu setiap jenis unit pembangkit dengan sumber daya energi tertentu mempunyai fungsi komplementer didalam seluruh konfigurasi sistem pembangkitan. Mengingat beban bervariasi secara ekstrim dari saat ke saat dan bersamaan dengan itu penyediaan (supply) sistem pembangkit diharapkan selalu mencukupi kebutuhan beban yang berfluktuasi tadi maka terdapat interelasi antara keputusan investasi dengan dinamika beban.
Dengan kata lain suatu keputusan investasi ditentukan oleh perkiraan pertumbuhan beban, atau lebih tepatnya, perkiraan pertumbuhan kurva lama beban (load duration curve) dan parameter ekonomis dari berbagai alternatif gabungan yang direncanakan. Adanya berbagai kemungkinan (alternatif) kebijaksanaan investasi tersebut merupakan motivasi yang menyebabkan berkembangnya model-model matematika (mathematical model) didalam perencanaan jangka panjang sistem tenaga listrik. "
Depok: Fakultas Teknik Universitas Indonesia, 1985
D438
UI - Disertasi Membership  Universitas Indonesia Library
cover
Arum Puni Rijanti
"Sistem kelistrikan Jawa-Bali pernah mengalami krisis sampai pertengahan tahun 2009, sumber: Kompas, Sabtu 31 Mei 2008. Pemadaman tidak bisa dihindari karena kapasitas pembangkit PLN tidak bertambah secara signifikan. Dengan pertumbuhan konsumsi listrik di atas 6 persen, cadangan daya pun terus tergerus. Rata-rata pertumbuhan pemakaian listrik pada kuartal I-2008 mencapai 6,8 persen, sementara target pertumbuhan dalam Anggaran Pendapatan dan Belanja Negara (APBN) 2008 hanya 1,9 persen. Dengan menggunakan patokan pertumbuhan itu pula, pemerintah menetapkan kuota bahan bakar minyak (BBM) untuk PLN sebanyak 9,1 kiloliter. Sementara itu, realisasi pemakaian BBM sampai April 2008 sudah mencapai 3,651 juta kiloliter atau 42,24 persen dari kuota. Cadangan daya tergerus menjadi 25 persen dari batas yang seharusnya 40 persen.
Sistem kelistrikan Jawa-Bali mengalami defisit 800-900 MW, yang mengakibatkan pemadaman bergilir di wilayah Banten, DKI Jakarta, Jawa Barat, Jawa Tengah, Jawa Timur Daerah Istimewa Yogyakarta dan Bali. Defisit disebabkan beberapa hal antara lain penurunan daya di sejumlah pembangkit PLN dan Swasta, kenaikan beban pemakaian listrik di Jawa-Bali, serta ketidaklancaran pasokan BBM ke pembangkit PLN. Hal ini terjadi karena masih dominan menggunakan pembangkit listrik berbahan bakar fosil. Cadangan bahan bakar fosil lama kelamaan akan habis kalau tidak disiasati dalam pemakaiannya. Penggunaan bahan bakar fosil ini pula yang dapat meningkatkan kadar emisi CO2 dan SO2 yang merupakan pemicu adanya pemanasan global.
Kajian ini bertujuan untuk melihat rencana optimasi pengambangan pembangkit listrik Jawa Bali dengan membandingkan pemakaian batubara dan nuklir bila dilihat dari nilai fungsi obyek, LOLP, emisi CO2 dan SO2. Diaman hasil tahun keluaran PLTN akan dipakai untuk perhitungan aliran daya bila PLTN masuk ke sistem Jawa Bali dan membandingkan rencana lokasi penempatan PLTN yaitu Banten dan Semenanjung Muria.

Electrical systems Java-Bali has experienced a crisis until the mid-2009, source: Kompas, Saturday, May 31, 2008. Extinction cannot be avoided because of PLN's generating capacity has not increased significantly. With electricity consumption growth above 6 percent, the reserves were dwindling resources. The average electricity consumption growth in the first quarter of 2008 reached 6.8 percent, while the growth target in the Budget Revenue and Expenditure (Budget) in 2008 only 1.9 percent. By using the same standards that growth, the government set a quota of oil fuel (BBM) to PLN 9.1 of kiloliters. Meanwhile, the realization of the use of fuel until April 2008 has reached 3.651 million kiloliters, or 42.24 percent of the quota. Backup power eroded to 25 percent of the limit should be 40 percent.
System of Java-Bali electricity deficit 800-900 MW, which resulted in rotating blackouts in the area of Banten, DKI Jakarta, West Java, Central Java, East Java, Yogyakarta and Bali. The deficit caused by several things including a decrease in the number of power plants and private sectors, an increase in electricity consumption load in Java-Bali, and the smooth fuel supply for power plants. This happens because it is still the dominant power plants using fossil fuel. Fossil fuel reserves will run out over time if not saving in its use. The use of these fossil fuels also can increase the levels of CO2 and SO2 emissions which are the trigger of global warming.
This study aims to look at plans floating power plant optimization Java and Bali by comparing the use of coal and nuclear when viewed from the value of object function, LOLP, CO2 and SO2 emissions. The results in output of nuclear power plants will be used to calculate the flow of power when nuclear power plants into the Java-Bali system and compare the plans of where to place nuclear plants Banten and Muria Peninsula.
"
Depok: Fakultas Teknik Universitas Indonesia, 2009
T26713
UI - Tesis Open  Universitas Indonesia Library
cover
Citra Candranurani
"Pertambahan jumlah penduduk, pertumbuhan ekonomi dan peningkatan kualitas hidup merupakan faktor utama yang mempengaruhi peningkatan kebutuhan energi listrik setiap tahunnya. Target bauran energi yang tertuang dalam perpres No. 5 Tahun 2006 mentargetkan sebesar 2 % dari total kebutuhan energi nasional di tahun 2025 akan bersumber dari energi nuklir. Badan Tenaga Nuklir Nasional (BATAN) selaku promotor untuk persiapan pembangunan PLTN telah membuat roadmap jangka panjang, dimana pada tahun 2024 di rencanakan PLTN dari pulau Bangka sudah masuk ke dalam sistem kelistrikan Sumatera. Untuk persiapan perencanaan sistem dan jaringan di Sumatera, dibuat simulasi dengan bantuan perangkat lunak Electrical Transient Analyzer Program (ETAP). Ada tiga asumsi dalam penelitian ini, yaitu pertumbuhan beban sebesar 10,2% pertahun hingga tahun 2024, penambahan PLTN dengan kapasitas 2x1000 MW di pulau Bangka, serta pembuatan sistem dan jaringan transmisi untuk penyaluran daya PLTN pada tegangan transmisi 150, 275 dan 500 kV.
Hasil penelitian penyaluran daya PLTN yang optimal pada sub sistem kelistrikan terdekat dengan lokasi PLTN yaitu sub sistem sumatera selatan adalah melalui IBT Keramasan. Total susut daya sistem keseluruhan pada penyaluran ini adalah terendah yaitu 159 MW atau 1,667% . Sedangkan untuk perencanaan penyaluran daya PLTN yang optimal pada sistem interkoneksi Sumatera adalah melalui sub sistem Sumatera Utara yaitu IBT Seirotan dan Paya Geli. Nilai susut daya sistem keseluruhan adalah 157 MW atau 1,646 % , serta memberikan perbaikan kondisi tegangan kerja keseluruhan IBT sejumlah 43,4%.

The Increasing of population, economic growth and improvement of living quality are the influenced main factor of the needs of annual electricity. Energy diffusion target on the regulation No. 5, 2006, says that 2 % of total national energy need come from nuclear energy in 2025. National Nuclear Energy Agency (BATAN) as the promoter of the development Nuclear Power Plant, has made a long term roadmap, whereas in the year of 2024, Nuclear Power Plant (NPP) from Bangka Island will be injected to the Sumatera interconnection system. For the system and transmission planning preparation, the simulation has been made with Electrical Transient Analyzer Program (ETAP) Software. The are three assumption in this research, 10,2 % annual load growth until 2024, enhancement of Nuclear Power Plant with 2 x 1000 MW capacity at Bangka island, and improvement of the system and transmission line to deliver the power from nuclear power plant on 150, 275 and 500 kV transmission line.
The research result gives that the optimum power distribution close to NPP is South Sumatera sub system through Interbus Transformer (IBT) Keramasan. The lowest total losses whole system of this distribution is 159 MW or 1,667 %. Meanwhile the optimization power distribution NPP for Sumatera interconnection grid is by north sumatera sub system through IBT Seirotan or Paya Geli. Total losses whole system of this distribution is 157 MW or 1,646%, and improvement total IBT condition voltage as many as 43,4 %.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
T32695
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>