Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 9241 dokumen yang sesuai dengan query
cover
cover
cover
cover
M.R. Dajoh
Djakarta: Pustaka Rakyat, 1953
899.231 DAJ
Buku Teks  Universitas Indonesia Library
cover
Anak Agung Ngurah Gde Sapteka
"This report is focused on the linear region of I-V characteristics of nanoscale highly-doped p-i-n diodes fabricated within ultrathin silicon-on-insulator (SOI) structures with an intrinsic layer length of 200 nm and 700 nm under a forward bias at a temperature range from 50 K to 250 K. The doping concentrations of Boron and Phosphorus in SOI p-i-n diodes are high, 1×1020 cm-3 and 2×1020 cm-3, respectively. The linearity of I-V characteristics of the p-i-n diodes under a certain forward bias voltage range and temperature range from 50 K to 250 K indicate these devices are suitable for low temperature sensing purposes. We conclude that highly-doped p-i-n diodes produce a higher current as the temperature decreases under a certain bias voltage range. Nanoscale diodes with longer and wider intrinsic layers generate higher currents under a certain range of bias voltage and low temperature measurements."
Depok: Faculty of Engineering, Universitas Indonesia, 2015
UI-IJTECH 6:3 (2015)
Artikel Jurnal  Universitas Indonesia Library
cover
Jakarta: Yayasan Pembangunan, 1951
899.22 RAT I ;899.22 RAT II
Buku Teks SO  Universitas Indonesia Library
cover
Heri Jodi
"Penggunaan elektrolit cair dalam baterai masih menyisakan masalah keamanan akibat kebocoran dan kebakaran. Karena itu, penelitian dan penemuan elektrolit padat dengan performa yang bagus menjadi hal yang sangat menarik dan penting dilakukan, untuk menggantikan elektrolit cair dalam baterai. Lithium Fosfat (Li3PO4) adalah elektrolit padat berbasis xLi2O-yP2O5 (x=3, y=1) yang stabil, namun memiliki konduktivitas ionik yang kecil sekitar 10-9~10-8 S/cm, terlalu rendah untuk diaplikasikan menjadi elektrolit dalam baterai. Penelitian ini bertujuan untuk mengembangkan bahan elektrolit padat baru berbasiskan Li2O-P2O5, dengan modifikasi komposisi paduannya, dan dikombinasikan dengan Montmorillonite (MMT) membentuk material komposit elektrolit padat.  Komposit elektrolit dipreparasi melalui teknik pencampuran metalurgi biasa dan disintesis memanfaatkan teknik reaksi padatan melt-quenching. Morfologi komposit hasil sintesis dikarakterisasi menggunakan Scanning Electron Microscopy (SEM), dipadukan dengan Energy Dispersive X-ray Spectroscopy (EDS) untuk analisis unsur, sedangkan X-ray Diffractometer (XRD) digunakan untuk analisis struktural. Pengujian performa elektrokimia yang meliputi konduktivitas, impedansi dan sifat dielektrik komposit dilakukan menggunakan Electrochemical Impedance Spectrometry (EIS). Pencampuran paduan Li3PO4 dengan MMT menggunakan pengikat PVDF, memberikan komposit yang menunjukkan konduktivitas sebesar 3.59x10-7 S/cm. Modifikasi komposisi x dari 3 menjadi 1.5, memberikan peningkatan konduktivitas menjadi 3.98x10-6 S/cm, 2-3 orde lebih tinggi dari konduktivitas Li3PO4. Penambahan konten MMT ke dalam paduan hasil modifikasi komposisi 1.5Li2O-P2O5, menciptakan komposit elektrolit padat baru yang menunjukkan konduktivitas lebih baik pada orde 10-4 S/cm. Peningkatan konduktivitas tersebut diyakini merupakan kontribusi fasa dominan Li4P2O7. MMT berkontribusi meningkatkan sifat dielektrik komposit, dan mengakibatkan muatan dalam elektrolit menjadi lebih mudah bergerak, yang ditunjukkan dengan nilai energi aktivasi komposit dengan kandungan MMT sebesar 0,86 eV, lebih rendah dibandingkan dengan komposit tanpa MMT sebesar 1.50 eV. Komposit Li2O-P2O5-MMT terbukti bisa berfungsi dengan baik sebagai elektrolit padat dalam sel baterai, dan menghantarkan muatan pada proses charge-discharge

The use of liquid electrolytes in the battery still leaves safety problems due to leaks and fires. Therefore, research and discovery of solid electrolytes with good performance are very interesting and important to do, to replace liquid electrolytes in batteries. Lithium Phosphate (Li3PO4) is a solid electrolyte based on xLi2O-yP2O5 (x = 3, y = 1) which is stable, but has a small ionic conductivity of about 10-9 ~ 10-8 S / cm, that still too low to be applied as solid electrolytes in a battery. This study aims to develop new solid electrolyte materials based on Li2O-P2O5, with modified compositions, and combined with Montmorillonite (MMT) to form a solid electrolyte composite material. Electrolyte composites are prepared through ordinary metallurgical mixing and synthesized using melt-quenching solid reaction techniques. The morphology of the synthesized composite was characterized using Scanning Electron Microscopy (SEM), combined with the Energy Dispersive X-ray Spectroscopy (EDS) for elemental analysis, while the X-ray Diffractometer (XRD) was used for structural analysis. Electrochemical performance testing which includes conductivity, impedance, and composite dielectric properties were carried out using Electrochemical Impedance Spectrometry (EIS). Mixing Li3PO4 with MMT using PVDF binder, has provided a composite that shows conductivity value of 3.59x10-7 S/cm. Modification of the composition of x value, from 3 to 1.5, gave an increase in conductivity to 3.98x10-6 S / cm, higher by 2-3 order of magnitude than that of Li3PO4. Addition of MMT content to a composition modified system 1.5Li2O-P2O5, has created a new solid electrolyte composite that shows better conductivity in the order of 10-4 S / cm. The increase in conductivity is believed to be the contribution of the dominant phase of Li4P2O7. MMT contributes to increasing composite dielectric properties and results in charge carriers becoming more easily polarized, which is indicated by the activation energy value of the composite with MMT content of 0.86 eV, lower than the composite without MMT of 1.50 eV. Li2O-P2O5-MMT composites have proven to function as solid electrolytes in battery cells and conduct charge carriers in the charge-discharge process.:major-bidi'>dikarakterisasi menggunakan Scanning Electron Microscopy (SEM), dipadukan dengan Energy Dispersive X-ray Spectroscopy (EDS) untuk analisis unsur, sedangkan X-ray Diffractometer (XRD) digunakan untuk analisis struktural. Pengujian performa elektrokimia yang meliputi konduktivitas, impedansi dan sifat dielektrik komposit dilakukan menggunakan Electrochemical Impedance Spectrometry (EIS). Pencampuran paduan Li3PO4 dengan MMT menggunakan pengikat PVDF, memberikan komposit yang menunjukkan konduktivitas sebesar 3.59x10-7 S/cm. Modifikasi komposisi x dari 3 menjadi 1.5, memberikan peningkatan konduktivitas menjadi 3.98x10-6 S/cm, 2-3 orde lebih tinggi dari konduktivitas Li3PO4. Penambahan konten MMT ke dalam paduan hasil modifikasi komposisi 1.5Li2O-P2O5, menciptakan komposit elektrolit padat baru yang menunjukkan konduktivitas lebih baik pada orde 10-4 S/cm. Peningkatan konduktivitas tersebut diyakini merupakan kontribusi fasa dominan Li4P2O7. MMT berkontribusi meningkatkan sifat dielektrik komposit, dan mengakibatkan muatan dalam elektrolit menjadi lebih mudah bergerak, yang ditunjukkan dengan nilai energi aktivasi komposit dengan kandungan MMT sebesar 0,86 eV, lebih rendah dibandingkan dengan komposit tanpa MMT sebesar 1.50 eV. Komposit Li2O-P2O5-MMT terbukti bisa berfungsi dengan baik sebagai elektrolit padat dalam sel baterai, dan menghantarkan muatan pada proses charge-discharge."
Depok: Fakultas Teknik Universitas Indonesia, 2019
D2554
UI - Disertasi Membership  Universitas Indonesia Library
cover
Anak Agung Ngurah Gde Sapteka
"Riset ini difokuskan pada karakteristik linier arus-tegangan dioda P-I-N silikon skala nano doping tinggi dalam rentang temperatur dari 50K hingga 250 K serta karakteristik arus-tegangan dan konduktansi dioda P-N Silikon skala nano doping tinggi pada temperatur 5,5K. Untuk itu dioda P-N dan P-I-N dengan konsentrasi doping tinggi difabrikasi pada wafer ultra tipis berstruktur silicon-oninsulator (SOI). Dari hasil fabrikasi telah diperoleh konsentrasi doping tinggi Boron dan Phosphorus pada divais dioda mencapai 1×1020 cm-3 and 2×1020 cm-3, berturut-turut.
Pengukuran karakteristik arus-tegangan dioda P-I-N silikon skala nano doping tinggi dilakukan pada beberapa divais dengan lapisan intrinsik sepanjang 200 nm dan 700 nm. Linieritas arus pada rentang forward bias dari 1,5 V hingga 2,0 V dan rentang temperatur dari 50 K hingga 250 K menunjukkan divais ini sesuai untuk sensor temperatur rendah. Pada pengukuran juga diperoleh data bahwa dioda P-I-N silikon skala nano doping tinggi menghasilkan arus yang lebih tinggi saat temperatur diturunkan dalam rentang forward bias dari 1,5 V hingga 2,0 V. Selain itu juga diperoleh data bahwa divais skala nano dengan lapisan intrinsik yang lebih panjang dan lebih lebar akan menghasilkan arus yang lebih tinggi pada rentang forward bias dari 1,5 V hingga 2,0 V dan temperatur dari 50K hingga 250K.
Hasil pengukuran pada dioda P-N silikon skala nano doping tinggi pada rentang forward bias hingga 0,1 Volt maupun rentang reverse bias hingga -0,1 Volt menghasilkan beberapa puncak konduktansi yang menunjukkan kesesuaian nilai dengan level energi density of state dua dimensi (2D DOS) dan level energi kombinasi phonon pada temperatur 5,5K. Pada forward bias, level energi diskret heavy hole, light hole, serta kombinasi phonon TA, LA, TO dan LO berkontribusi signifikan pada puncak konduktansi dalam rentang tegangan hingga 0,1 Volt. Demikian juga halnya pada reverse bias, level energi diskret elektron 2-fold valley, 4-fold valley, serta kombinasi phonon TA, LA, TO dan LO berkontribusi signifikan pada puncak konduktansi dalam rentang tegangan hingga -0,1 Volt. Transport elektron pada dioda P-N Silikon dalam skala nano doping tinggi akan mengalami puncak konduktansi saat elektron memiliki energi yang sama dengan level diskret energi 2D DOS. Hal ini membuktikan adanya phonon-assisted tunneling pada dioda P-N silikon skala nano doping tinggi.

This report is focused on linier current-voltage (I?V) characteristic of highly-doped nanoscale Silicon P-I-N diodes at temperature from 50K to 250K and also I-V and conductance characteristics of highly-doped nanoscale Silicon P-N diode at temperature 5.5K. For that purpose, we fabricated nano scale P-I-N and P-N diodes within ultra thin silicon-on-insulator (SOI) structures. From fabrication, we achieved high doping concentrations of Boron and Phosphorus in SOI diodes, 1×1020 cm-3 and 2×1020 cm-3, respectively.
Measurement of current-voltage characteristics of highly-doped nanoscale silicon PIN diode is performed on devices with intrinsic layer length of 200 nm and 700 nm. The current linearity under forward bias range from 1.5 V to 2.0 V and temperature range from 50K to 250K shows that these devices are suitable for lowtemperature sensor. The measurement data shows also that highly-doped nanoscale silicon PIN diode produces higher current when the temperature is lowered under forward bias from 1.5 V to 2.0 V. In addition, the data shows that nanoscale devices with longer and wider intrinsic layer would generate higher current under forward bias range from 1.5 V to 2.0 V and temperature from 50K to 250K.
Measurement of highly-doped nanoscale silicon P-N diode under forward bias to 0.1 Volt and also reverse bias to -0.1 Volt results conductance peaks that show relationship with two-dimensional density of state (2D DOS) and phonon combination energy level at temperature 5.5K. Under forward bias, discrete energy level of heavy hole, light hole and phonon combination of TA, LA, TO and LO have significant contribution to conductance peaks in range 0.1 Volt. Also under reverse bias, discrete energy level of electron 2-fold valley, 4-fold valley and phonon combination of TA, LA, TO and LO have significant contribution to conductance peaks in range -0.1 Volt. Electron transport of highly-doped nanoscale silicon P-N diode will experience conductance peaks when it has equal energy with 2D DOS discrete energy level. It proves the existence of phonon-assisted tunneling on highly-doped nanoscale silicon P-N diode.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
D2149
UI - Disertasi Membership  Universitas Indonesia Library
cover
Rakha Aditama Anjani
"Lithium Ferro Phosphate (LiFePO4) adalah kandidat yang menjanjikan sebagai bahan sumber energi elektrik yang ramah lingkungan. Penambahan Ni komposit dalam baterai berbasis Li-ion dapat meningkatan performa dari baterai LiFePO4. Dalam penelitian ini, LiFePO4 akan disintesis dengan menggunakan Fe2O3, H3PO4, dan LiOH melalui cara solid-state dan dilakukan perlakuan panas yaitu sintering. Setelah itu, prekursor dikompositkan dengan tiga variasi penambahan konten Nikel dalam % berat, yaitu 5, 7 dan 10% melalui metode solid-state dengan ball mill diberi label LFP/5-Ni, LFP/7.5-Ni dan LFP/10-Ni. Karakterisasi dilakukan menggunakan XRD dan SEM untuk mengamati efek penambahan Nikel pada struktur dan morfologi sampel yang dihasilkan.

Lithium Ferro Phosphate (LiFePO4) is a promising candidate as an environmental friendly electric energy sources. The addition of Nickel composite in Lithium-ion battery based can enhance the performance of LiFePO4 batteries. In this experiment, LiFePO4 was synthesized using Fe2O3, H3PO4, and LiOH by solid-state method and heat treated with sintering process. After that, the precursor were composited with the various Nickel composition, in % wt, 5, 7.5 and 10% with solid-state method by using ball mill and labeled as LFP/5-Ni, LFP/7.5-Ni and LFP/10-Ni respectively. The characterizations were made using XRD and SEM testing. These were performed to observe the effect of Nickel addition on structure and morphology of the resulting samples."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hutabarat, Surya Dharma
"Sintesis Li4Ti5O12 telah banyak diteliti karena merupakan material yang menjanjikan sebagai anoda baterai ion lithium dibandingkan dengan anoda konvensional seperti carbon. Preparasi sampel TiO2 dilakukan melalui proses solgel Rw 3,5. Lithium titanat disintesiss dengan metode solid-state dengan variabel perbedaan kadar LiOH untuk mengetahui pengaruhnya terhadap struktur kristal, sifat elektrokimia lithium titanat yang dihasilkan. Sampel yang disinteis terdiri dari 3 jenis yaitu penambahan massa LiOH secara stokiometri, massa LiOH berlebih 50% dari stokiometri dan 100% berlebih dari stokiometri. Sampel dikarakterisasi menggunakan EDS, BET, XRD, SEM, dan UV-VIS.
Hasil penelitian menunjukkan, lithium titanat yang dihasilkan dengan perbandingan kadar LiOH dengan TiO2 secara stokiometri memilki tingkat kecocokan tertinggi, ukuran partikel dan energi celah terkecil dan luas permukaan terbesar bila dibandingkan dengan sampel yang kadar LiOH dibuat berlebih. Pengaruh dari perbedaan kadar LiOH dapat membentuk pengotor TiO2 rutile dan Li2TiO3.

Synthesis of Li4Ti5O12 has been widely studied as a promising material as an anode of lithium ion batteries compared to conventional anodes like carbon. Preparation sample of TiO2 is done through a process sol-gel Rw 3.5. Lithium titanate synthesized by solid-state method with variable of LiOH ratio to determine the their effects on the crystal structure, electrochemical properties of lithium titanate produced. Samples were synthesized consisting of three types, which are the addition of LiOH in stoichiometric, mass excess LiOH 50% and 100% of the stoichiometric. The samples were characterized using EDS, BET, XRD, SEM, and UV-VIS.
The results showed, lithium titanate synthesized by stoichiometric ratio of LiOH and TiO2 have the highest match rate, lowest particle size and energy gap and largest surface area, compared to samples synthesized excessive levels of LiOH. The effect of mass variation of LiOH can make impurities like TiO2 rutile and Li2TiO3.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
S56947
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>