Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 174026 dokumen yang sesuai dengan query
cover
Tuapetel, Jones Victor
"Catalytic converter adalah salah satu metode yang digunakan untuk mengontrol emisi gas buang sebagai penyebab polusi terutama pada kendaraan. Gas buang terdiri dari gas-gas karbondioksida (CO2), karbon monoksida (CO), nitrogen oksida (NO), hidrokarbon (HC) dan kandungan gas lainnya. Konversi emisi gas buang dalam catalytic converter disamping tergantung pada performans katalis dalam bentuk honeycomb juga tergantung pada distribusi aliran gas dalam penampang.
Untuk meningkatkan keseragaman distribusi ini maka dapat digunakan kombinasi screen dengan porositas 0,87 dan honeycomb dimana kecepatan aliran bisa diperlambat sehingga residence time lebih lama yang tentunya meningkatkan performans honeycomb. Hasil yang diinginkan adalah fenomena dinamika aliran yang lebih terdistribusi merata sehingga dapat meningkatkan proses konversi emisi gas buang. Metode yang digunakan adalah simulasi pada komputer yang menggunakan software Fluent/UNS sementara analisa numerik dilakukan dalam bentuk eksponensial yang ditransformasikan dalam bentuk grid.
Hasil simulasi menunjukkan fenomena aliran yang lebih terdistribusi merata sehingga meningkatkan proses konversi emisi gas buang.

Catalytic converter is a method to reduce the level of pollutants in the exhaust, especially on vehicle. Emission exhausts gases containing carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxide (NO), unburned hydrocarbon (HC), and other gases. Conversion of the emission in the catalytic converter besides to depend on performance of catalyst as honeycomb also depending on gas stream distribution in the channel of the converter.
To increase the distribution, combination of screen with 0.87 porosity and honeycomb are used to reach this condition and flow velocity can be slowly so that residence time is longer. The combination also can increase performance of honeycomb of catalytic converter. The method to be used is simulation analysis was under the use of computer programming soft ware Fluent/UNS, while the numerical analysis was done by exponential forms that were transformed into grid shape.
Result of simulation to indicate the mode of stream more distributed and increasing conversion process of the emission exhaust gases."
Depok: Fakultas Teknik Universitas Indonesia, 2002
T9154
UI - Tesis Membership  Universitas Indonesia Library
cover
Junira Weni
"Tidak lama lagi Indonesia akan menerapkan peraturan Euro 2 tentang emisi gas buang Catalytic converter adalah salah satu metode yang digunakan untuk mengontrol emisi gas buang penyebab polusi terutama pada kendaraan. Gas buang ini terdiri dari gas-gas karbondioksida (CO2), karbon monoksida (CO), nitrogen oksida (NOx), hidrokarbon (HC) dan kandungan gas lainnya. Penelitian ini dilakukan untuk mengetahui distribusi tekanan dan kecepatan di dalam catalytic converter tipe honeycomb. Untuk itu dilakukan pengujian langsung dengan cara melewatkan udara ke catalytic converter tersebut dan kemudian diukur tekananan yang terjadi. Sebagai pembanding, dilakukan simulasi dengan menggunakan computational fluid dynamic (CFD). Untuk pembuatan model digunakan software MSC Nastran for Windows v.4.5, sedangkan untuk solver digunakan software Fluent UNS v.4.1. Dari hasil pengujian langsung dan simulasi dengan CFD, didapat hasil yang tidak terlalu jauh berbeda sehingga dapat dikatakan sudah tepat."
Depok: Fakultas Teknik, 2004
S37480
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad khayam
"Salah satu alternatif pengendalian polusi udara dari emisi gas buang kendaraan bermator yaitu menggunakan catalytic converter. Namun penggunaanya terbatas, disebabkan terbatasnya rentang AFR, meningkatnya gas aldehyde ketika menggunakan campuran bensin-oksigenat selain gas bermacam lainnya seperti CO & UHC serta meningkatnya turunnya tekanan gas buang.
Penelitian ini bertujuan untuk mengetahul kinerja catalytic converter serta pengaruhnya terhadap kinerja motor bensin, yang menggunakan mesin uji 1.500 cc dan dipasang TWCC dengan bahan aktif platinum dengan rnetode pengujian pada beban tetap (10 & 13 kg) dan putaran tetap (1.800 & 2.300 rpm).
Hasil penelitian yaitu komposisi gas CO dan UHC sebelum TWCC sudah berada di bawah nilai ambang Batas, sedangkan komposisi gas aldehyde masih relatif tinggi namun berkurang dengan peningkatan AFR. Penggunaan TWCC mampu menurunkan lebih rendah lagi komposisi gas buang hingga dicapai efisiensi konversi maksimum CO 81,3%, UHC = 78,2% dan aldehyde = 58,9%. Waktu tinggal gas buang diperoleh 0,0032 - 0,123 detik, fenomena perpindahan fluida terdiri den bilangan Reynold : 196 - 543, bilangan Sherwood : 3,67 - 3,74 dan bilangan Nusselt : 3,68 - 3,70. Namun penggunaan TWCC dapat menurunkan daya motor (BHP), meningkatkan konsumsi bahan baker spesifik (BSFC) dan meningkatkan turun tekanan (-AP). Prosen kehilangan daya motor berkisar antara 3,5 - 15%, sedangkan prosen kehilangan daya motor terhadap tune.' tekanan berkisar antara 0,07 - 0,09% per mmH2O.

One of alternatives to control air pollution of vehicle exhaust gas emission is catalytic converter. However it is limited, is caused by limited AFR, increasing of aldehyde emission when using gasoline-oxygenate mixtures besides other poisonous substances like CO & UHC and also increasing exhaust gas pressure drop.
This research purpose to study about catalytic converter performance and the influence to the motor performance, which use test bed engine t500 cc and is installed by TWCC with platinum as active catalyst, with test method at the constant load (10 & 13 kg) and constant rotational speed (1.800 & 2.300 rpm).
The results of test are CO and UHC composition before entering TWCC is below the threshold value, while the higher value of aldehyde composition can be decreased with increasing of AIR. Using TWCC is able to decrease lowered exhaust composition until reaching maximum conversion efficiency for CO = 81,3%, UHC = 78,2% and aldehyde = 58.9%. Residence time of exhaust gas is 0,0032 - 0,123 s, fluid transfer such are Reynold Number : 196 - 543, Sherwood Number : 3,67 - 3,74 and Nusselt Number : 3,68 - 3,70. However using TWCC can decrease brake horse power (BHP) and increase brake specific fuel consumption (BSFC). Percentage of brake horse power loss is 3,5 - 15%, while brake horse power loss per pressure drop is 0,07 - 0,09% per mmH2O.
"
Depok: Fakultas Teknik Universitas Indonesia, 2002
T3504
UI - Tesis Membership  Universitas Indonesia Library
cover
"Tingkat polusi udara di Indonesia dinilai cukup tinggi. Tingginya tingkat
polusi udara ini diakibatkan oleh polutan yang dihasilkan dari aktivitas yang
dilakukan manusia, sebagian besar adalah aktivitas pembakaran.
Kendaraan bermotor merupakan penyumbang polusi udara terbesar. Hal ini
disebabkan oleh pembakaran yang kurang sempurna dari mesin kendaraan
bermotor dan penyetelan mekanisme pembakaran yang salah.
Dalam mengurangi polusi udara akibat emisi gas buang kendaraan bermotor,
maka Cara yang paling efektif dan ekonomis adalah dengan menggunakan
peralatan yang dapat menurunkan kadar emisi gas buang kendaraan bermotor.
Peralatan yang sering dipakai adalah catatytic converter (katalis pengkonversi).
Penelitian ini dilakukan untuk mengetahui pengaruh pengggunaan peralatan
tambahan catalytic converter, dengan desain bentuk laluan yang optimum
terhadap keefektifan peralatan tambahan catalytic converter terhadap efisiensi
konversi emisi gas buang. Untuk mendapatkan desain bentuk laluan yang optimum,
maka penulis melakukan proses desain dengan bantuan CFD. Adapun
tujuan dari pemakaian CFD ini adalah untuk menghemat biaya penelitian dalam
membuat model bentuk laluan.
Pengujian efisiensi konversi catalytic converter dilakukan pada mesin otto, di
Laboratorium Pembakaran dan Energi Jurusan Mesin FTUI.
Dari pengujian tersebut didapat efisiensi konversi yang baik dari catalytic
converter dengan bentuk laluan yang didesain optimum, dalam mengkonversi
emisi gas buang kendaraan bermotor."
Fakultas Teknik Universitas Indonesia, 1999
S36971
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anton Yuhadi
"Pada saat ini tingkat polusi di Indonesia dinilai sudah cukup tinggi, terutama pada kota-kota besar seperti Jakarta atau Surabaya. Polusi udara ini diakibatkan oleh polutan yang dihasilkan dari berbagai aktivltas manusia.
Kendaraan bermotor mempakan penyumbang polusi udara terbesar di Indonesia. Hal ini disebabkan oleh pembakaran yang kurang sempuma dari mesin kendaraan bermotor dan penyetelan mekanisme pembakaran yang salah. Salah satu cara yang dinilai paling efektif dalam mengurangi emisi gas buang kendaraan bermotor adalah penggunaan peralatan tambahan pada kendaraan contohnya Catalytic Converter. Dalam hal ini untuk mengoptimalkan kerja Catalytic Converter, maka salah satunya adalah merancang bentuk tabung laluan Catalytic Converter dengan dasar bentuk-bentuk yang sudah ada dan umum dipasaran, seperti bentuk silinder atau oval.
Tujuan dari penelitian ini adalah menganalisa aliran gas buang kendaraan bermotor di dalam Catalytic Converter, dengan beberapa bentuk design. Keuntungan dari penggunaan CFD adalah salah satu cara untuk menggambarkan distribusi aliran gas buang pada Catalytic Converter dan mengurangi biaya penelitian. Dan memperoleh berbagai informasi tentang properti aliran yang hampir sulit didapatkan pada eksperimen.
Simulasi ini menunjukkan rancangan yang lebih efisien dan lebih optimal dari rancangan yang lain. Parameter yang digunakan pada simulasi ini adalah kecepatan dan distribusi tekanan aliran gas buang di dalam Catalytic Converter. Disimpulkan bahwa rancangan dengan bentuk silinder lebih baik dari rancangan dengan bentuk oval.

The level of air polution in indonesia is high enough, particulary in big cities such Jakarta or Surabaya. Thats caused by the polutant that is produced by the activities of man kind.
Vehicies (Autornotives) are the biggest air polution contributors in indonesia. This is caused by the uncompieted combustion of engine vehicies and the setting of combustion's timing. The most effective way to reduce the engine's gas emision is by using additional equipment on engine that can reduce gas emision such as Catalytic Converten in this case, one of many way to optimize Cataiytic Converter is by designing the tube. The shapes ot the tube is taken from common shape of Catalytic Converten such as cylinden oval etc.
The purpose of this research is to analyze the tiow of the gas engine through inside of Catalytic Converten with different kind of shape. The benefit of CFD is another way to visualize the distribution of gas engine flow in Catalytic Converter and to reduce cost of research. And we can get information of fluid property that almost very difficult in real experiment.
This simulation shows which design is the most edicient and the most optimum then the other design. The parameter that is used in this simulation is velocity magnitude and the distribution of pressure of gas engine flow in Catalytic Converter in this simulation, the cylinder design is more efficient than the oval design.
"
Depok: Fakultas Teknik Universitas Indonesia, 2000
S37202
UI - Skripsi Membership  Universitas Indonesia Library
cover
Tresna Priyana Soemardi
"Simulasi CFD (Computational Fluid Dynamic) digunakan untuk mendapatkan perilaku aliran gas buang yang menuju katalis, hasil dari simulasi itu akan digunakan untuk mengoptimasi bentuk geometri diffuser inlet yang akan menghasilkan distribusi aliran yang lebih seragam pada katalis, dan simulasi CFD juga akan digunakan untuk menganalisis penurunan tekanan yang terjadi pada model.

Diffuser Optimation at Exhaust System with Catalytic Converter for 110 cc Mopet with Fluid Flow CFD Simulation. CFD simulation used to get behavior of exhaust gas through catalyst, this result will be used to optimize geometry form to perform uniform stream distribution to catalyst, and CFD Simulation will used to analyze backpressure that happened at the model."
Depok: Lembaga Penelitian Universitas Indonesia, 2003
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Lahmazani Yati
Depok: Fakultas Teknik Universitas Indonesia, 1998
S49096
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andi Lyana Sarkarina
Depok: Fakultas Teknik Universitas Indonesia, 1998
S49093
UI - Skripsi Membership  Universitas Indonesia Library
cover
Eko Hariadi
"ABSTRAK
Indonesia mulai mengekspor LNG sejak tahun 1977 dan akan tetap memimpin sebagi eksportir LNG di dunia di tahun-tahun mendatang. Penerimaan dari ekspor LNG ini telah banyak membantu pembangunan di Indonesia untuk mensejahterakan kehidupan rakyat sesuai dengan UUD 1945 pass! 33. Dengan semakin banyaknya eksporter LNG baru dan terus berkembang, kompetisi untuk memperebutkan pasar tradisional ke Jepang, Korea dan Taiwan menjadi semakin ketat.
Natuna merupakan salah satu sumber gas alam yang dimiliki Indonesia akan menjadi jawaban untuk dikembangkan untuk memenuhi pemakai LNG baru di Asia Pasifik seperti : Thailand, India, Gina dan Pakistan.
Natuna memiliki kandungan hidrokarbon sekitar 60 TCF dari total cadangan sebesar 212 TCF yang berkomposisi 71% C02, 28% hidrokarbon dan impurities.
Untuk mencari menanggulanginya, Pertamina dan para mitra kerjanya perlu mempertimbangkan untuk membangun kilang LNG dan gas pipa dan menghitung volume minimum gas pipa dan LNG yang akan dijual kepada calon pembeli dengan harga yang paling ekonomis bagi penjual maupun pembeli.
Pertimbangan keekonomian seperti evaiuasi proyek, peluang pasar dan waktu yang tepat untuk memasuki pasar perlu diterangkan secara mendetail. Dengan menggunakan metode matematika yang dikenal sebagai Vogel Approximation Method NAM), akan dihitung prakiraan biaya ttransportasi minimum dari sumber suplai ke pelabuhan tujuan.
Evaluasi proyek menghasilkan bahwa harga minimum LNG dan gas pipa masing-masing sebesar US$ 4.0/MBTU dan US$ 3.0/MMBTU. Sedang IRR dan pay back period untuk proyek LNG adalah 10% dan 9.37 tahun. Waktu yang tepat untuk membangun lapangan Natuna hingga berproduksi adalah setelah tahun 2007. Pada saat itu, produksi LNG kilang Arun hanya sebesar 1,3 juta ton/tahun.
Proyek gas Natuna masih mungkin untuk dikembangkan dalam skala LNG dan gas pipa walaupun memerlukan biaya investasi yang tinggi. Sangat panting untuk menerapkan suatu metode yang mengijinkan LNG dapat diangkut dari sumber manapun sebagai pengganti dedicated vessel untuk dedicated buyers. Melalui implementasi cara inl maka biaya transportsi dalam rangkaian perdagangan LNG dapat diminimalkan. Beberapa usaha teknis juga perlu dipertimbangkan untuk mengurangi biaya seperti menaikkan kapasitas kilang, pemilihan proses pencairan, sistem penyimpanan dan pemuatan, penggunaan kapal yang lebih besar.

ABSTRACT
Indonesia has been exporting LNG since 1977, and will be still leading as LNG exporter in the world some years ahead. The LNG revenues has been used as development capital to Indonesian society as stated in Article 33 of Indonesian Foundation Decree. But as many LNG exporters emerge and grow, the competition to get market share, especially in traditional market such as Japan, Korea and Taiwan becoming harder.
Natuna is one of Indonesian gas deposits in Indonesian archipelago, would be an answer to be developed to fulfill the new LNG user in Asia Pacific such as : Thailand, India, China and Pakistan.
Natuna has 60 TCF hydrocarbon recoverable from 212 TCF total gas reserve with its composition 71% C02, 28% hydrocarbon and impurities.
To overcome the problem, Pertamina and its partner should develop both the gas pipe and LNG, and calculate the minimum volume of gas pipe and LNG to be sold to the buyers candidates at the best price for buyers and seller.
The economical consideration such as project evaluation, market opportunity and the expected time to enter the market will be explored in detail. By using a mathematical method which is known as Vogel Approximation Method (VAM), would be calculated the minimum transportation cost from source of supplies to destinations.
The project evaluation indicated that the floor price of LNG and Gas Pipe price are US$ 4.0/MBTU and US$ 3.01MMBTU respectively. The IRR and pay back period are 10% and 9.37 years for LNG project. And, the expected time to develop Natuna to be on stream is the year beyond 2007. At that time, the Arun LNG production will be around 1.3 Million ton/year.
Natuna gas project still has possibility to be developed as LNG and gas pipe scale projects although it needs a big investment. It is important to allow LNG vessel to load LNG at any source of supply instead of current dedicated vessel for dedicated buyers. By allowing this rule to be implemented, the LNG chain business cost could be minimize. Some technical effort should be considered to reduce cost of project such as increasing train capacity, choosing of liquefaction process, storage and loading system, bigger vessel size and optimizing LNG chain.
"
Depok: Fakultas Teknik Universitas Indonesia, 1998
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Yoyok Marsudi
"Turbin gas merupakan mesin kalor pembangkit daya yang mengubah energi kalor menjadi energi mekanis dengan fluida kena berupa gas. Dengan kelebihan-kelebihan yang dimitiki seperli kemampuan merespon beban puncak dengan cepat maka digunakan sebagai penggerak generator pada pembangkit lisirik. Aplikasi yang lain adalah digunakan sebagai penghasil gaya dorong pada pesawat terbang. Konstruksi yang sederhana terdiri dari kompresor, ruang bakar dan turbin. Performance dan sebuah turbin gas sangat tergantung dari unjuk kerja keiiga komponen tersebut.
Dalam ruang bakar, bahan bakar dibakar oleh udara yang bertekanan dan bersuhu tinggi. Proses pembakaran yang kurang sempuma menunjukkan kurang efisiennya ruang bakar sehingga dapat memperendah etisiensi turbin gas. Sebagai indikator dapat dilihat dari kandungan emisi gas buang. Pembakaran yang menghasilkan komponen seperti CO,HC,NOxi, O2 yang bukan merupakan produk pembakaran hidrokarbon secara sempurna (H2O, CO2 dan N2) menunjukkan bahwa pembakaran terjadi kurang sempurna.
Emisi gas buang turbin gas sangat dipengaruhi oleh harga campuran udara dengan bahan bakar, temperatur pembakaran, daya operasi, bentuk dan besar ruang bakar, dan waktu pembakaran. Berdasarkan teori ini, dapat diketahui hubungan kecenderungan emisi gas buang dengan performance turbin gas. Sehingga perkembangan dalam usaha meningkatkan performance turbin gas dapat dilakukan dengan mempertimbangkan minimalisasi kandungan emisi gas buang yang dapat mencemarkan lingkungan.

Gas turbine is a power generator heat engine that converted heat energy to be mechanical energy which using gas as working fluid. its advantages such as ability to respond ultimate load quickly, it's used as power for generator at power plant. Another application is used to generate force at aircraft. A sinply construction consists of compresor, combustion chamber, and turbine.
ln combustion chamber, fuel is bumed by air with high pressure and temperature. Unideal combustion shows that combustion chamber has not enough hlgh efficiency, so tt drop the thermal efiiciency of gas turbln. As indicator, it could showed by emission of exhaust gas. Combustion that produce CO, HC, NOx and O2, where they're not an ideal hydrocarbon combustion (H2O, CO2 and Nz) shows that combustion is not ideal.
Exhaust gas emission of gas turbine is depend on air and fuel mixture, combustion temperature, operation power, combustion chamber constniction and combustion time. According this theory, it could known tendentious relationship between exhaust gas emission and gas turbine performance. So, development in order to increase gas turbine perfonnance could do with considering minimalize exhaust gas emission that could make environment pollution.
"
Depok: Fakultas Teknik Universitas Indonesia, 2001
S37099
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>