Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 27148 dokumen yang sesuai dengan query
cover
Kuncoro Budy Prayitno
"Aktivasi Ca-bentonit dapat dilakukan dengan cara merendam 5 % Ca-bentonit dalam larutan asam H2S04 10 % kemudian dipanaskan sampai mendidih di atas plat pemanas selama 2 jam dan dikeringkan dalam oven listrik pada temperatur 200 °C selama 1 jam. Ca-bentonit hasil aktivasi tersebut di atas memiliki luas permukaan 103,89 m2/gram dengan kapasitas adsorpsi optimum terhadap gas N2 sebesar 0,48 %, relatif lebih besar dari bentonit yang diaktifkan dengan cara pengeringan pada 200 °C dimana memiliki luas permukaan sebesar 92,50 m2/gram dan kapasitas adsorpsi terhadap gas N2 sebesar 0,21 %. Ca-bentonit aktif (adsorben) dengan kapasitas adsorpsi ini dapat dimanfaatkan sebagai bahan (padatan) penunjang katalis (catalyst support). basil pengamatan dengan alat spektroskopi infra merah (IR) menunjukkan impregnasi Cu(NO3)2 terhadap Ca-bentonit aktif mampu mengkonversi sampai dengan 8,51 % CO gas buang kendaraan bermotor."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 1998
T5731
UI - Tesis Membership  Universitas Indonesia Library
cover
Jervis Sinto
"ABSTRACT
Pencemaran udara akibat emisi gas buang kendaraan bermotor dalam bentuk gas-gas berbahaya seperti karbon monoksida CO dan hidrokarbon HC menjadi masalah bagi kesehatan makhluk hidup di lingkungan sekitarnya. Gas-gas tersebut dapat dijerap dengan karbon aktif yang terbuat dari limbah pertanian seperti kulit pisang karena memiliki kandungan lignoselulosa cukup tinggi dan jumlah yang banyak di Indonesia yaitu sekitar 400-700 ribu ton per tahunnya. Karbon aktif dari kulit pisang dalam penelitian ini dibuat melalui tahap dehidrasi, karbonisasi pada suhu 350 C selama 1 jam, kemudian aktivasi secara kimia menggunakan berbagai konsentrasi larutan H2SO4 selama 1 jam pada suhu 85oC. Sebagai pembanding kemampuan adsorpsi, sebagian karbon aktif saat proses karbonisasi juga diaktivasi secara fisika menggunakan gas N2 dengan laju alir 0,15 NL/menit. Karakterisasi karbon aktif dilakukan dengan uji bilangan iodin, SEM, dan EDX. Melalui uji bilangan iodin, luas permukaan karbon aktif terbaik didapat pada karbon yang teraktivasi fisika-kimia menggunakan H2SO4 6 N, yaitu sebesar 614 m2/g. Sementara luas permukaan karbon aktif pada karbon teraktivasi kimia pada konsentrasi H2SO4 yang sama yaitu sebesar 426 m2/g. Karbon-karbon aktif dengan karakteristik terbaik dari masing-masing metode aktivasi diuji kemampuan adsorpsinya untuk menurunkan kadar emisi gas buang CO dan HC pada sepeda motor. Karbon aktif teraktivasi kimia H2SO4 6 N rata-rata mampu mengadsorpsi emisi gas buang CO dan HC secara berturut-turut sebesar 40,46 dan 31,51. Sementara karbon aktif teraktivasi fisika-kimia H2SO4 6 N rata-rata mampu mengadsorpsi emisi gas buang CO dan HC secara berturut-turut sebesar 56,27 dan 42,63.

ABSTRACT
Air pollution caused by motor vehicle exhaust emissions in the form of harmful gases such as carbon monoxide CO and hydrocarbon HC becomes a problem for the health of living things in the surrounding environment. Those gases can be adsorbed with activated carbon made from agricultural waste such as banana peel because it has quite high lignocellulose content and large amount in Indonesia, which is about 400 700 thousand tons per year. Activated carbon from banana peel in this research is made through the dehydration stage, carbonization at 350oC for 1 hour, then chemical activation using various concentrations of H2SO4 solution for 1 hour at 85oC. In comparison with the adsorption capacity, some of the activated carbon at carbonization process also proceed with physical activation using N2 gas with a flow rate of 0.15 NL min. Characterization of activated carbon is done by iodine, SEM, and EDX tests. Through iodine test, the best surface area of activated carbon is obtained in physical chemical activated carbon with H2SO4 6 N, which is 614 m2 g. Meanwhile, surface area of chemical activated carbon in same H2SO4 concentration is 426 m2 g. The activated carbons with best characteristic from each activation method are tested its adsorption ability to decrease exhaust CO and HC emission content in motorcycle. Chemical activated carbon with H2SO4 6 N is capable of adsorbing CO and HC emissions 40.46 and 31.51 respectively. While physical chemical activated carbon with H2SO4 6 N is capable of adsorbing CO and HC emissions 56.27 and 42.63 respectively."
2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Situmeang, Sanggam L. K.
"Kegiatan transportasi memberikan kontribusi paling tinggi terhadap pencemaran udara, yaitu 66,30%, yang diikuti oleh kegiatan industri sebesar 18,90% dan kegiatan-kegiatan Iainnya 14,80%. Dari pemantauan beberapa parameter di pinggir jalan menunjukkan bahwa kadar pencemaran udara telah melebihi ambang batas yang telah ditetapkan oleh KEPMEN. LH No.51 tahun 1995. Salah satu upaya untuk menekan Iaju pencemaran berbagai gas buang berbahaya saat ini adalah dengan memakai catalytic converter pada saluran gas buang kendaraan bermotor. Namun hal ini masih menggunakan katalis yang relatif mahal disamping ketersediaannya terbatas. Dari penelitian yang telah dilakukan, zeolit alam dapat digunakan sebagai katalis dan penyaring molekul dengan harga relatif murah dan ketersediaannya melimpah.
Penelitian yang sudah dan akan dilakukan untuk mencari kondisi-kondisi optimal dari zeolit sebagai katalis haruslah mengeluarkan biaya yang besar, jika dilakukan dengan mencoba-coba harga parameter zeolit yang akan diteliti. Salah satu metode yang mempunyai kemampuan untuk menyelesaikan masalah yang sulit diselesaikan dengan metode komputasi biasa adalah Jaringan Neural Artifisial. Hal ini dikarenakan penggunaan zeolit sebagai katalis kendaraan bem1otor melibatkan banyak variabel pertimbangan. Perubahan yang terjadi pada salah satu variabel akan menyebabkan perubahan pada variabel yang lainnya.
Jaringan neural artifisial, yang digunakan untuk optimalisasi katalis zeolit di dalam mengeliminasi SO, dari gas buang, dilatih untuk menghubungkan parameter-parameter di dalam preparasi dan operasi katalis zeolit. Parameter-parameter tersebut adalah suhu, kapasitas adsorpsi, %CuO teraktifkan, Iaju SO, Iaju reaksi, % loading, luas permukaan katalis dan % dispersi inti aktif katalis.
Hasil pelatihan tersebut kemudian divisualisasikan untuk dapat memprediksikan kondisi optimal katalis zeolit. Sehingga hasil pelatihan yang dihasilkan oleh jaringan neural artitisial dapat memberikan masukan atau nasehat kepada para peneliti maupun industri mobil yang akan melakukan penelitian di bidang katalis. Hal ini tentu menghemat biaya yang dikeluarkan karena penelitian dilakukan sesuai prediksi parameter yang telah dilakukan oleh jaringan neural artitisial."
Depok: Fakultas Teknik Universitas Indonesia, 1997
S49123
UI - Skripsi Membership  Universitas Indonesia Library
cover
Lisa Wulansari
Depok: Fakultas Teknik Universitas Indonesia, 1998
S35064
UI - Skripsi Membership  Universitas Indonesia Library
cover
Cysca madona
"DKI Jakarta memiliki luas wilayah sekitar 650 km2 termasuk Kepulauan Seribu. Laju penambahan penduduknya sebesar 4,2% per tahun, sedangkan laju pertambahan kendaraannya mencapai 15% pertahun. Hal ini menyebabkan padatnya lalu Iintas dan mengakibatkan penurunan kualitas udara atau dengan kata lain tingkat pencemaran udara di Jakarta sudah mencapai tingkat yang membahayakan. Dari data yang tersedia diketahui bahwa hampir 100% gas CO, 90% HC dan 73,4% NOx yang tersebar di udara Jakarta berasal dari gas buang kendaraan bermotor. Untuk ini telah terdapat sejumlah upaya-upaya penurunan emisi gas buang kendaraan bermotor, seperti peniadaan timbal di dalam bensin, pengurangan penggunaan TEL di dalam bensin, pengembangan penggunaan bahan bakar alternatif selain bahan bakar fosil, serta serangkaian kebijakan pemerintah. Apapun bentuk upaya tersebut harus dilakukan secara sinambung dan sinkron, karena penurunan emisi tersebut tidak bisa dengan hanya menggunakan salah satu kebijakan saja. Faktor yang paling penting dan mendasar dalam hal ini adalah dengan meningkatkan pengetahuan masyarakat mengenai bahaya pencemaran udara sehingga akan menumbuhkan kesadaran masyarakat."
Program Pascasarjana Universitas Indonesia, 2000
T21084
UI - Tesis Membership  Universitas Indonesia Library
cover
Alyssa Ulfatun Jannah
"Sektor transportasi merupakan penyumbang terbesar pencemaran udara, di mana emisi gas buang CO, CO2, dan HC berdampak negatif terhadap kesehatan dan lingkungan. Karbon aktif dapat digunakan sebagai adsorben gas buang kendaraan bermotor (sepeda motor). Bonggol jagung berpotensi digunakan sebagai bahan baku pembuatan karbon aktif karena memiliki kandungan lignoselulosa yang tinggi. Pembuatan karbon aktif bonggol jagung dilakukan melalui tahap preparasi dan dehidrasi, aktivasi kimia pertama menggunakan larutan KOH 20% b/v dengan perbandingan massa sampel terhadap larutan 1:4 selama 24 jam, karbonisasi pada suhu 500℃ selama 2 jam dan diayak dengan ukuran 60 mesh, dilanjutkan dengan aktivasi kimia kedua menggunakan variasi KOH 1% b/v, 3% b/v, dan 5% b/v dengan rasio dan waktu yang sama seperti aktivasi kimia pertama. Sampel yang didapatkan kemudian diaktivasi fisika menggunakan gas N2 0,15 NL/menit pada suhu 600℃ selama 1 jam. Karbon aktif yang didapatkan, kemudian diimpregnasi menggunakan larutan MgO 1 M dengan variasi rasio massa sampel terhadap volume larutan adalah 1:5, 1:10, dan 1:15. Proses aktivasi kimia dua tahap berpengaruh memperbesar karakterisasi iodin yang dihasilkan, sedangkan impregnasi MgO akan menurunkan karakterisasi iodin yang dihasilkan dan meningkatkan efektivitas penjerapan gas buang. Sampel dengan karakterisasi iodin terbaik didapatkan pada sampel AK2F 5% dengan luas permukaan 1142,77 m2 /gr, sedangkan sampel dengan efektivitas penurunan gas buang terbaik didapatkan pada sampel impregnasi 1:10 dengan penurunan gas buang CO, CO2, dan HC sebesar 52,05%, 56,80%, dan 73,96%. Berdasarkan hal tersebut, karbon aktif bonggol jagung dapat dijadikan alternatif adsorben dalam adsorpsi gas buang emisi kendaraan bermotor (sepeda motor).

The transportation sector is the largest contributor to air pollution, where exhaust emissions of CO, CO2, and HC have a negative impact on health and the environment. Activated carbon can be used as an adsorbent for exhaust gases of motor vehicles (motorcycles). Corncob has the potential to be used as a raw material for making activated carbon because it has a high lignocellulose content. The manufacture of corncob activated carbon was carried out through the preparation and dehydration stage, the first chemical activation using a 20% w/v KOH solution with a sample ratio to a 1:4 solution for 24 hours, carbonization at a temperature of 500℃ for 2 hours and sifted with a size of 60 mesh, followed by the second chemical activation using a KOH variation of 1% w/v, 3% w/v, and 5% w/v with the same ratio and time as the first chemical activation. The samples obtained were then activated by physics using N2 gas of 0.15 NL/min at a temperature of 600℃ for 1 hour. The activated carbon obtained, then impregnated using a solution of MgO 1 M with variations in the ratio of sample mass to solution volume are 1:5, 1:10, and 1:15. The two-stage chemical activation process has an effect on enlarging the characterization of iodine produced, while mgo impregnation will decrease the characterization of the iodine produced and increase the effectiveness of exhaust gas absorption. The sample with the best iodine characterization was obtained in sample AK2F 5% surface area of 1142.77 m2 /gr, while the sample with the best exhaust gas reduction effectiveness was obtained in impregnatation samples of 1: 10 with a decrease in CO, CO2, and HC exhaust gases by 52.05%, 56.80%, and 73.96%. Based on this, corncob activated carbon can be used as an alternative adsorbent in the adsorption of exhaust gas emissions from motor vehicles (motorcycles)."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sommeng, Andy Noorsaman
"ABSTRAK
Penelitian yang sudah dan akan dilakukan untuk mencari kondisi-kondisi optimal dari zeolit sebagai katalis haruslah mengeluarkan biaya yang besar, jika dilakukan dengan mencoba-coba harga parameter zeolit yang akan diteliti. Salah satu metode yang mempunyai kemampuan untuk menyelesaikan masalah yang sulit diselesaikan dengan metode komputasi biasa adalah Jaringan Neural Artifisial (JNA). Hal ini dikarenakan penggunaan zeolit sebagai katalis kendaraan bermotor melibatkan banyak variabel-variabel pertimbangan. Perubahan yang terjadi pada salah satu variabel akan menyebabkan perubahan pada variabel yang lainnya.
Jaringan Neural Artifisial, yang digunakan untuk optimalisasi katalis zeolit di dalam mengeliminasi SOx dari gas buang, dilatih untuk menghubungkan parameter-parameter di dalam preparasi dan operasi katalis zeolit. Parameter-parameter tersebut adalah suhu, kapasitas adsorpsi, %CuO teraktifkan, laju SOS, laju reaksi, % loading, luas permukaan katalis dan % dispersi inti aktif katalis. Hasil pelatihan tersebut kemudian divisualisasikan untuk dapat memprediksikan kondisi optimal katalis zeolit. Dengan demikian hasil pelatihan yang dihasilkan oleh jaringan neural buatan dapat memberikan masukan atau nasehat kepada para peneliti maupun industri mobil yang akan melakukan penelitian di bidang katalis. Hal ini tentu menghemat biaya yang dikeluarkan karena penelitian dilakukan sesuai prediksi parameter yang telah dilakukan oleh Jaringan Neural Artifisial.
Hasil dari penelitian ini adalah berupa perangkat lunak komputer yang diberi nama NetCat. NetCat telah dirancang dan dibuat sedemikian rupa sehingga memudahkan bagi pengguna (user) untuk memprediksi parameter-parameter dalam penelitian dibidang katalis CuO/Zeolit Alam."
Depok: Fakultas Teknik Universitas Indonesia, 2000
LP-pdf
UI - Laporan Penelitian  Universitas Indonesia Library
cover
Antonius Dicky S.A.
"Penggunaan bensin sebagai bahan bakar kendaraan bermotor, dewasa ini merupakan salah satu penyebab semakin meningkatnya pencemaran udara. Emisi gas buang sisa hasil pembakaran bensin, masih banyak mengandung konsentrasi CO dan HC yang cukup besar, karena proses pembakaran yang kurang sempurna, Untuk mengatasi hal tersebut, digtmakan Bahan Bakar Gas (BBG) sebagai bahan bakar altematif yang dapat mengurangi pencemaran udara dari kendaraan bermetor.
Compressed Naiural Gas (CNG) merupakan salah satu bentuk bahan bakar gas yang dapat dimanfaatkan untuk bahan bakar kendaraan bermotor. Sifat fisika maupuan sifat kimia CNG yang berbeda dengan bensin, diharapkan akan dapat menghasilkan proses pembakaran yang lebih baik, sehingga dapat mengurangi pencemaran udara.
Sifat kimia maupun sifat fisika CNG yang berbeda dengan bensin, mengakibatkan perlunya adanya peralatan tambahan pada kendaraan bermotor, diantaranya peralatan pencampur udara dan CNG, yaitu Mixer. Mixer ini berfungsi sebagai pengganti fungsi karburater apabila kendaraan menggunakan bahan bakar bensin.
Untuk mendapatkan dimensi mixer yang optimum, terutama dalam ukuran diameter Venturi mixer, perlu dilakukan pengujian mengenai kemampuan beberapa mixer. Dalam pengujian yang dilakukan di LEMIGAS ini, dilakukan pengukuran terhadap emisi gas buang dan parameter pendukung lainnya, dari empat buah mixer yang merniliki diameter venturi yang berbeda. Hasil dari pengujian dan pengolahan data yang dilakukan, diperoleh bahwa semakjn besar diameter Venturi dari mixer CNG, maka rasio perbandingan udara dan bahan bakar (AFR) akan semakin besar dan akan semakin mendekati AFRstoklometri. Kondisi ini menyebabkan reaksi pembakaran yang terjadi akan semakin baik, sehingga konsentrasi CO dan HC dalam gas buang akan semakin kecil. Dan bila dibandingkan dengan penggunaan bensin, pemanfaatan CNG sebagai bahan bakar dapat menghasilkan emisi gas buang yang lebih baik."
Depok: Fakultas Teknik Universitas Indonesia, 1996
S36241
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Tingkat polusi udara di Indonesia dinilai cukup tinggi. Tingginya tingkat
polusi udara ini diakibatkan oleh polutan yang dihasilkan dari aktivitas yang
dilakukan manusia, sebagian besar adalah aktivitas pembakaran.
Kendaraan bermotor merupakan penyumbang polusi udara terbesar. Hal ini
disebabkan oleh pembakaran yang kurang sempurna dari mesin kendaraan
bermotor dan penyetelan mekanisme pembakaran yang salah.
Dalam mengurangi polusi udara akibat emisi gas buang kendaraan bermotor,
maka Cara yang paling efektif dan ekonomis adalah dengan menggunakan
peralatan yang dapat menurunkan kadar emisi gas buang kendaraan bermotor.
Peralatan yang sering dipakai adalah catatytic converter (katalis pengkonversi).
Penelitian ini dilakukan untuk mengetahui pengaruh pengggunaan peralatan
tambahan catalytic converter, dengan desain bentuk laluan yang optimum
terhadap keefektifan peralatan tambahan catalytic converter terhadap efisiensi
konversi emisi gas buang. Untuk mendapatkan desain bentuk laluan yang optimum,
maka penulis melakukan proses desain dengan bantuan CFD. Adapun
tujuan dari pemakaian CFD ini adalah untuk menghemat biaya penelitian dalam
membuat model bentuk laluan.
Pengujian efisiensi konversi catalytic converter dilakukan pada mesin otto, di
Laboratorium Pembakaran dan Energi Jurusan Mesin FTUI.
Dari pengujian tersebut didapat efisiensi konversi yang baik dari catalytic
converter dengan bentuk laluan yang didesain optimum, dalam mengkonversi
emisi gas buang kendaraan bermotor."
Fakultas Teknik Universitas Indonesia, 1999
S36971
UI - Skripsi Membership  Universitas Indonesia Library
cover
<<   1 2 3 4 5 6 7 8 9 10   >>