Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 105782 dokumen yang sesuai dengan query
cover
Desbudiman
"Indonesia sebagai negara penghasil gas, dengan iklim tropis (tidak mengenal empat musim), sangat cocok untuk mengembangkan teknologi pemanfaatan energi dingin LNG, terlebih dengan adanya rencana pembangunan LNG Receiving Terminal di Pulau Jawa. Pada Tesis ini dilakukan analisis aspek teknis dan ekonomi terhadap potensi aplikasi LNG Receiving Terminal yang memanfaatkan energi dingin LNG untuk pembangkit listrik di Pulau Jawa. Kajian teknologi dilakukan dengan melakukan simulasi tiga model proses yaitu; Siklus Rankine, Proses Gabungan, dan Combined Cycle Power Plant. Berbagai parameter proses di tiap alat disimulasikan dan dioptimisasi dengan bantuan perangkat lunak HYSYS. Untuk evaluasi kinerja proses digunakan analisis pinch. Untuk kapasitas LNG Receiving Terminal 1286 MMscfd dengan 50% laju alir LNG di utilisasi, didapat hasil sebagai berikut; Untuk model proses Siklus Rankine dihasilkan listrik sebesar 22 MW untuk DTmin 2,0°C. Model Proses Gabungan dihasilkan listrik 41 MW (31 MW net power) pada DTmin 2,0 °C. Untuk proses Combined Cycle Power Plant, jumlah LNG yang dibakar 50 MMscfd. Total listrik bersih yang dapat dihasilkan dari proses ini adalah sekitar 400 MW, dimana 86 MW merupakan hasil dari pemanfaatan energi dingin LNG. Analisis ekonomi yang dilakukan, secara umum menunjukkan ketiga model proses layak untuk diaplikasikan, kecuali Combined Cycle Power Plant (Desain-3) yang Pay Back Period masih sedikit diatas 8 tahun.

Indonesia as LNG producing country, which do not have four season, gas demand in this country does not fluctuate as much as it is in Japan. For these reason Indonesia have good prospect to develop cold energy utilization technology, especially Indonesia had plan to built LNG Receiving Terminal. In this research, technical and economical analysis for application LNG receiving terminal with cryogenic power plant unit, which built in Java Island will be studied. For better utilize LNG's low temperature, pinch analysis will be used for process optimization. Three processes model will be simulated, there are: cryogenic Rankine cycle, combined cryogenic Rankine cycle and direct expansion, combined cycle power plant. LNG receiving terminal with capacity 1286 MMSCFD, 50% of this capacity will be utilized to produced electricity in cryogenic power plant. From cryogenic Rankine cycle, resulting 22 MW electricity at DTmin 2,0°C. Combined cryogenic Rankine cycle and direct expansion, resulting 41 MW (31 MW net power) at DTmin 270°C. Net power which producing from combined cycle power plant is 400 MW, where it is 86 MW come from LNG cold temperature utilization. Analysis are continued with economical aspect analysis and sensitivities analysis. From economical analysis, in general, show that all design that simulated are feasible and applicable."
Depok: Fakultas Teknik Universitas Indonesia, 2004
T14761
UI - Tesis Membership  Universitas Indonesia Library
cover
Septarro Brilliant Aji Putra
"ABSTRAK
Terminal penerima LNG Gresik akan dibangun untuk memenuhi kebutuhan pembangkit listrik tenaga gas dan uap PLTGU dengan laju regasifikasi gas alam sebesar 60,95 MMSCFD. Potensi eksergi dingin LNG akan terbuang ke air laut pada proses penguapan LNG secara konvensional dengan open rack vaporizer ORV sehingga diperlukan kajian pemanfaatan eksergi dingin LNG untuk menghasilkan energi listrik. Dalam penelitian ini dilakukan kajian teknologi penguapan LNG dengan pemanfaatan eksergi dingin LNG untuk menghasilkan energi listrik melalui skema Direct Expansion, Rankine Cycle dan kombinasi Direct Expansion Rankine Cycle yang disimulasikan dengan program komputer Unisim. Analisis energi dan eksergi juga dilakukan untuk mengetahui efisiensi penggunaan eksergi dingin LNG, dilanjutkan dengan analisis keekonomian berdasarkan data simulasi ketiga skema tersebut. Hasil simulasi menunjukkan bahwa skema kombinasi mampu menghasilkan energi listrik terbesar yaitu 39,80 kWh per ton LNG yang teregasifikasi dengan potensi pendapatan penjualan energi listrik sebesar USD 1.140.935 per tahun. Skema kombinasi juga mempunyai efisiensi termal dan efisiensi eksergi tertinggi sebesar 14,48 dan 60,71 . Berdasarkan hasil analisis keekonomian diketahui bahwa skema Direct Expansion mempunyai NPV tertinggi sebesar USD 695.032.

ABSTRACT
Gresik LNG receiving terminal will be built to meet the needs of combined cycle power plant PLTGU with natural gas regasification rate of 60.95 MMSCFD. The potential LNG cold exergy will be wasted to seawater on conventional LNG evaporation process using open rack vaporizer ORV so it is necessary to study the utilization of LNG cold exergy to generate electrical energy. In this research, the technology of LNG vaporization with the cold exergy utilization to produce electrical energy through Direct Expansion, Rankine Cycle and combination of Direct Expansion Rankine Cycle scheme simulated with Unisim computer program. Energy and exergy analysis also conducted to determine the efficiency of LNG cold exergy utilization, followed by economic analysis based on simulation data of the three schemes. The simulation results show that the combination scheme has the largest capability to produce electrical energy of 39.80 kWh per ton LNG regasified with potential revenue from electrical energy sales of USD 1,140,935 per year. Combination scheme also has the highest thermal efficiency and exergy efficiency of 14.48 and 60.71 . Based on the results of economic analysis found that Direct Expansion scheme has the highest NPV of USD 695,032."
2018
T50953
UI - Tesis Membership  Universitas Indonesia Library
cover
Ayyi Husbani
"Industri aluminium di Kuala Tanjung membutuhkan listrik 2 × 350 MW untuk mendukung peningkatkan produksi. Gas bumi adalah salah satu pilihan bahan bakar untuk memenuhi kebutuhan listrik.  Saat ini, pipa transmisi gas menuju Kuala Tanjung belum bisa memenuhi kebutuhan bahan bakar gas untuk industri Aluminium tersebut. Suplai LNG dari daerah lain menjadi alternatif. Untuk menerima kiriman LNG, industri Alumunium membutuhkan pembangunan terminal penerima LNG. Seleksi pemilihan tangki penyimpanan dan teknologi regasifikasi dibahas secara kualitatif. Hasil seleksi terminal penerima LNG onshore menyatakan bahwa tipe tangki penyimpanan yang terseleksi adalah  full containment dan teknologi regasifikasi adalah Open Rack Vaporizer (ORV). Sedangkan hasil perhitungan keekonomian dengan formula harga untuk 13,5%ICP adalah IRR yang dicapai sebesar 13,5% dan NPV $70.448.815. Perubahan IRR dari kedua variabel yaitu kenaikan capex dan penurunan ICP menunjukkan bahwa penurunan ICP lebih sensitif dibanding kenaikan capex. Hal ini terjadi karena dengan perubahan ICP dan capex masing-masing sebesar 10%, IRR pada penurunan ICP turun menjadi 12,54%. Sedangkan IRR pada kenaikan capex, turun menjadi 13,07%.

The aluminum industry in Kuala Tanjung needs 2 × 350 MW of electricity to support increased production. Natural gas is one of the fuel choices to meet electricity needs. At present, the gas transmission pipeline to Kuala Tanjung has not been able to meet the needs of gas fuel for the Aluminum industry. LNG supply from other regions is an alternative. To receive LNG shipments, the Aluminum industry requires the construction of an LNG receiving terminal. Selection of storage tank selection and regasification technology are discussed qualitatively. The selection results of the onshore LNG receiving terminal stated that the type of storage tank selected was full containment and the regasification technology was the Open Rack Vaporizer (ORV). While the economic calculation results with the price formula for 13.5% ICP are IRR achieved at 13.5% and NPV $ 70,448,815. Changes in IRR of the two variables, namely increases in capex and decreases in ICP indicate that decreases in ICP are more sensitive than increases in capex. This happened because with changes in ICP and capex each by 10%, the IRR on ICP decreased to 12.54%. While IRR on the increase in capital expenditure dropped to 13.07."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T55073
UI - Tesis Membership  Universitas Indonesia Library
cover
Teuku Riefky Harsya
"Pengembangan kilang LNG Arun yang masa pengoperasiannya akan berakhir pada 2014 menjadi terminal penerima gas dapat membantu memenuhi kebutuhan gas di daerah Aceh dan Sumatera Utara. Kilang ini dapat dimodifikasi mejadi terminal penerimaan dan regasifikasi LNG karena sejumlah fasilitas yang tersedia masih baik dan layak untuk digunakan. Untuk mengetahui kelayakan proyek ini, dilakukan kajian keekonomian serta sensitivitas dengan masa pembangunan dan perbaikan selama 2 tahun, operasional selama 20 tahun serta pasokan LNG sebesar 400MMSCFD untuk tahun pertama dan meningkat sebesar 50 MMSCFD setiap tahunnya hingga mencapai 350 MMSCFD sebagai kapasitas produksi maksimum.
Langkah-langkah yang dilakukan untuk mengkaji kelayakan proyek ini antara lain menganalisa kebutuhan peralatan tambahan untuk proses regasifikasi, menghitung kelayakan keekonomian melalui 4 parameter NPV, IRR, PBP, dan BC Ratio, serta uji sensitivitas dengan menggunakan random number generation simulator untuk mengetahui komponen yang paling sensitif terhadap perubahan.
Adapun hasil analisis keekonomian pemanfaatan kilang Arun menjadi receiving gas terminal menunjukkan bahwa proyek ini layak dijalankan dengan NPV sebesar 454.097.000 USD, IRR 15,4% terhadap MARR 15%, BC ratio sebesar 4, dan payback period jatuh pada tahun ke-6 bulan ke-2 pengoperasian. Hasil uji sensitivitas menunjukkan bahwa tax merupakan faktor yang paling mempengaruhi perubahan.

Utilization of LNG Arun refinery plant, which it’s operational contract will end on 2014, as a receiving gas terminal can help meet the needs of gas in Aceh and North Sumatera. This plant can be modified into a receiving gas terminal and LNG regasification because of some of the existing facilities are still in a good condition and ready to use. Economic analysis should be done to know the feasibility of this project with the construction time for 2 years, 20 years of operational, and 150MMSCFD of LNG supply for start up and increased as much as 50 MMSCFD each year until reach 350 MMSCFD as maximum production capacity.
The steps done to know the feasibility of the project are additional equipment for regasification process study, calculate the economic feasibility through 4 parameter of NPV, IRR, PBP and BC ratio, as well as sensitivity analysis using random number generation simulator to determine the component that is most sensitive to change.
The economic analysis result shows that this project is feasible with NPV of 454.097.000USD, 15,4% of IRR with MARR as much as 15%, BC ratio of 4, and the payback period falls on 2nd month of the 5th year of operational. Sensitivtiy analysis result shows that tax is the most influencing factor to change.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
T32520
UI - Tesis Membership  Universitas Indonesia Library
cover
Fadillah Nurrani
"Proses regasifikasi LNG umumnya terjadi pada terminal penerimaan LNG dimana gas alam yang telah dicairkan hingga temperatur cryogenic akan diubah kembali dalam wujud gas. Salah satu terminal penerimaan LNG berbasis laut (offshore) di Indonesia adalah FSRU yang dikelola oleh PT. PGN Lampung, dimana masih belum di-utilisasi dengan baik. Perancangan sistem pembangkit energi cryogenic yang memanfaatkan cold energy dari proses regasifikasi LNG dapat menjadi salah satu pilihan. Metode yang digunakan adalah direct expansion dengan Organic Rankine Cycle (ORC) sebagai sistem pembangkitnya. Sistem ORC akan menggunakan dua working fluid yakni Propane (R-290) dan Propylene (R-1270) serta komponen sistem meliputi pompa, CFOH (Closed Feed Organic Heater), mixer, evaporator, expander, heater LNG, dan kondensor yang terintegrasi dengan LNG Vaporizer. Kapasitas regasifikasi LNG di FSRU PGN Lampung sebesar 240 MMSCFD (juta kubik kaki per hari) dan work power output dari expander fluida kerja sebesar 3 MW. Hasil penelitian menunjukan sistem regasifikasi LNG yang terintegrasi dengan sistem ORC menggunakan fluida Propane mampu menghasilkan total energi sebesar 14 MW, sedangkan fluida Propylene menghasilkan total energi sebesar 10 MW. Sistem ORC dengan fluida Propane menghasilkan efisiensi thermal sebesar 14.48% dan fluida Propylene sebesar 15.71%

The LNG regasification process generally occurs at the LNG receiving terminal where natural gas that has been liquefied to a cryogenic temperature will be converted back into gas form. One of the offshore LNG receiving terminals in Indonesia is the FSRU which is managed by PT. PGN Lampung, which is still not properly utilized. The design of a cryogenic energy generation system that utilizes cold energy from the LNG regasification process can be an option. The method used is direct expansion with Organic Rankine Cycle (ORC) as the generating system. The ORC system will use two working fluids, namely Propane (R-290) and Propylene (R-1270) and system components include a pump, CFOH (Closed Feed Organic Heater), mixer, evaporator, expander, LNG heater, and a condenser integrated with LNG. Vaporizers. The LNG regasification capacity at the PGN Lampung FSRU is 240 MMSCFD (million cubic feet per day) and the work power output from the working fluid expander is 3 MW. The results showed that the LNG regasification system integrated with the ORC system using Propane fluid was able to produce a total energy of 14 MW, while the Propylene fluid produced a total energy of 10 MW. The ORC system with Propane fluid produces a thermal efficiency of 14.48% and Propylene fluid of 15.71%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Emapatria Chandrayani
"LNG memiliki potensi untuk menjadi pemasok energi untuk menjangkau kepulauan di Indonesia dan telah direncanakan untuk memasok pembangkit listrik di pulau-pulau terpencil. Analisis tekno-ekonomi pembangkit listrik turbin gas terintegrasi dengan unit regasifikasi LNG skala kecil telah dilakukan untuk meningkatkan efisiensi pembangkit listrik dan mengurangi biaya pembangkitan listrik. Analisis dimulai dengan membuat simulasi proses dari sistem yang divalidasi untuk menggambarkan kinerja turbin gas aktual menggunakan simulator proses Aspen Hysys. Kemudian, dilakukan beberapa integrasi seperti penerapan pembangkit uap dalam combined cycle sebagai pembangkit listrik sekunder, pemanfaatan energi dingin dari regasifikasi LNG untuk pendinginan udara masukan kompresor turbin gas, dan pemanasan kembali bahan bakar gas oleh sebagian uap yang dihasilkan. Hasil simulasi memberikan akurasi yang baik dan memungkinkan untuk diintegrasikan dengan proses-proses tersebut. Integrasi gabungan memberikan keuntungan yang lebih tinggi, memberikan kenaikan daya listrik hingga 49,4% serta meningkatkan efisiensi sebesar 44,6% dan menurunkan emisi spesifik CO2 sebanyak 30,9% dibandingkan dengan simple cycle turbin gas. Berdasarkan analisis LCOE, integrasi gabungan memberikan biaya produksi listrik 20,89% lebih rendah daripada simple cycle turbin gas sekitar 14,56 sen/kWh pada faktor kapasitas 80%. Terlebih lagi, integrasi gabungan pembangkit listrik turbin gas selalu memberikan LCOE lebih rendah dibandingkan simple cycle turbin gas dalam berbagai faktor kapasitas, yaitu 21,64% lebih rendah untuk faktor kapasitas tinggi dan setidaknya 7,96% lebih rendah untuk faktor kapasitas kecil. Nilai ini dianggap lebih ekonomis dibandingkan pembangkit listrik berbahan bakar diesel. Optimalisasi upaya integrasi untuk peningkatan efisiensi sistem pembangkit listrik turbin gas dapat meningkatkan kinerja dan menurunkan total biaya pokok pembangkitan listrik.

LNG has a potential to become energy supply across Indonesian archipelago and has been planned to supply power plant in remote islands. A techno-economic analysis of integrated small scale gas turbine power plant and LNG regasification unit has been conducted to increase power plant efficiency and reduce electricity generation cost. The analysis begins with creating process simulation of the system that is validated to represent actual gas turbine performance using Aspen Hysys process simulator. Then several integrations are introduced: combined cycle steam generation as secondary power generation, cold energy utilization from LNG regasification to chill intake air compressor of gas turbine, and fuel gas reheating by a small portion of generated steam. The simulation result provides a good accuracy and enable integration to such processes. The combined integration provides higher advantages, providing extra power output up to 49.4% as well as increasing efficiency up to 44.6% and lowering as much as 30.9% specific CO2 emission than simple cycle gas turbine. Based on LCOE analysis, combined integration provides 20.89% lower cost of electricity production than gas turbine simple cycle around 14.56 cent/kWh at 80% capacity factor. The combined integration of gas turbine power plant always delivers LCOE lower than gas turbine simple cycle in any capacity factors which are 21.64% lower for high-capacity factors and at least 7.96% lower for low-capacity factors. This is considered more economically viable than diesel-fueled power plant. The higher efficiency of integrated power plant-LNG regasification system could better improve performance and further reduce generation cost."
Jakarta: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Gunawan Setiadi
"Dalam rangka memenuhi kebutuhan listrik di Sulawesi Utara, Sulawesi Tengah dan Gorontalo, PT X dihadapkan pada tantangan dalam memenuhi kebutuhan listrik proyek pengembangan Kawasan Ekonomi Khusus (KEK) di Bitung dan Palu. Tidak terjangkaunya jaringan pipa gas yang bersumber di sekitar Kota Luwuk dan kecilnya kebutuhan gas menjadi kendala. Gas alam dalam bentuk cair (LNG) menjadi alternatif untuk pasokan gas ke pembangkit listrik di Minahasa (150 MW), Tahuna (30 MW), Donggala (60 MW) dan Gorontalo (100 MW) menggunakan sumber LNG dari Bontang maupun Sengkang dengan kebutuhan gas total sebesar 26,41 MMSCFD. Optimasi Logistik LNG perlu dilakukan untuk mendapatkan biaya transportasi minimum. Dengan membandingkan lima kapal LNG yang akan digunakan yaitu kapal berkapasitas 10.000 m3 sampai dengan 22.500 m3 yang ada di pasaran. Metode penelitian menggunakan Solver Add-In yang ada pada Microsoft Excel dengan objective function meminimalkan biaya Distribusi LNG. Hasil optimasi berdasarkan tiga skenario dan dua sumber LNG terhadap jarak sumber LNG ke tujuan pengiriman dalam periode satu tahun didapatkan bahwa, metode transportasi LNG yang menghasilkan biaya distribusi minimum adalah menggunakan skenario Milk-Run dari sumber LNG Bontang dengan total biaya transportasi diperoleh sebesar USD 17.207.897 atau setara dengan 1,53 USD/MMBTU dengan satu buah kapal LNG berkapasitas 12.000 m3.

In the framework of fulfilling the electricity needs in North Sulawesi, Central Sulawesi and Gorontalo, PT X is faced with challenges in fulfilling the electricity needs of the Special Economic Zone (KEK) development project in Bitung and Palu. The inaccessibility of gas pipelines sourced in and around Luwuk City and the small gas requirement becomes an obstacle. Liquefied Natural Gas (LNG) becomes an alternative to supply gas to a power plant in Minahasa (150 MW), Tahuna (30 MW), Donggala (60 MW) and Gorontalo (100 MW) using LNG sources from Bontang and Sengkang with total gas requirements of 26.41 MMSCFD. LNG Logistics Optimization is necessary to obtain minimum transportation costs. By comparing five LNG vessels that will be used, with a capacity of 10,000 m3 up to 22,500 m3 on the market. The research method uses a Solver Add-In in Microsoft Excel with an objective function minimizing the cost of LNG distribution. The optimization results based on three scenarios and two sources of LNG on the distance of the LNG source to the delivery destination in a one-year period found that the LNG transportation method that produces minimum distribution costs using the Milk-Run scenario from the Bontang LNG source with total transportation costs of USD 17,207,897 or equivalent with 1.53 USD/MMBTU with one 12,000 m3 LNG capacity vessel."
Depok: Fakultas Teknik Universitas Indonesia, 2019
T54361
UI - Tesis Membership  Universitas Indonesia Library
cover
Gregorius Andrico Hutomo
"Indonesia merupakan negara kepulauan dimana setiap warga disetiap lokasi diwilayah negara berhak atas kebutuhan energi yang cukup untuk keberlangsungan hidup nya. LNG menjadi salah satu sumber energi yang bisa disuplai untuk kebutuhan disetiap wilayah Indonesia karena sifat nya yang mudah di transportasikan. Studi ini membahas pembangunan LNG HUB untuk wilayah distribusi Jawa bagian Timur, Bali dan Nusa Tenggara bagi pembangkit listrik tenaga gas yang saat ini masih menggunakan bahan bakar minyak sebagai sumber energi nya. Volume kapasitas LNG HUB yang akan dibangun didasarkan atas simulasi optimasi distribusi yang dilakukan dengan skema campuran antara hub and spoke serta milkrun. Studi ini menghasilkan perhitungan utilisasi kapal LNG 100% dengan kapasitas minimum LNG HUB 45.884 m³ serta keekonomian yang baik dalam hal ini IRR 24,33% dan NPV serta POT yang positif.

Indonesia is an archipelagic country where each citizen is entitled to sufficient the energy needs for their survival. LNG, for instance, is one of the energy sources which is able to be supplied for the needs in each region of Indonesia as it is transportable. This study will discuss the development of LNG HUB for the distribution in Eastern Java, Bali, and Nusa Tenggara for gas-fired power plants that currently still use fuel oil as their energy source. The volume capacity of LNG HUB construction is based on the optimization simulations that is carried out with a mixed scheme between the hub and spoke as well as the milk run. This research conclude an LNG vessel distribution utilization 100%, a minimum capacity of LNG Hub 45.884 m³, and good economics in IRR 24.33% as well as positive NPV and POT."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Doli Hasyda Bragoba
"Pemanfaatan gas di lapangan plant X menjadi LPG akan dilakukan analisis teknologi dan ekonomi karena kontrak distribusi gas ke PT.B akan berakhir di tahun 2014. Dalam rangka meningkatkan nilai tambah pada pemanfaatan gas pada plant X, untuk itu perlu analisis tekno-ekonomi ekstraksi gas LPG yaitu pertama dengan evaluasi teknologi metode proses Isopressure open refrigerant (IPOR), Cascaded refrigerant dan Cryogenic turbo expander refrigerat. Kedua dengan skenario atau skema bisnis yang meliputi membangun investasi fasilitas proses LPG, menyewa fasilitas proses LPG dan memperpanjang kontrak (jual putus).
Dari 3 simulasi teknologi NGL recovery yang mempunyai produksi LPG terbanyak, efisiensi recovery propane & butane tertinggi dan CAPEX & OPEX rendah yaitu pada simulasi Isopressure open refrigerant (IPOR) dengan hasil produksi LPG sebesar 384.1 ton/day, efisiensi LPG recovery sebesar 99.99%, CAPEX sebesar U$ 97,141,680.10 dan OPEX sebesar U$ 13,409,703.93. Untuk analisis keekonomian yang skema dengan NPV tertinggi yaitu skema kontrak jual putus karena komposisi propane dan butane pada gas umpan rendah 4.4% mol. Sedangkan analisis sensitivitas menunjukan pasokan gas umpan, gas komposisi dan harga LPG yang paling berpengaruh terhadap terjadinya perubahan IRR dan NPV.

Gas utilization at field plant X becomes LPG product need to review technology and economic analysis because of the contract will be end flow to PT.B in 2014. In order to increase the value added in the gas utilization plant X, it is necessary techno-economic analysis of LPG gas extraction are first, evaluation technologies process method Isopressure open refrigeration (IPOR), Cascaded refrigeration and Cryogenic turbo expander refrigeration. Second, scenarios or business scheme includes building a process facility LPG, hire LPG processing facility and extend the contract.
The results from 3 simulations NGL recovery is IPOR simulation with LPG production with 384.1 ton/day, high efficiency LPG recovery with 99.99%, CAPEX with U$ 97,141,680.10 and OPEX with U$ 13,409,703.93. For the economic analysis of the scheme highest NPV is extend contract because of the lowest propane and butane on feed gas with 4.4% mol. Meanwhile sensitivity analysis economic are showing of the supply feed gas, composition gas and LPG prices that involved impact to IRR and NPV values.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
T38715
UI - Tesis Membership  Universitas Indonesia Library
cover
Dwi Esthi Ariningtias
"Seiring dengan penambahan jumlah populasi penduduk dan peningkatan ekonomian di suatu wilayah, kebutuhan energi akan mengalami kenaikan. Provinsi Kalimantan Timur akan mengalami kekurangan energi listrik di beberapa daerahnya sehingga diperlukan pembangunan beberapa pembangkit listrik untuk memenuhi kebutuhan listrik. Dalam memenuhi kebutuhan gas yang akan digunakan dalam pembangkit listrik, diperlukan sumber-sumber gas baik dari lapangan-lapangan marjinal atau lapangan gas stranded.
Proses penyediaan gas dari lapangan gas stranded memerlukan skenario logistik yang optimal agar didapatkan biaya suplai yang minimal. Biaya suplai dalam rantai small scale LNG dipengaruhi biaya liquefaction, transportasi, regasifikasi dan distribusi. Optimasi logistik diperlukan untuk mendapatkan biaya suplai ke LNG Terminal paling rendah. Perhitungan optimasi ini dilakukan dengan menggunakan Solver, program di dalam Microsoft Excel yang memasukkan fungsi objektif, variabel bebas dan constrain.
Berdasarkan analisa dari hasil optimasi diperoleh skenario logistic terbaik untuk suplai gas ke PLN dari LNG Terminal 1 yaitu dengan metode milk-run memakai 2 unit kapal berkapasitas 12,000 m3, 1 unit tangki penyimpanan di LNG Terminal berukuran 5,000 m3.dan memakai truk untuk distribusi gas sedangkan ke PLN dari LNG Terminal 2 yaitu dengan metode hub and spoke memakai 1 unit kapal 10,000 m3, 1 unit tangki penyimpanan di LNG Terminal berukuran 7,500 m3.dan memakai truk untuk distribusi gas.
Dan dari hasil penelitian diperoleh biaya pengiriman dari Gas Plant ke LNG Terminal paling rendah yaitu dengan suplai gas dari LNG Plant 1. Untuk LNG Terminal 1 biaya pengiriman paling rendah dengan metode milk-run sedangkan LNG Terminal 2 dengan metode hub and spoke. Harga jual gas minimum ke PLN yaitu 12.64 USD/ MMBTU (Sanggata), 12.24 USD/ MMBTU (Bontang), 11.26 USD/ MMBTU (Melak), 10.93 USD/ MMBTU (Kaltim) dan 11.2 USD/ MMBTU (Kota Bangun).

Energy needs in a region will increase along with the escalation of its number of population and the level of the economy. East Kalimantan province will experience a shortage of electricity in some regions therefore several new power plants should be built to fulfill the electricity demands. To meet the needs of gas for power generation, source of the gas can be from marginal fields or stranded gas fields.
The supply process of gas from these stranded gas fields needs optimum logistic scenario so that minimum supply cost can be obtained. The cost of supply in small scale LNG is affected by the cost of liquefaction, transportation (shipping), LNG Terminal (regasification, jetty, storage tank) and distribution. Logistics optimization is acquired to get the lowest cost of gas supply to LNG Terminal.
Analysis of the optimization is completed with Solver, a program in Microsoft Excel that needs objective functions, decision variables and constrains. Based on the optimization, the best logistic scenario are as follows: To supply gas for PLN from LNG Terminal 1, the milk-run method is needed, employing 2 units of 12,000 m3ship, one of 5,000 m3 LNG storage tank at LNG Terminal and used trucks for distribution gas to Sanggata and Bontang. While to supply gas for PLN from LNG Terminal 2,the hub and spoke method is required, employing a 10,000 m3 ship, a 7,500 m3 storage tank at LNG Terminal and trucks to distribute the gas through Melak, Kaltim and Kota Bangun.
The calculation results are as follow: the lowest gas supplying cost from Gas Plant to LNG Terminal is obtained using gas from LNG Plant 1. The lowest cost of supply to PLN is 12.64 USD / MMBTU (Sanggata), 12.24 USD / MMBTU (Bontang), 11.26 USD / MMBTU (Melak), 10.93 USD / MMBTU (Kaltim) and 11.2 USD / MMBTU (Kota Bangun).
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
T39007
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>