Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 18312 dokumen yang sesuai dengan query
cover
Widyastuti Samadi
"Limbah langkai kelapa sawit sangat berlimbah tapi belum banyak dimanfaatkan. Penelitian ini bertujuan agar tangkai kelapa sawit dapat dibuat scbagai karbon aktif dengan mcnggunakan aktivalor HjPO*. Optimasi pembuatan karbon aktif dilakukan dengan menggunakan variasi waktu perendaman, konsentrasi H3PO4 dan suhu karbonisasi. Kondisi optimum didapatkan pada waktu perendaman 8 jam, konsentrasi HjPO4 6M dan suhu akhir karbonisasi 500°C. Luas permukaan dari karbon akiif optimum, karbon aktif bermerk X dan yang tanpa aktivasi diukur menggunakan ASAP 2400. Hasil pengukuran luas permukaan unluk karbon aktif 1088,527 IrnVg , karbon aktif merk X 982.2413 m2/g dan karbon tanpa aktivasi 903,7374 mVg. Pada uj! penyerapan iod untuk karbon aktif 95%, merk X 99% dan karbon tanpa aktivasi 39.50%. Uji penyerapan metilen biru untuk karbon aktif 99,96%, merk X 99.90 % sedang tanpa aktivasi 2.28% Pada uji penyerapar. zat wama Acid Orange 7, karbon aktif 98,80%, merk X 98.48% sedang tanpa aktivasi 29.06%. Untuk penyerapan zat warna metanil yellow karbon aktif menghasiikan 99,03%. merk X 98.67% dan yang tanpa aktivasi 20.35%"
2006
SAIN-11-2-2006-9
Artikel Jurnal  Universitas Indonesia Library
cover
Yatri Hapsari
"Perkebunan kelapa sawit tersebar dl berbagal daerah di Indonesia.
Sebagian besar dari komponen kelapa sawit sudah banyak dimanfaatkan,
antara lain sebagai minyak goreng, nata de coco, sumber pupuk kalium dan
sebagainya. Namun tangkai kelapa sawit belum dimanfaatkan secara
optimal, karena tangkai kelapa sawit biasanya hanya dimanfaatkan sebagai
kayu bakar oleh penduduk sekitar. Penelitian ini bertujuan agar tangkai
kelapa sawit dapat digunakan sebagai karbon aktif.
Pembuatan karbon aktif dari tangkai kelapa sawit dilakukan melalui
tahapan yaitu dehidrasi, aktivasi dan kartxjnisasi. Aktivator yang digunakan
adalah H3PO4. Optimasi pembuatan karbon aktif dilakukan dengan variasi
waktu perendaman, konsentrasi H3PO4 dan suhu akhir karbonisasi. Kondisi
optimum didapatkan pada waktu perendaman 8 jam, konsentrasi H3PO4 6 M
dan suhu akhir karbonisasi 500° C. Luas permukaan karbon aktif optimum, karbon aktif Merck dan karbon
tanpa aktivasi H3PO4 yang diukur dengan ASAP 2400 didapat luas
permukaan karbon aktif optimum 1088,5271 m^/g, karbon aktif Merck
982,2413 m^/g dan tanpa aktivasi H3PO4 903,7374 m^/g.
Karbon aktif optimum, Merck dan karbon tanpa aktivasi H3PO4
digunakan untuk penyerapan zat warna Acid Orange 7 dan Metanil Yellow.
Hasil penyerapan zat warna Acid Orange 7 pada karbon aktif optimum
mencapai 98,80%, karbon aktif Merck 98,48% dan karbon tanpa aktivasi
29,06%.Pada penyerapan zat warna Metanil Yellow, karbon aktif optimum
dapat menyerap sebesar 99,03%, karbon aktif Merck menyerap sebesar
98,67% dan karbon aktif tanpa aktivasi H3PO4 menyerap sebesar 20,36%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2003
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Pujiyanto
"Saat ini Indonesia mengalami masalah pasokan energi yang sangat serius. Disamping cadangan minyak yang semakin menurun, juga harga minyak mentah dunia yang cenderung terus menerus meroket dan menguras keuangan negara untuk keperluan subsidi. Hal ini mengakibatkan kebijakan pemerintah yang berubah dalam arah komposisi pemakaian energi nasional didalam perencanaannya yang akan menurunkan pemakaian bahan bakar minyak dan akan semakin dominan ke arah jenis energi yang lebih ramah lingkungan serta jenis sumber energi baru dan terbarukan. Sumber energi hidrogen dan metana dari Coalbed Methane (CBM) termasuk dalam kategori ini. Meskipun hidrogen adalah sumber energi yang dapat diregenerasi dan methana dari CBM cukup banyak persediaannya di Indonesia, namun transportasi dan storage masih menjadi kendala dalam pemanfaatan sumber energi ini, oleh karena itu, pengembangan teknologi di bidang transportasi dan storage sumber energi hidrogen dan methana merupakan tugas yang sangat penting untuk masa depan kehidupan manusia.
Salah satu cara yang sangat menjanjikan dalam teknologi storage gas adalah dengan methoda 'adsorptive storage', dimana gas-gas tersebut disimpan dalam keadaan teradsorpsi pada suatu 'adsorbent' tertentu. Molekul 'gas' yang dalam keadaan teradsorpsi mempunyai densitas yang mendekati dengan densitas cairnya. Dengan demikian, secara teoritis dapat diperkirakan bahwa cara penyimpanan gas dengan methoda ini dapat meningkatkan kapasitas penyimpanannya bahkan sampai dua kali lipat dengan tekanan yang hanya 1/10 nya Kemampuan ini bisa lebih meningkat lagi, tergantung jenis adsorbent dan luas permukaannya. Karbon aktif adalah merupakan kandidat adsorbent yang sangat baik untuk keperluan penyimpanan gas ini.
Dalam penelitian ini bertujuan untuk menghasilkan karbon aktif super dengan luas permukaan lebih besar dari 3000 m2/gram dengan bahan baku batubara bitumenous Ombilin dan tempurung kelapa. Batubara Ombilin dipilih sebagai bahan baku pembuatan karbon aktif karena ketersediaannnya yang cukup banyak di Indonesia, sedangkan tempurung kelapa dipilih sebagai representatif dari sumber daya alam yang dapat terbarukan. Perlakuan dengan larutan KOH pada suasana gas nitrogen diharapkan dapat mengontrol terjadinya oksidasi karbon pada tahap aktivasi sehingga jumlah pori yang terbentuk di dalam karbon aktif cukup banyak sehingga menambah luas permukaannya. Hasil karbon aktif yang terbaik pada penelitian ini adalah hasil karbon aktif pada KOH/batu bara (4/1) 1882 m2/gram dengan Temperatur aktivasi 900°C sedangkan untuk karbon aktif KOH/arang tempurung kelapa (4/1) didapatkan hasil 684 m2/gram dengan Temperatur aktivasi 700°C. Dari hasil tersebut maka dapat disimpulkan bahwa karbon aktif yang dihasilkan belum mencapai karbon aktif super.

Currently Indonesia has experienced problems of energy supply is very serious. In addition to diminishing oil reserves, as well as world crude oil prices are likely to continue to skyrocket, and financial drain for the purposes of state subsidies. This resulted in a change in government policy toward the composition of national energy use in its planning that will reduce fuel consumption and will be increasingly dominant in the direction of more environmentally friendly energy and other types of new and renewable energy sources. Energy source of hydrogen and methane from the Coalbed Methane (CBM) falls into this category. Although hydrogen is an energy source that can be regenerated and methane from CBM quite a lot of stock in Indonesia, but the transportation and storage is still a constraint in exploiting this energy source, therefore, technological development in transportation and storage of hydrogen and methane energy sources is a task very important for the future of human life.
One way that is very promising in the gas storage technology is a method of "adsorptive storage", where the gases are stored in the adsorbed condition on an "adsorbent" certain. Molecule "gas" which in the adsorbed state has a density which approximates the density of the liquid. Thus, theoretically can be expected that with the method of gas storage method can increase storage capacity even up to twice the pressure that only a tenth of his ability can be improved again, depending on the type of adsorbent and the surface area. Activated carbon adsorbent is an excellent candidate for gas storage purposes.
In this research aims to produce a super activated carbon with surface area greater than 3000 m2/gram with raw coal bitumenous Ombilin and coconut shell. Ombilin selected coal as raw material for manufacture of activated carbon enough availability in Indonesia, while the coconut shell was chosen as a representative of the natural resources which can be renewable. Treatment with aqueous KOH in an atmosphere of nitrogen gas is expected to control the oxidation of carbon on the activation phase, so as the number of pores formed in the activated carbon enough, so that adds quite a lot of surface area. The best results of activated carbon in this study is the result of active carbon on the KOH / coal (4 /1) 1882 m2/gram with activation temperature to 900°C, while the KOH activated carbon/charcoal (4/1) found that the result 684 m2/gram with the activation temperature 700°C. From these results we can conclude that the activated carbon produced was not achieved super activated carbon.
"
Depok: Fakultas Teknik Universitas Indonesia, 2010
T27522
UI - Tesis Open  Universitas Indonesia Library
cover
cover
Muhammad Jihadilan Aliansyah Putra
"Controlled Atmosphere Storage memiliki CO2 Scrubber yang dapat dikembangkan melalui pengembangan adsorben karbon aktif. Produksi karbon aktif dapat dibuat dengan bahan baku biomassa, salah satunya ialah cangkang kelapa sawit yang memiliki kandungan karbohidrat struktural lignin (53,85%), hemiselulosa (26,16%), dan selulosa (6,92%). Produksi karbon aktif berbahan baku cangkang kelapa sawit melalu mekanisme preparasi bahan baku. Langkah pertama adalah aktivasi kimia dengan merendamkan cangkang kelapa sawit dalam larutan KOH selama 24 jam dan dilanjutkan dengan karbonisasi pada suhu 350oC. Lalu aktivasi kimia kedua dengan variasi rasio KOH : karbon aktif 2:1 dan 4:1 sebelum diaktivasi scara fisika menggunakan gas N2 dengan laju alir 150 ml/menit selama 60 menit pada suhu 800 ᵒC. Hasil karbon aktif terbaik didapat pada rasio 2:1 dengan Bilangan Iod, Luas Permukaan, dan yield berturut-turut 1216,28 mg/g; 1209,78 m2/g; dan 39,01%. Modifikasi karbon aktif yang bertujuan meningkatkan kemampuan adsorpsi CO2 dilakukan dengan perendaman dalam larutan logam NiO dengan variasi loading 0,5%, 1%, dan 2%. Hasil adsorpsi gas CO2 dengan gas analyzer terbaik didapat pada variasi loading 2% dengan presentase adsorpsi sebesar 19,1%.

Controlled Atmosphere Storage has a CO2 Scrubber that can be improved through the development of activated carbon adsorbents. The production of activated carbon can be made with biomass raw materials, one of which is a palm kernel shell which has structural carbohydrate content of lignin (53.85%), hemicellulose (26.16%), and cellulose (6.92%). Production of activated carbon made from palm kernel shells is through the mechanism of preparation of raw materials. The first step is chemical activation by immersing the palm kernel shell in a KOH solution for 24 hours and followed by carbonization at 350 °C. Then the second chemical activation with a variation of the ratio of KOH: activated carbon 2:1 and 4:1 before being physically activated using N2 gas with a flow rate of 150 ml /min for 60 minutes at a temperature of 800 °C. The best activated carbon yield was obtained at a ratio of 2:1 with Iodic Number, Surface Area, and yield respectively 1216.28 mg/g; 1209.78 m2/g; and 39.01%. Modification of activated carbon which aims to increase the ability of CO2 adsorption is done by immersion in a NiO metal solution with loading variations of 0.5%, 1%, and 2%. The best result of CO2 gas adsorption with gas analyzer were obtained at a loading variation of 2% with an adsorption percentage of 19.1%."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Anton Helmawan
"Karbon berukumn antara 0,063 mm dan 0,125 mm terbuat dari tempurung kelapa, diaktifkarn dengan Iarutan aktivator MgCl2 dan NaCl dengan variasi waktu 1,2,3,4,5,6,9, 12,24 dan 43 jam, dan diperoleh waktu perendaman terbaik selama 5-6 jam.
Karbon aktif dengan aktivator MgCl2 merupakan adsorben terbaik untuk memucatkan dan meningkatkan kualitas minyak goreng curah (Crude Palm Oil-CPO, tradisional).
Hasil-hasil yang diperoleh adalah:
1. Kejernihan minyak sebesar 3 NTU (sebelumnya 10 NTU), dengan pembanding minyak Delima (DEPKES No : 231309026037) sebesar 2 NTU menjadikan minyak lebih jernih.
2. Kandungan asam Iemak bebas adalah 0,17 % (sebelumnya 0,474 %), pembanding 0,125 %. Batas rnaksimum untuk kandungan asam lemak bebas menurut Badan Standarisasi Nasional (BSN) adalah 5 %.
3. Berkurangnya kandungan asam lemak bebas dalam minyak menyebabkan berkurangnya gejala batuk, dan tidak terdapatnya lapisan tipis pada lidah sewaktu dikonsumsi.
4. Bilangan Peroksida yang menurun, dari sebesar 2,41 % menjadi 0,97 %, pembanding 0,68% dengan batas maksimal yang keluarkan oleh BSN sebesar 6 %, menyebabkan minyak tidak mudah rusak walaupun mengalami kontak Iangsung dengan oksigen di udara.
5. Bilangan asam dan derajat asam yang semula sebesar 0,223 dan 0,398 berkurang menjadi 0,05 dan 0,09, dengan besar pembanding yaitu 0,045 dan 0,079.
6. Perbandingan luas permukaan, volume, pori dan ukuran pori karbon sebelum/karbon sesudah aktivasi adalah 9.39/256.6 m2/gram, 0.003239/0.1225 cc/gram dan 6.581/10.12 A.
"
Depok: Fakultas Teknik Universitas Indonesia, 2000
S49179
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fauzan Nazif
"Tempurung kelapa dipilih menjadi bahan dasar adsorben pada masker dalam menyerap gas CO2 karen memiliki kandungan selulosa sebesar 26,60 , kandungan hemiselulosa 27,70 dan kandungan lignin sebesar 29,40 serta produksinya yang tinggi 61 juta ton atau 33,94 dari produksi dunia. Metode aktivasi tempurung kelapa dilakukan secara fisika menggunakan CO2 pada suhu 850 0C, dan secara kimia dengan ZnCl2 pada suhu 80 0C dilanjutkan dengan pirolisis menggunakan N2 pada suhu 650 0C. Karakterisasi yang digunakan adalah BET untuk mengetahui luas permukaan karbon aktif.
Melalui uji BET didapatkan luas permukaan karbon teraktivasi kimia sebesar 432,26 m2/g dan yang teraktivasi fisika sebesar 323,57 m2/g. Selanjutnya kapasitas adsorpsi masker karbon aktif diuji pada ruang kompartemen dengan mengalirkan campuran gas CO2 dan udara selama satu jam, lalu mengukur perbedaan konsentrasi CO2 masukan dan keluaran dengan CO2 detector.
Berdasarkan hasil uji adsorpsi polutan, didapatkan bahwa variasi terbaik adalah masker dengan massa karbon aktif 6 gram, teraktivasi kimia, dan dengan menggunakan perekat TEOS yang mampu mengadsorpsi polutan CO2 sebesar 76,52 . Masker yang dibuat pada penelitian ini memliki waktu jenuh selama empat jam pada kondisi konsentrasi CO2 yang tinggi.

Adsorbent in mask to absorb CO2 gas because it has cellulose content of 26.60 , hemicellulose content 27.70 and lignin content of 29.40 and its production is 61 million ton or 33.94 of world production. The method of coconut shell activation was done physically using CO2 at 850 0C, and chemically with ZnCl2 at 80 0C followed by pyrolysis using N2 at 650 0C. The characterization used is BET to measure surface area of activated carbon.
Through BET test, it was found that the chemical activated carbon surface area is 432.26 m2 g and the physical activation is 323.57 m2 g. Furthermore, the adsorption capacity of the activated carbon mask is tested in the compartment chamber by flowing a mixture of CO2 and air for an hour, then measuring the CO2 input and output CO2 difference using CO2 detector.
Based on the results of adsorption test, it was found that the best variation is a mask with 6 gram active carbon mass, chemical activated, and by using TEOS as adhesive capable of adsorbing CO2 pollutant by 76.52 . Mask made in this research has saturated time for four hours under high CO2 concentration conditions.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68634
UI - Skripsi Membership  Universitas Indonesia Library
cover
Saragih, Sehat Abdi
"Penelitian ini dilakukan secara eksperimen di laboratorium untuk pembuatan dan karakterisasi karbon aktif dari batubara Riau sebagai adsorben. Dari pembuatan dan karakterisasi yang dilakukan terhadap karbon aktif dari batubara Riau diperoleh metode pembuatan dan hasil karakteristik karbon aktif dari batubara yang terbaik. Pembuatan karbon aktif dari batubara dilakukan melalui proses persiapan bahan dasar, proses karbonisasi dan proses aktivasi. Persiapan bahan dasar dilakukan dengan melakukan penggerusan dan screening, pencucian dan pengeringan batubara. Proses karbonisasi batubara dilakukan pada temperatur 900oC selama 60 menit dan mengalirkan gas nitrogen (N2) sebagai gas inert sebesar 80 ml/menit. Sedangkan proses aktivasi dilakukan dengan metode aktivasi fisika pada temperatur 950oC dengan lama aktivasi 60 menit, 90 menit, 120 menit, 150 menit dan 180 menit dengan mengalirkan gas karbondioksida (CO2) sebagai activating agent sebesar 80 ml/menit. Karakterisasi terhadap karbon aktif dari batubara seperti luas area permukaan dilakukan dengan menggunakan metode BET, iodine number dengan menggunakan metode titrasi iodometri, metilen biru dengan menggunakan spektrofotometri UV-Visible, kapasitas dan laju adsorpsi dengan menggunakan alat uji adsorpsi kinetik. Dari hasil pembuatan dan karakterisasi diketahui bahwa burn off, luas area permukaan, iodine number, metilen biru, kapasitas dan laju adsorpsi karbon aktif dari batubara Riau dipengaruhi oleh lama aktivasi. Burn off terbesar adalah 47,75%, luas area permukaan terbesar adalah 147 m2/g, iodine number terbesar adalah 109 mg/g, metilen biru terbesar adalah 0,60 mg/g, kapasitas dan laju adsorpsi terbesar adalah 48,3 mg/g dan 0,0134 mg/g.s. Hasil burn off dan karakterisasi terbesar terdapat pada karbon aktif dengan lama aktivasi 180 menit.

This study was done experimentally at laboratory to prepare and characterize the activated carbon from Riau?s coal as adsorbent. From the activated carbon preparation and characterization that carried out towards activated carbon from coal discovered preparation method and the result of activated carbon characterization from the best. The activated carbon preparation of coal performed by pre-processing of elementry substance, carbonization and activation process. The preparation of elementery substance had done by crushing and screening, washing and coal drying. The carbonization of coal treated at temperature of 900oC during 60 minutes by flowing nitrogen (N2) as inert gas with capacity 80 ml/minute. In other hand the activation process was conducted by physic activation method at 950oC by interval long of process 60 minutes, 90 minutes, 120 minutes, 150 minutes, and 180 minutes by flowing carbondioksid (CO2) as activating agent with 80 ml/minutes. The method that used for activated carbon characterization of coal such as square of surface area wide by using BET method, for iodine number by using iodometry titration method, methyline blue by using UV-Visible spektrofotometri, rate and capacity adsorption by using of kinetic adsorption instrument. From the yield of preparation and characterization known that burn off, surface area wide, iodine number, methyline blue, rate and capacity adsorption affected by interval long activation process. Foundthe biggest burn off data was 47,75%, for the biggest surface area wide was 109 mg/g, the biggest iodine number was 109 mg/g, the biggest methyline blue was 0,60 mg/g, the biggest rate and capacity adsorption were 275 mg/g and 0,0134 mg/s. The biggest result burn off and characterization of activated carbon was found by long period of 180 minutes."
Depok: Fakultas Teknik Universitas Indonesia, 2008
T24378
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Khairul Afdhol
"Gas Karbon monoksida dan metana banyak terdapat dalam off gas hasil kilang minyak bumi. Off gas potensial digunakan sebagai bahan baku industri petrokimia. Agar off gas ini bisa dimanfaatkan maka karbon monoksida dan metana harus dihilangkan dari off gas. Penelitian ini bertujuan untuk mengadsorpsi karbon monoksida dan metana menggunakan karbon aktif cangkang kelapa sawit dan karbon aktif komersial secara simultan dengan sistem tumpak dan kontinyu.
Penelitian ini dilakukan 2 tahap yaitu: 1 Pembuatan dan karakterisasi karbon aktif, 2 Uji adsorpsi karbon monoksida dan metana. Dari percobaan aktivasi menggunakan karbon dioksida pada laju alir 150 ml/menit menghasilkan luas permukaan sebesar 978.29 m2/g, Nitrogen pada laju alir 150 ml/menit menghasilkan luas permukaan 1241.48 m2/g, dan karbon dioksida dan nitrogen pada laju alir 200 ml/menit dengan luas permukaan 300.37 m2/g.
Adsorpsi karbon monoksida dan metana pada sistem tumpak karbon aktif cangkang kelapa sawit sebanyak 0.5485 mg/g dan 0.0649 mg/g, pada karbon aktif komersial adalah 0.5480 mg/g dan 0.0650 mg/g. Adsorpsi pada sistem kontinyu karbon aktif dari cangkang kelapa sawit menyerap karbon monoksida 305.23 mg/gr dan metana 12.06 mg/gr, dan karbon aktif komersial menyerap karbon monoksida dan metana sebanyak 204.87 mg/gr dan 5.95 mg/gr.

Carbon monoxide and methane gas are widely present in offshore oil refineries. Off potential gas is used as raw material for the petrochemical industry. In order for this off gas to be utilized, carbon monoxide and methane must be removed from off gas. This study aims to adsorb carbon monoxide and methane using activated carbon of oil palm shells and commercial activated carbon simultaneously with batch and continuous systems.
The research was conducted in 2 stages 1 Preparation and characterization of activated carbon, 2 Carbon monoxide and methane adsorption test. From the activation experiments using carbon dioxide at a flow rate of 150 ml min yielded a surface area of 978.29 m2 g, Nitrogen at a flow rate of 150 ml min yielded a surface area of 1241.48 m2 g, and carbon dioxide and nitrogen at a flow rate of 200 ml min with Surface area 300.37 m2 g.
Adsorption of carbon monoxide and methane on activated carbon activated oil palm shell systems of 0.5485 mg g and 0.0649 mg g, on commercial activated carbon is 0.5480 mg g and 0.0650 mg g. Adsorption of continuous activated carbon from oil palm shells absorbed carbon monoxide 305.23 mg g and methane 12.06 mg g, and commercial activated carbon absorbed carbon monoxide and methane by 204.87 mg g and 5.95 mg g.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
T48175
UI - Tesis Membership  Universitas Indonesia Library
cover
Ardhana Atmayudha
"Karbon aktif banyak digunakan sebagai adsorben karena memiliki luas area permukaan dan daya adsorpsi yang lebih besar daripada adsorben lainnya. Semakin besar luas area permukaan, daya adsorpsi karbon aktif semakin baik. Karbon aktif dapat diproduksi dari berbagai macam bahan dasar yang mengandung karbon salah satunya tempurung kelapa. Tempurung kelapa merupakan bahan dasar dengan kandungan karbon yang sangat besar serta kemudahan bahan dasar tersebut untuk didapatkan secara komersial. Oleh karena itu, pada penelitian ini akan digunakan bahan dasar dari tempurung kelapa untuk pembuatan karbon aktif dengan perlakuan aktivasi terkontrol.
Dalam penelitian ini, digunakan perlakuan aktivasi terkontrol dimana pada proses ini dialirkan gas inert N2 serta ditambahkan activating agent untuk mengontrol proses aktivasi. Pada penelitian sebelumnya, aktivasi terkontrol telah digunakan dengan bahan dasar limbah pinus. Pada penilitian ini, digunakan 2 variasi temperatur aktivasi, yaitu 500 °C dan 600 °C. Sampel karbon aktif diuji luas permukaan dengan BET Autosorb dengan adsorbat Nitrogen. Selain itu, juga dilakukan uji daya adsorpsi karbon aktif terhadap adsorbat CO2 dengan prinsip adsorpsi isotermis Gibbs.
Luas permukaan yang didapat dari hasil uji BET adalah 0 m2/grAC untuk bahan dasar (tempurung kelapa), 300 m2/grAC untuk sampel karbon aktif teraktivasi 500 °C, dan 111,9 m2/grAC untuk sampel karbon aktif teraktivasi 600 °C. Namun, secara teori semakin besar temperatur aktivasi semakin banyak pori-pori yang terbentuk sehingga luas permukaan semakin besar. Pada uji daya adsorpsi, pada tekanan yang hampir sama (sekitar 550 psi) didapat adalah 4,26 mmol/grAC untuk karbon aktif dengan aktivasi 500 °C dan 14,48 mmol/grAC untuk karbon aktif dengan aktivasi 600 °C. Dengan data dari uji daya adsorpsi, maka dapat disimpulkan bahwa luas permukaan dari karbon aktif dengan aktivasi 600 °C lebih besar. Pada tekanan sekitar 702,63 psia, jumlah CO2 yang teradsorpsi pada karbon aktif teraktivasi 500 °C 1,47 kali lebih kecil dibandingkan jumlah CO2 yang teradsorp pada penelitian sejenis dari literatur (Tomasko) sehingga kemungkinan luas permukaannya lebih kecil dari 850 m2/grAC. Pada tekanan sekitar 668,624 psia, jumlah CO2 yang teradsorpsi pada karbon aktif teraktivasi 600 °C 2,4 kali lebih besar dibandingkan jumlah CO2 yang teradsorp pada penelitian sejenis dari literatur (Tomasko) sehingga kemungkinan luas permukaannya lebih besar dari 850 m2/grAC. Hal ini bertolak belakang dengan hasil dari uji BET. Uji BET dengan menggunakan adsorbat nitrogen kurang dapat merepresentasikan kapasitas adsorpsi yang sebenarnya.

Adsorbent that mostly used in industry is activated carbon because its surface area and adsorption capacity are larger than other adsorbents. If the surface area of activated carbon is going to bigger, the adsorption capacity of activated carbon will be bigger too. Activated carbon can be produced from every raw material that contains carbon, e.g. c°Conut shell. C°Conut shell is the raw material that contains so much carbon and is commercial. Because of that, in this research c°Conut shell was used to synthesize activated carbon with controlled activation treatment.
In contolled activation treatment, N2 was flowed and activating agent was added. In previous research, controlled activation treatment had been used with pine waste as a raw material. In this research, the temperature of activation pr°Cess was varied (500 °C and 600 °C). Then activated carbon samples had their surface area test with BET Autosorb with N2 as an adsorbate. Besides, those samples were tested for the adsorption capacity with CO2 as an adsorbate with Gibbs Isotherm Adsorption principal.
Surface area that obtained from BET test result was 0 m2/grAC for raw material, 300 m2/grAC for activated carbon with 500 °C activation, and 111.9 m2/grAC for activated carbon with 600 °C activation. Otherwise, theory mentions that higher activation temperature resulting more pores formed and higher surface area. In pressure that almost be the same (around 550 psia), activated carbon with 500 °C activation adsorbed 4.26 mmol CO2/grAC and activated carbon with 600 °C adsorbed 14.48 mmol CO2/grAC. So, surface area of activated carbon with 600 °C activation is higher than activated carbon with 500 °C activation. In 702.63 psia, activated carbon with 500 °C can adsorb CO2 1.47 times less than activated carbon used by Tomasko that given in the literature. It means that the surface area of activated carbon with 500 °C activation may be less than 850 m2/grAC. In around 668.62 psia, CO2 adsorbed in activated carbon with 600 °C activation is 2.4 times higher than CO2 adsobed in activated carbon that used by Tomako. It means that activated carbon with 600 °C activation may have surface area higher than 850 m2/grAC. Then, we can conclude that BET test with nitrogen as an adsorbat doesn?t accurately represent the adsorption capacity."
Depok: Fakultas Teknik Universitas Indonesia, 2007
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>