Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 142741 dokumen yang sesuai dengan query
cover
Lina
"Dalam makalah ini, penulis mengembangkan metodologi baru yang dinamakan dengan metode Modified Nearest Feature Line (M-NFL). Modifikasi terhadap metode NFL ini dilakkan dengan menambah jumlah garis cri dengan membentuk garis-garis baru hasil proyeksi tegak lurus dari setiap titik citra acuan yang ada terhadap garis ciri yang dibentuk oleh titik titik citra acuan dalam suatu kelas. Tujuannya adalah agar sistem dapat menangkap lebih banyak informasi dari variasi antara titik titik ciri dalam setiap kelas, sehingga tingkat pengenalan sistem akan menjadi lebih tinggi. Metode M-NFL ini akan digunakan sebagai metode klasifikasi dalam sistem penentu sudut pandang pengamatan akan ditransformasikan ke dalam ruang ciri dengan menggunakan metode transformasi Karhumen-Loeve Transformation, serta Patially 1 Kurhunen-Loeve Transformation.
Hasil eksperiman menunjukkan bahwa tingkat pengenalan sistem penentu sudut pandang dengan menggunakan Partially 2 K-LT dengan M-NFL adalah 99.68% dan utnuk sistem pengenal wajah 3-D mencapai 100% lebih tinggi dibandingkan dengan tingkat pengenalan sistem penentu sudut penadnag menggunakan 96.79% dan untuk sistem pengenal wajah 3-D mencapai 92.31%."
2004
JIKT-4-1-Mei2004-8
Artikel Jurnal  Universitas Indonesia Library
cover
cover
Haries Efrika
"Penelitian ini adalah kelanjutan dari penelitian-penelitian sebelumnya mengenai pengenalan wajah dan penentuan sudut pandang wajah 3D dengan metode Nearest Feature Line (NFL) dan optimasi ruang ciri lewat Algoritme Genetika (GA). Umumnya, ruang ciri dibentuk berdasarkan vektor-vektor eigen dengan nilai-nilai eigen terbesar. Fokus utama penelitian ini terletak pada pengkombinasian vektor eigen (bukan hanya yang terbesar) dalam membangun ruang ciri. Untuk menganalisis seberapa baik ruang ciri yang dibentuk lewat cara tersebut, dilakukan beberapa eksperimen pengenalan wajah dan penentuan sudut pandang wajah 3D pada tiga skema-sistem: Fully-KLT, Subset-1-KLT dan Subset-2-KLT. Tingkat pengenalan yang diperoleh mencapai 91,7% untuk pengenalan wajah pada skema Fully-KLT dan Subset-2-KLT, dan mencapai 87,5% untuk penentuan sudut pandang wajah pada skema Fully-KLT. Berdasarkan hasil eksperimen, diperoleh kesimpulan bahwa ruang ciri dengan kombinasi vektor eigen dapat lebih optimal dalam hal representasi data spasial. Namun, ruang ciri yang tersusun atas vektor-vektor eigen terbesar unggul dalam hal perbandingan antara tingkat pengenalan yang diberikan dengan pengurangan lebar dimensi. "
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2004
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aulya Khatulistivani
"Pada sistem parkir yang ada saat ini, proses pengecekan plat nomor atau Tanda Nomor Kendaraan Bermotor TNKB dilakukan dengan mencocokkan plat nomor melalui foto yang diambil saat pengguna masuk ke area parkir. Hasil pengenalan plat nomor kemudian diinput ke komputer dengan cara diketik. Proses yang dilakukan secara manual oleh operator ini memakan waktu yang relatif lama. Tugas akhir ini mengembangkan pengenalan plat nomor otomatis untuk mengatasi masalah tersebut. Pengenalan plat nomor otomatis merupakan teknologi yang memudahkan ekstraksi karakter-karakter pada plat nomor. Pengembangan sistem parkir ini menggunakan OpenCV sebagai pustaka pengolah citra, algoritma KNN K-Nearest Neighbour untuk Optical Character Recognition, dan sistem basis data untuk sistem parkir.
Berdasarkan hasil pengujian, kombinasi nilai variabel block size dan weight terbaik untuk proses thresholding dalam pengenalan plat nomor adalah b=71 dan w=20 dengan hasil akurasi segmentasi karakter sebesar 89, akurasi rekognisi sebesar 82, dan jumlah rekognisi yang tepat 100 sebesar 26. Sistem dapat membaca plat nomor dengan baik pada jarak optimal 60 cm dengan akurasi segmentasi karakter sebesar 89, akurasi rekognisi sebesar 79, dan jumlah rekognisi yang tepat 100 sebesar 26. Resolusi input gambar juga memengaruhi proses pengenalan plat nomor.
Resolusi yang optimal untuk rekognisi adalah 1024 x 768 dengan hasil akurasi segmentasi karakter sebesar 89, akurasi rekognisi keseluruhan sebesar 81, jumlah rekognisi yang tepat 100 sebesar 26, dan dengan rata-rata waktu pemrosesan selama 0,174 detik. Akurasi rekognisi plat nomor juga diperngaruhi oleh faktor lain seperti pencahayaan dan kondisi plat nomor apakah rusak atau tidak, tertutup sesuatu atau tidak . Selain itu, kondisi plat nomor yang ideal diperlukan untuk pengenalan plat nomor otomatis secara optimal. Secara keseluruhan, sistem parkir otomatis memiliki akurasi rekognisi yang baik.

In current parking system, number plate checking is done by matching it through the photo taken when user enters the parking area. The operator then types the recognised number plate into computer. The process, which is done manually by operator, takes a relatively long time. This thesis develops an automatic license plate recognition to overcome the problem. Automatic license plate recognition is a technology which makes computer able to recognize characters in a license plate. The development of the system uses OpenCV as image processing library, KNN algorithm for Optical Character Recognition OCR, and database system for parking data.
Based on the test result, the combination of the best block size and weight value for the thresholding process in the recognition of the number plate is b 71 and w 20 with character segmentation accuracy of 89, recognition accuracy of 82, and the number of fully recognized number plate of 1. The system can read the number plate well at an optimal distance of 60 cm with character segmentation accuracy 89, recognition accuracy of 79, and fully recognized number plate 26. Image input resolution also affects the number plate recognition process.
The optimal resolution for recognition is 1024 x 768 with character segmentation accuracy of 89, overall segmentation accuracy of 81, the number of fully recognized number plate of 26, and with average processing time of 0.174 seconds. The accuracy of plate number recognition is also affected by other factors such as lighting and the condition of the number plate whether it is damaged or not, obstructed by something or not. In addition, the ideal number plate conditions are required for optimal number plate recognition. Overall, the automated parking system has a good recognition accuracy.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Rusdi Syamsuddin
"Penelitian ini adalah kelanjutan dari penelitian-penelitian sebelumnya mengenai penentuan sudut pandang obyek 3D dengan metode Nearest Feature Line (NFL). Pada penelitian sebelumnya telah ditunjukkan bahwa pengurangan garis ciri yang tidak perlu pada ruang ciri mampu menaikkan tingkat pengenalan sistem. Penelitian ini menggunakan skema Fully-KLT, yang difokuskan pada pengurangan garis ciri dengan cara mengurangi jumlah titik ciri yang ada. Titik ciri yang digunakan untuk membangun ruang ciri merupakan hasil rata-rata dari kelompok-kelompok sudut citra pelatihan (disebut Fully-KLT Rata-rata). Untuk menganalisis pengaruh pengurangan titik ciri tersebut, dilakukan eksperimen perbandingan dengan menggunakan seluruh citra pelatihan sebagai pembentuk ruang ciri (disebut Fully-KLT Non Rata-rata).
Hasilnya, tingkat pengenalan Fully-KLT Rata-rata hanya mencapai 42,71%. Sedangkan tingkat pengenalan Fully-KLT Non Rata-rata mampu mencapai 73,96%. Berdasarkan hasil eksperimen, diperoleh kesimpulan bahwa Fully-KLT Rata-rata tidak memberikan tingkat pengenalan yang lebih baik dibanding dengan Fully-KLT Non Rata-rata. Selain itu, agar sistem penentu sudut pandang obyek 3D mampu memberikan jawaban sudut secara presisi, pada penelitian ini dikembangkan cara penentuan sudut pandang yang disebut pendekatan-sudut-presisi. Dibanding dengan pendekatansudut- pewakil yang dikembangkan peneliti sebelumnya [EFR04], pendekatan-sudutpresisi mampu meningkatkan tingkat pengenalan sistem karena pendekatan ini mampu menentukan sudut dari titik uji yang jatuh di perpanjangan garis ciri."
Depok: Universitas Indonesia, 2006
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Daeli, Christian K.F.
"Penelitian ini adalah kelanjutan dari penelitian-penelitian sebelumnya mengenai pengenalan wajah dan penentuan sudut pandang wajah 3D dengan metode Nearest Feature Line (NFL). Fokus utama penelitian ini terletak pada pemakaian ruang eigen Double View Based (dalam satu ruang eigen terdiri dari dua kelas sudut yang bersebelahan) untuk pengenalan wajah. Ruang eigen dibentuk menggunakan metode full-eigen. Proses pengenalan wajah dilakukan melalui pengamatan pada arah horizontal (sudut elevasi 00) dan vertikal (sudut elevasi 100 dan 200). Terdapat 4 skema Double View Based yang menggunakan kombinasi sudut vertikal 00-100, 00-200, 100-200, dan 00-100-200. Tingkat pengenalan yang diperoleh mencapai 96.88% untuk pengenalan wajah pada arah horizontal dengan kombinasi sudut vertikal 00 dan 100, mencapai 94.19% untuk pengenalan wajah dengan kombinasi sudut vertikal 00 dan 200, 97,92% untuk pengenalan wajah dengan kombinasi sudut vertikal 100 dan 200, dan mencapai 97.22% untuk pengenalan wajah dengan kombinasi sudut vertikal 100, 200, dan 300. Berdasarkan hasil eksperimen, diperoleh kesimpulan bahwa jumlah subset sebagai bagian dari dataset mempengaruhi tingkat pengenalan, semakin banyak jumlah subset maka semakin baik tingkat pengenalan wajah 3D. Tingkat pengenalan dengan tambahan sudut pengamatan vertikal mampu memberikan hasil yang lebih baik dibandingkan dengan tingkat pengenalan dengan skema DVB untuk sudut pengamatan horizontal saja."
Depok: Universitas Indonesia, 2006
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Umar Nur Zain
Jakarta: Pustaka Sinar Harapan, 1993
070.44 UMA p
Buku Teks SO  Universitas Indonesia Library
cover
Rany Dwi Cahyaningtyas
"Produk susu bubuk balita yang beragam membuat konsumen memiliki banyak pilihan sehingga penting bagi produsen menjaga loyalitas pelanggan yang telah ada dengan memahami perilaku churn pelanggan. Churn pelanggan didefinisikan sebagai kecenderungan pelanggan untuk berhenti melakukan bisnis dengan sebuah perusahaan. Penelitian ini berfokus memprediksi pola churn pelanggan sehingga perusahaan dapat menentukan strategi untuk mengurangi churn. Penelitian ini membahas mengenai prediksi churn pelanggan berdasarkan segmen produk susu bubuk balita menggunakan model Length, Recency, Frequency, Monetary (LRFM). Responden penelitian ini adalah pelanggan PT. XYZ yang pernah bertransaksi untuk produk susu bubuk balita kelas premium (susu A) dan segmen biasa (susu B) selama periode tahun 2021. Variabel pada penelitian ini meliputi variabel LRFM dan CLV yang dibentuk dengan pembobotan variabel LRFM. Pertama metode Fuzzy C-Means Clustering digunakan untuk melakukan pelabelan target pelanggan selanjutnya metode klasifikasi K-Nearest Neighbor (KNN) digunakan untuk memprediksi churn. Hasilnya terdapat tiga kelompok pelanggan untuk masing-masing susu A dan susu B. Pelabelan yang dihasilkan yaitu pelanggan churn dengan nilai CLV rendah, potential to churn dengan nilai CLV menengah, dan loyal dengan nilai CLV tinggi. Susu B menunjukkan jumlah pelanggan churn sebesar 43,4% lebih banyak dibandingkan susu A sebanyak 34%. Tahapan akhir penelitian ini adalah menganalisis kinerja metode KNN berdasarkan nilai akurasi, recall, dan f1-score terhadap kedua susu A dan susu B. Hasil dari tugas akhir ini menunjukkan bahwa kinerja metode KNN bergantung pada pemilihan jumlah tetangga terdekat dan proporsi pemisahan data.

The variety of powdered toddler milk products gives consumers many choices, so producers need to maintain the loyalty of existing customers by understanding customer churn behaviour. Customer churn is defined as the tendency of a customer to stop doing business with a company. This study focuses on predicting customer churn patterns so companies can determine strategies to reduce churn. This study discusses the prediction of customer churn based on the segment of toddler powdered milk products using the Length, Recency, Frequency, Monetary (LRFM) model. The respondent of this research are the customers of PT. XYZ who have transacted for premium segment powdered milk products for toddlers (milk A) and ordinary segment (milk B) during 2021. Variables in the data include LRFM and CLV variables which are formed by weighting the LRFM variable. At first, Fuzzy C-Means Clustering algorithm was applied for labelling target customer and then, K-Nearest Neighbor (KNN) Classifier as churn prediction was used. As a result, there are three groups of customers for each milk A and milk B. The resulting labels are the churn customer group with low CLV value, potential to churn group with medium CLV, and loyal customer group with high CLV value. Milk B shows the number of customers churn by 43,4% more than milk A as much as 34%. In the final stage of this research, the author analyze the performance of the KNN method based on the value of accuracy, recall, and f1-score for both milk A and milk B. The results of this final project show that the performance of the KNN method depends on the selection of the number of nearest neighbors and the proportion of data splitting used."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adhiguna Mahendra
"Penelitian ini adalah penyempurnaan dari penelitian-penelitian sebelumnya mengenai penentuan sudut pandang wajah 3D dengan metode Nearest Feature Classifier. Sudut pandang merupakan salah satu variasi ciri yang diperlukan dalam system pengenalan wajah tiga dimensi. Sistem penentuan sudut pandang dari obyek tiga dimensi selama ini dikembangkan dengan dua tahap, yaitu tahap transformasi data ke dalam ruang eigen dengan menggunakan Principal Component Analysis atau Karhunen-Loeve Transformation dan tahap klasifikasi dengan menggunakan metode Nearest Feature Line yang melakukan generalisasi ciri-ciri suatu sudut pandang [SRIPOMO01] [LINA04] [EFRIKA04]. Penulis mengembangkan metode penentuan sudut pandang ini lebih lanjut dengan : 1. Memodifikasi tahapan transformasi dan klasifikasi data, yaitu membuat algoritma baru yang memanfaatkan kombinasi dua jenis ruang eigen yang dinamakan ruang eigen Single View Based (SVB) dan ruang eigen Double View Based (DVB) . 2. Memodifikasi tahapan klasifikasi data lebih lanjut, dengan menerapkan metode baru Nearest Feature Classifier yaitu Nearest Feature Plane (NFP) [CHIEN&WU02] yang dapat menangkap lebih banyak ciri dalam satu kelas. Beberapa uji coba dilakukan terhadap sistem penentuan sudut pandang ini dengan tujuan untuk mengetahui akurasi pengenalan sistem terhadap suatu sudut pandang wajah dengan jumlah citra pelatihan sesedikit mungkin."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2005
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dasarathy, Belur V.
Washington: IEEE Computer Society Press, 1991
R 519 DAS n
Buku Referensi  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>