Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 125209 dokumen yang sesuai dengan query
cover
Benyamin Kusumoputro
"Dalam makalah ni akan dibahas sistem pengenal huruf tulisan tangan (SPHTT) yang terdiri dari sub-siostem pra-pengolahan citra, sub-sistem ekstraksi ciri dan sub-sistem klasifikasi. Sub sistem ekstrakasi ciri menggunakan proses aproksimasi kerangka setiap huruf dan memecah kerangka tersebut menjadi beberapa segmen dengan menentukan sejumlah titik penting dalam kerangka. Dalam sistem ini jaringan syaraf tiruan propadasi balik digunakan sebagai sub-sistem klasifikasi. Setiap segmen huruf tulisan tangan tersebut kemudian dipresentasikan sebagai loop, garis dan kurva dengan beberapa sifat yang berkaitan. Dalam makalah ini dijelaskan pula penggunaan sub-sistem ekstraksi ciri berlogika fuzzy untuk mendapatkan representasi terhadap bentuk yang telah ditetapkan sebelumnya. Eksperimen dilakukan dengan mengujukan data yang dilatihkan, sistem mempunyai akurasi pengenalan sampai dengan 97.69% sementara untuk data yang tidak dilatihkan akurasi pengenalan yang dicapai adalah 84.6%"
2001
JIKT-1-1-Mei2001-8
Artikel Jurnal  Universitas Indonesia Library
cover
cover
cover
Danu Widatama
"Biometrik adalah proses identifikasi dan autentikasi berdasarkan atribut unik yang dimiliki oleh manusia. Salah satu atribut manusia yang dapat digunakan untuk biometrik adalah iris. Iris adalah bagian dari mata yang mengatur banyaknya cahaya yang masuk mengenai retina. Iris berbentuk lingkaran dan memiliki karakteristik yang unik pada setiap orang. Penelitian ini adalah tentang pengenalan iris untuk biometrik.
Dalam penelitian ini pembuatan vektor masukan untuk pengenalan dilakukan dengan cara yang berbeda dari biasanya yaitu dengan melingkar, sesuai bentuk iris. Untuk pengenalannya digunakan metode pattern matching dan jaringan syaraf tiruan. Dengan pembuatan vektor masukan secara melingkar, tingkat pengenalan yang dihasilkan cukup tinggi terutama jika metode pengenalan yang digunakan adalah dengan pattern matching.

Biometric is the process of identification and authentication based on many unique attributes of human. One of the usable human attributes for biometric is iris. Iris is a part of the human eye which controls the amount of light going to the retina. Iris is circular and each person has a different iris characteristics. This research is about iris recognition for biometrics.
In this research, the input vector for recognition is created with a different way from the usual. The input vector is created by following iris shape which is circular. The recognition process is done by using pattern matching and artificial neural network. The creation of input vector by circling yields a high recognition rate, especially when pattern matching is used for the recognition process.
"
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2009
S-Pdf
UI - Skripsi Open  Universitas Indonesia Library
cover
Wiedjaja
"Sistem pengenalan Tulisan Tangan secara garis besar terbagi atas 2 kategori, yaitu on-line system dan off-line system. Pada on-line system, tulisan dihasilkan oleh suatu perangkat elektronik seperti pada layar PDA (touch screen), sedang off-line system menggunakan citra dari tulisan tangan yang diambil melalui kamera atau scanner.
Pada tesis ini akan dibahas yang menggunakan off-line system, dimana citra tulisan diambil melalui scanner, kemudian diolah agar menghasilkan citra hitam putih tulisan tangan yang siap dimasukkan dalam proses pengenalan. Metode yang digunakan adalah pendekatan Analitis dengan Segmentasi secara eksplisit, dimana proses pengenalan tulisan dilakukan dengan cara memecah citra tulisan ke dalam segment, kemudian mencoba melakukanpengenalan terhadap segment tersebut. Metode ini mempunyai keunggulan bahwa dalam tahap pengenalan terhadap segment dapat menggunakan teknik Pengenalan Karakter (Optical Character Recognition) yang sudah ada, namun sistem ini mempunyai kelemahan bahwa ia tidak dapat mengambil informasi dari hubungan antar karakter. Pengenalan Character dilakukan melalui tahapan pemrosesan citra seperti Region Of Interest(ROI), binaryzation, dan thinning, kemudian dilakukan ekstraksi fitur dengan metode zoning untuk selanjutnya dimasukkan ke dalam JST Fuzzy ARTMAP. Fuzzy ARTMAP dipilih karena memiliki keunggulan dalam hal Incremental Learning. Hasil dari proses ini akan menghasilkan karakter dari kata yang dikenali."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2005
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Wiedjaja
Fakultas Ilmu Komputer Universitas Indonesia, 2008
T25335
UI - Tesis Open  Universitas Indonesia Library
cover
cover
Mulyahari Zen
"Skripsi ini bertujuan untuk mengoptimalkan korelasi antara Transformasi Paket Wavelet dan jaringan Syaraf Tiruan topologi propagasi-balik umpan-maju dengan menggunakan pendekatan tingkah laku manusia dalam memahami obyek yang diamati. Tingkah laku ini dapat bersifat obyektif maupun subyektif tergantung dari keadaan dan tujuan pengamatan tersebut. Parameter obyektif menggunakan seluruh ciri sebagai dasar dalam melakukan klasiflkasi, sedangkan parsmeter subjektif hanya memanfaatkan ciri-ciri yang sesuai untuk memenuhi klasifikasi.
Hasil pengujian yang dilakukan menunjukkan bahwa tingkat keakuratan berkisar antara 92,861% - 97,86% jika digunakan untuk mengklasifikasikan obyek bidang datar. Sedangkan untuk tekstur antara 94,37% - 98,444%. Kemampuan perangkat lunak untuk mengenal obyek yang mengalami gangguan, yaitu maksimum sebesar 96% pada obyek yang tertranslasi, 90% pada obyek terrotasi, dan 92% pada obyek yang mengalami noise. Selain dari pada itu, kecepatan pembelajaran menjadi sangat singkat dengan rata-rata iterasi maksimal sebanyak 9134,8 kali dan waktu rata-rata kurang dari 261,726 detik.
Pengujian keseluruhan memberikan kesimpulan bahwa penambahan informasi-informasi tertentu yang berkaitan dengan ciri-ciri obyek, akan membantu dalam menghasilkan pembelajaran yang optimal dan pendeteksian yang maksimal."
Depok: Fakultas Teknik Universitas Indonesia, 2000
S39595
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Dalam skripsi ini dikembangkan suatu sistem analitis of}-line untuk mengenali tulisan tangan diskrit dengan menggunakanjaringan saraf buatan sebagai pengklasiftkasi. Pendekatan yang diambil adalah dengan melakukan pra-pengolahan terlebih dahuiu terhadap citra masukan, dan mengekstraksi beberapa ciri sebelum dimasukkan ke dalam jaringan saraf. Ciri yang digunakan tidak terlalu banyak yaitu 72 buah, dan diambil dari berbagai jenis kategori yaitu ciri global, lokal, tipografis, dan topologis. Jaringan saraf buatan yang digunakan dalam skripsi ini ada tiga buah yaitu jaringan huruf kecil, jaringan huruf besar, dan jaringan ACON (All Class in One Network) yang merupakan sebuah jaringan tunggal yang menangani semua kelas keluaran baik huruf besar maupun huruf kecil. Setiap node pada ketiga jaringan tersebut menggunakan fungsi aktivasi sigmoid dengan jangkauan keluaran [45, 0.5]. Pelatihan dilakukan dengan algoritma propagasi balik online (online backpropagation) untuk meminimumkan fungsi kesalahan cross-entropy. Dalam skripsi ini akan dibandingkan kemampuan generalisasi antara jaringan ACON dengan jaringan subclass yang terbentuk dari jaringan huruf besar dan jaringan huruf kecil. Pengujian juga dilakukan untuk melihat kemampuan sistem untuk mengenali citra masukan yang telah transformasi skala."
Fakultas Teknik Universitas Indonesia, 1997
S38946
UI - Skripsi Membership  Universitas Indonesia Library
cover
Adhi Putra
"Sistem pengenal huruf tulisan tangan ini merupakan penelitian lanjutan dari tugas akhir Emanual Philipus D. Sistem Pengenal Huruf Tulisan Tangan ini menggunakan jaringan neural buatan PNN, logika fuzzy dan tehnik pengolahan citra. Huruf tulisan tangan dicari kerangka hurufnya menggunakan tehnik pengolahan citra dan aproksimasi kerangka untuk mendapatkan kerangka huruf yang paling mendekati bentuk kerangka sebenarnya, kemudian kerangka huruf itu dianggap sebagai directed graph yang memiliki kumpulan titik awal atau titik akhir dan titik cabang dan rusuk (edge). Rusuk-rusuk ini dikenali sebagai garis lurus, kurva atau loop menggunakan logika fuzzy. Sistem ini terdiri dari 3 tahapan besar, yaitu: pra-pengolahan yang bertujuan untuk mendapatkan kerangka huruf, klasifikasi huruf yang bertujuan mengenali elemen-elemen penyusun dan keterhubungan antar elemen-elemen tersebut dari huruf dan terakhir adalah tahap jaringan neural buatan pnn untuk mempelajari dan mengenali huruf-huruf tersebut berdasarkan informasi elemen-elemen penyusun dan keterhubungan antar elemen-elemen tersebut dari huruf tersebut. Sistem ini telah diuji dengan data yang tidak terlatih dan mendapatkan hasil pengenalan 9,8% - 25%. "
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2004
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>