Ditemukan 3797 dokumen yang sesuai dengan query
Mosbaek, Ernest J.
Amsterdam : North-Holland Publishing, 1970
519.5 MOS i
Buku Teks SO Universitas Indonesia Library
Yuridunis Saidah
Depok: Universitas Indonesia, 2010
S27783
UI - Skripsi Open Universitas Indonesia Library
Eka Aditya Pramudita
"Distribusi Poisson seringkali digunakan untuk menganalisis data count. Distribusi Poisson memiliki asumsi ekuidispersi, yaitu nilai mean sama dengan nilai variansinya. Namun, yang sering terjadi pada data terapan adalah overdispersi, yaitu variansi lebih besar dari mean. Salah satu penyebab overdispersi adalah banyaknya pengamatan bernilai 0 pada data (excess zeros). Distribusi Zero-Inflated Poisson (ZIP) merupakan distribusi yang dapat digunakan pada data count dengan excess zeros. Distribusi ZIP merupakan campuran dari distribusi degenerate di 0 dan distribusi Poisson. Parameter dari distribusi ZIP adalah dan . Dengan menggunakan metode Maximum Likelihood Estimation (MLE), akan dicari taksiran titik untuk parameter dan, di mana menyatakan probabilitas pengamatan 0 merupakan structural zeros dan menyatakan mean dari subpopulasi yang berdistribusi Poisson. Walaupun penaksiran parameter distribusi ZIP menggunakan MLE menghasilkan taksiran parameter dengan nilai MSE yang kecil, namun taksiran parameter tersebut memiliki bias karena penaksiran parameter harus dilakukan secara numerik. Bias dari taksiran parameter tersebut dapat dikurangi menggunakan metode Bias-Reduced MLE. Penggunaan metode ini tidak memengaruhi nilai MeanĀ-Squared Error (MSE) yang dimiliki oleh penaksir parameter MLE, sehingga bias dari penaksir parameter MLE dapat berkurang tanpa mengubah nilai MSE. Data simulasi digunakan untuk mengilustrasikan penaksiran parameter distribusi ZIP menggunakan Bias-Reduced MLE. Simulasi menunjukkan bahwa penaksiran parameter Bias-Reduced MLE menghasilkan bias penaksir yang lebih kecil daripada penaksir MLE pada ukuran sampel yang kecil. Selain itu, nilai MSE dari penaksir parameter Bias-Reduced MLE tidak berbeda secara signifikan dengan penaksir parameter MLE. Maka dari itu, penaksiran parameter Bias-Reduced MLE dapat mengurangi bias dari penaksir parameter MLE pada ukuran sampel yang kecil tanpa mengubah nilai MSE dari penaksir parameter MLE secara signifikan.
Poisson distribution is commonly used to analyse count data. It requires equidispersion assumption, i.e. equality of mean and variance. However, what often happened to real data is overdispersion, i.e. variance exceeds mean. One of the cause of overdispersion is excess zeros. Zero-Inflated Poisson (ZIP) distribution can be used to analyse count data with excess zeros. ZIP Distribution is a mixing distribution ofdegenerate at 0 and Poissondistribution. Parameters of ZIP distribution are 𝜔and𝜆, where 𝜔denotes probability of structural zeros and denotes mean of Poisson distributed subpopulation. Those parameterswill be estimated by Maximum Likelihood Estimation (MLE) method. Although MLE estimates provide small MSE, but they are biased because the estimation should use numerical method. A way to reduce the bias is by Bias Reduced MLE method. This method would not compromise MSEso that the bias reduced while MSE remains the same. Illustration of Bias-Reduced MLE parameter estimation is given by generating simulation data.Data simulation shows that with Bias-Reduced MLE, ML estimators bias isreduced in small samples. Besides, the MSE of Bias Reduced ML estimator is not significantly different with ML estimator. So that, Bias-ReducedML estimator would reduce bias of ML estimator without compromise the MSE."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Achmad Fachrezi Az
"
Penelitian ini membahas konstruksi distribusi Marshall-Olkin-Kumaraswamy-Eksponensial (MOKw-E), yang merupakan kombinasi distribusi Marshall-Olkin (MO) dan Kumarawasmy-Eksponensial (Kw-E). Distribusi ini dikenal sebagai model fleksibel yang dapat diaplikasikan untuk data dengan berbagai bentuk distribusi. Estimasi parameter dilakukan menggunakan Maximum Likelihood Estimation (MLE) dengan bantuan dua metode numerik, yaitu metode Nelder-Mead dan metode Gradien Konjugat Fletcher Reeves. Kedua metode ini banyak digunakan dalam penyelesaian permasalahan optimasi karena memiliki tingkat efisiensi yang tinggi dengan komputasi yang sederhana tetapi memberikan hasil yang akurat. Kedua metode ini akan dibandingkan dengan melihat nilai Mean Squared Error (MSE) yang merupakan suatu metrik untuk melihat seberapa cocok model dengan data yang digunakan. Terakhir, model yang dikembangkan diaplikasikan pada data severitas klaim asuransi pengangguran untuk menunjukkan kemampuan model dalam memodelkan data severitas klaim. Model tersebut akan dibandingkan dengan model yang dibangun dari distribusi Kw-E dengan melihat nilai Akaike Information Criteria (AIC) dan Bayessian information criteria (BIC) untuk menunjukan bahwa model yang dikembangkan lebih baik dibandingkan model asalnya.
This research discusses the construction of the Marshall-Olkin-Kumaraswamy-Exponential (MOKw-E) distribution, which is a combination of the Marshall-Olkin (MO) and Kumaraswamy-Exponential (Kw-E) distributions. This distribution is known as a flexible model applicable to data with various distribution shapes. Parameter estimation is performed using Maximum Likelihood Estimation (MLE) with the assistance of two numerical methods the Nelder-Mead method and the Conjugate Gradient Fletcher Reeves method. Both methods are widely used in solving optimization problems due to their high efficiency with simple computations yet accurate results. These methods will be compared by examining the Mean Squared Error (MSE) values, which is a metric to assess how well the model fits the data. Finally, the developed model is applied to unemployment insurance claim severity data to demonstrate the model's capability in representing severity claim data. The model will be compared with a model built from the Kw-E distribution by evaluating the Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC) values to show that the developed model is superior to the original model.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Ismi Nadiya
"Suatu runtun waktu yang memiliki variabel respon biner disebut runtun waktu biner. Runtun waktu biner dapat dimodelkan menggunakan model umum Autoregressive dengan pendekatan regresi non-linier. Kedem Fokianos 2000 mengenalkan model runtun waktu biner melalui pendekatan Autoregressive dan regresi logistik. Metode yang digunakan untuk penaksiran parameter yaitu metode Partial Likelihood. Metode Partial Likelihood ini dilakukan dengan menentukan fungsi Partial Likelihood yang dibentuk dari probability density function pdf marginal distribusi Bernoulli. Namun, dalam proses penaksiran parameter menggunakan metode Partial Likelihood ditemukan kesulitan untuk mendapatkan solusi secara langsung dikarenakan persamaan yang tidak linier closed form. Oleh karena itu, untuk mengatasi hal tersebut dilakukan iterasi menggunakan metode Fisher Scoring.
Aplikasi data pada penaksiran parameter untuk model runtun waktu biner dalam tugas akhir ini menggunakan data kompetisi balap perahu antara Universitas Cambridge dan Universitas Oxford yang dicatat pada tahun 1946 sampai 2011 dengan jumlah data berbeda yaitu 22, 44, dan 66 data. Berdasarkan aplikasi data yang dilakukan, diperoleh hasil bahwa penaksiran parameter untuk model runtun waktu biner menggunakan Partial Likelihood dengan jumlah data yang berbeda menghasilkan penaksir parameter yang relatif sama atau tidak memiliki perbedaan yang signifikan.
A time series that has binary respon variable is called a binary time series. Binary time series can be modeled using the Autoregressive general model and nonlinear regression approach. Kedem Fokianos 2000 introduced a binary time series model through the Autoregressive and logistic regression approach. The parameters of binary time series are estimated using the Partial Likelihood method. The Partial Likelihood method is performed by determining the Partial Likelihood function derived from the marginal probability density function pdf of Bernoulli distribution. However, in the process of parameter estimation using this method, the form of final function to obtain parameters is not in the closed form equation. To face this problem, Fisher scoring iterations are perfomed. The application of parameter estimation of the model uses the data about boat racing competition between the University of Cambridge and Oxford University from 1946 to 2011. Based on the data application, parameter estimation of the binary time series model using partial likelihood with different amounts of data resulting in a relatively same or no significant parameter estimator."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Blackwell, David
New York: Dover, 1954
519.5 BLA t
Buku Teks SO Universitas Indonesia Library
Daniel, Wayne W.
Boston: Houghton Miffiln, 1989
519.5 DAN b
Buku Teks SO Universitas Indonesia Library
Mood, Alexander McFarlane, 1913-
New York : McGraw-Hill, 1963
311 MOO i
Buku Teks SO Universitas Indonesia Library
Spiegel, Murray R.
Jakarta: Erlangga , 1994
519.5 SPI m
Buku Teks SO Universitas Indonesia Library
Larsen, Richard J.
New Jersey : Prentice-Hall, 1996
519.5 LAR i
Buku Teks SO Universitas Indonesia Library