Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 74680 dokumen yang sesuai dengan query
cover
Alya Zhafira Putri
"Sistem kelistrikan ALZ terdiri dari 10 sistem tenaga listrik yang memiliki peranan penting dalam menyuplai pasokan listrik. Kondisi saat ini menunjukkan total permintaan beban puncak malam pada Agustus tahun 2022 mencapai 79.253 MW dengan pasokan daya yang didominasi oleh penggunaan unit pembangkit termal. Pengunaan unit pembangkit termal memicu persoalan biaya pengoperasian yang relatif tinggi dikarenakan harga bahan bakar yang kian meningkat. Oleh karena itu, diperlukan pengoptimalan operasi sistem dengan cara pengalokasian daya aktif yang dibangkitkan oleh masing-masing unit pembangkit agar mendapatkan biaya pembangkitan yang minimum serta mendapatkan rugi-rugi yang optimal dengan tetap memenuhi keseimbangan beban. Pada penelitian ini, dilakukan optimasi pada skema pertahanan islanding. Hasil penelitian menunjukkan bahwa pengoptimalan aliran daya sistem ALZ saat skema pertahanan Islanding tahap 1 dapat mereduksi biaya bahan bakar sebesar sebesar Rp74,274,228.14/jam atau sebesar 37,58% dari pola operasi yang dilakukan oleh PT PLN (Persero). Serta, skema pertahanan islanding tahap 2 dapat mereduksi biaya bahan bakar sebesar Rp.67,200,225.75/jam atau sebesar 45.15% dari pola operasi yang dilakukan oleh PT PLN (Persero).

The ALZ electricity system consists of 10 power systems that are essential in supplying electricity. Current conditions show that the total demand for peak night loads in August 2022 reached 79,253 MW, with power supply dominated by the use of thermal generation units. The use of thermal generating units raises the issue of relatively high operating costs due to increasing fuel prices. Therefore, it is necessary to optimize system operation by allocating the active power generated by each generating unit to obtain minimum generation costs and obtain optimal losses while still reaching the load balance. In this study, optimization was carried out on the islanding defense scheme. The results showed that optimizing the power flow of the ALZ system when the islanding defense scheme stage 1 can reduce fuel costs by Rp74,274,228.14/hour or by 37,58%, and the islanding defense scheme stage 2 can reduce fuel costs by Rp.67,200,225.75/hour or 45.15% of the pattern of operations carried out by PT PLN (Persero)."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ariva
"Penelitian ini berfokus pada optimasi tata letak Power Plant Area pada Pembangkit Listrik Tenaga Panas Bumi dengan mempertimbangkan salah satu aspek keselamatan yaitu dispersi gas toksik, khususnya H2S. Model matematika diformulasikan sebagai Mixed Integer Non Linear Programming dan diimplementasikan pada Excel Solver menggunakan algoritma GRG Non Linear. Tata letak dua jenis PLTP sebagai contoh kasus dan dua skenario riset, tanpa dan dengan mengikuti rekomendasi jarak dari standar keselamatan, dioptimalisasikan dalam rangka minimisasi total biaya pada PLTP Plant Layout Cost namun tetap memperhatikan aspek dispersi gas toksik melalui simulasi Computational Fluid Dynamic, lalu dibandingkan dengan PLTP yang sudah ada existing.
Hasil penelitian menunjukkan susunan tata letak PLTP optimasi sesuai dengan susunan tata letak PLTP existing pada unit fasilitas proses utama. Dibandingkan PLTP existing, hasil optimasi tata letak PLTP dengan rekomendasi jarak dari standar keselamatan proses sudah cukup aman dari segi aspek dispersi H2S pada skenario terburuk. Terakhir, optimasi tata letak PLTP dengan metode riset operasi ini terbukti mampu menurunkan total biaya terhadap PLTP existing, pada penelitian ini sebesar 14,97 - 35,89.

This research is focused on Power Plant Area of Geothermal Power Plant layout optimization considering one of process safety aspect, toxic gas dispersion particularly H2S. This problem is formulated as a Mixed Integer Non Linear Programming and implemented in Excel Solver using GRG Non Linear algorithm. Layout of two Geothermal Power Plants as example and two research mode, with and without following process safety standard spacing requirements, have been optimized to mimimize total Plant Layout Cost yet still concern toxic gas dispersion through Computational Fluid Dynamic simulation, and to compare with layout from existing plant.
The result shows that main process equipments arrangement of optimized Geothermal Power Plant layout have conform with existing layout. Optimized Geothermal Power Plant layout which following recommended bulding equipment spacing standard is already safe from H2S exposure in worst case scenario. Finally, Geothermal Power Plant layout optimization using operation research is capable to reduce total plant layout cost from existing layout, in amount of 14,97 35,89 in this research.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
T48207
UI - Tesis Membership  Universitas Indonesia Library
cover
Yusuf Kusdinar
"Rencana Umum Penyediaan Tenaga Listrik RUPTL PT PLN Persero tahun 2017-2026 merencanakan pembangunan pembangkit listrik di Provinsi Papua dan Provinsi Papua Barat adalah sebesar 1076 MW. Sebagian besar 976 MW dari pembangkit listrik tersebut adalah berbahan bakar gas yang pada tahap pertama akan dibangun terlebih dahulu pada 5 lokasi yaitu di Sorong, Manokwari, Biak, Nabire dan Jayapura dengan total kapasitas sebesar 385 MW. Gas yang akan digunakan untuk pembangkit tersebut adalah berasal dari lapangan BP Tangguh di selat Bintuni dalam bentuk cair LNG yang akan diangkut dengan menggunakan kapal ke setiap lokasi pembangkit.Untuk memperoleh biaya transportasi yang paling efisien maka dilakukankajian dan simulasi roundtripterhadap skema transportasi secara point to point, hub and spoke dan milk run.Berdasarkan hasil simulasi dan perhitungan terhadap skema transportasi LNG pada masing-masing lokasi pembangkitberdasarkan cafacity factor sebesar 0,6 maka diperoleh hasil bahwa yang paling efisien adalah dengan skema transportasi Milk-Run yaitu dengan menggunakan kapal LNG carrier dengan ukuran 25.000 m3 dengan durasi roundtrip selama 9 hari dan biaya transportasi sebesar 1.69 USD/MMSCF. Kapasitas storage pada masing-masing lokasi pembangkit adalah 12.500 m3 untuk lokasi Sorong, 6000 m3 untuk lokasi Manokwari, 5000 m3 untuk lokasi Nabire, 3500 m3untuk lokasi Biak serta15000 m3 untuk lokasi Jayapura. Sedangakan dengan skema transportasi point to point diperoleh biaya transportasi secara kumulatif sebesar 2.37 USD/MMSCF dan dengan skema transportasi Hub and Spoke diperoleh biaya sebesar 2.57 USD/MMSCF.

General Plan of Electric Power Supply RUPTL PT PLN Persero years 2017 2026 planned to build power plant in Papua Province and West Papua Province amounted to 1076 MW. Most of the power plants 976 MW are gas fired which will be built first in 5 locations in Sorong, Manokwari, Biak, Nabire and Jayapura with total capacity of 385 MW. The gas to be used for the plant is from the BP Tangguh field in the Bintuni Strait in liquid form LNG which will be transported by ship to the location of each plant. To obtain the most efficient transportation cost, a roundtrip review and simulation of transportation scheme is done on point to point scheme, hub and spoke and milk run.Based on simulation result and calculation of LNG transport scheme at each plant location based on cafacity factor of 0.6, it is obtained that the most efficient is with Milk Run transportation scheme that is by using LNG carrier ship with size 25.000 m3 with roundtrip duration during 9 days and transportation cost of 1.69 USD MMSCF. Storage capacity at each plant site is 12,500 m3 for Sorong location, 6,000 m3 for Manokwari location, 5,000 m3 for Nabire, 3,500 m3 for Biak location and 15,000 m3 for Jayapura location. While with the point to point transportation scheme, the cumulative transportation cost of 2.37 USD MMSCF and with the Hub and Spoke transportation scheme is 2.57 USD MMSCF."
Depok: Fakultas Teknik Universitas Indonesia, 2018
T50705
UI - Tesis Membership  Universitas Indonesia Library
cover
Najmi Afriandini
"Penelitian ini bertujuan untuk mendapatkan skema Feed in Tariff PLTM yang dapat dijadikan acuan dalam jual beli listrik dari swasta kepada PLN. Nilai Feed in Tariff PLTM saat ini dirasa masih terlalu tinggi sehingga belum dapat dijadikan acuan dalam perjanjian jual beli listrik antara PLN dan swasta atau Independent Power Producer IPP. Penelitian berfokus pada perhitungan nilai Feed in Tariff PLTM dengan skema tetap dan menurun.Dasar dari perhitungan nilai Feed in Tariff ini adalah Levelized Cost of Energy LCOE atau biaya untuk memproduksi listrik setiap kWhnya. Hasil perhitungan nilai Feed in Tariff PLTM yang didapatkan dengan skema tetap maupun menurun menunjukkan hasil yang lebih rendah dibandingkan nilai Feed in Tariff PLTM yang diberikan oleh pemerintah. Apabila skema Feed in Tariff PLTM baru ini akan dilaksanakan maka dibutuhkan pula peran subsidi dari pemerintah.

The purpose of this research to obtain the ideal scheme Feed in Tariff for mini hydro power plant that can be used as a reference for setting Feed in Tariff between private sector that build mini hydro power plant to PLN. The current Feed in Tariff is considered too high by PLN. Therefore, it cannot be used as a fair reference to create an agreement among PLN and private sector. The research focus on the calculation of the Feed in Tariff value using constant and decreasing scheme. Levelised Cost of Energy LCOE or the cost to produce electricity per kWh will be used as the baseline in the calculation. A lower Feed in Tariff value that the current value from the government is found using this calculation scheme. If the new Feed in Tariff will be implemented that it will require subsidies from the government."
Depok: Fakultas Teknik Universitas Indonesia, 2016
T47290
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Nuh Firdaus
"Indonesia memiliki target rasio elektrifikasi untuk semua provinsi sebesar 100% dalam RUPTL 2018-2027. Namun sampai saat ini masih banyak daerah di Indonesia  yang belum mendapatkan aliran listrik. Khususnya di Distrik Hingk, Kabupaten Pegunungan Arfak, Papua Barat. Sulitnya medan menjadi tantangan pembangunan jaringan listrik di sana. Pembangkit Listrik Hibrid Mikrohidro dan PV merupakan solusi yang tepat untuk menghadirkan listrik di sana. Sebelum dilakukan pembangunan diperlukan analisis keekonomian dan risiko dengan melakukan variasi terhadap skenario kebijakan dan investasi. Dalam penilitian ini dilakukan analisis ekonomi dan risiko terhadap kelayakan pembangunan pembangkit. Analisis ekonomi dilakukan dengan menghitung NPV,IRR dan payback period. Analisis risiko dilakukan dengan metode monte carlo. Analisis dilakukan terhadap sistem hybrid seri, sistem hybrid switched, dan sistem hybrid paralel. Berdasarkan hasil perhitungan didapatkan untuk sistem hybrid seri nilai NPV $232.444 dan IRR 15% dengan payback period selama 6,9 tahun. Sistem hybrid switched memiliki nilai NPV $252.747 dan IRR 17% dengan payback period selama 6,13 tahun. Sistem hybrid paralel memiliki nilai NPV $286.340 dan IRR 20% dengan payback period 4,94 tahun. Dari hasil simulasi didapatkan bahwa semua sistem hybrid layak untuk digunakan dan sistem hybrid paralel akan memberikan keuntungan terbesar jika diaplikasikan.

According to RUPTL 2018-2027, Indonesia targets a 100% electrification ratio for all provinces. However, there are a lot of areas in Indonesia that are still lack of proper electricity access, for example at the Hingk District, Arfak Mountains Regency, West Papua. One of the main challenges of building a proper electricity infrastructure in that area is the difficulty of the terrain. A hybrid power plant of hydroelectric power and photovoltaic is the right solution to this problem. Prior to the development of the power plant, a feasibility study that consists of economic and risk analysis is done by simulating different policies and various investment schemes. All of these simulations are compared to each other to obtain the most feasible option that will attract investors to invest in this project. Economic analysis and risk were carried out on the feasibility of building a power plant. Economic analysis is done by calculating the NPV, IRR and payback period. Risk analysis is done by the Monte Carlo method. The analysis was carried out on series hybrid, switched hybrid, and parallel hybrid. Based on the calculation results obtained for the hybrid series system the NPV value is $ 232,444 and the IRR is 15% with a payback period of 6.9 years. The switched hybrid system has s NPV  $ 252,747 and an IRR of 17% with a payback period of 6.13 years. The parallel hybrid system has NPV values of $ 286,340 and IRR of 20% with a payback period of 4.94 years. From the simulation results, it was found that all hybrid systems are feasible to be built and the parallel hybrid system is the best choice to be applied."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Umar Wirahadi Kusuma
"Proses pembangunan PLTP membutuhkan waktu yang cukup lama, terutama pada tahap pengeboran dan konstruksi. Semakin besar kapasitas pembangkit, semakin banyak sumur yang dibutuhkan dan semakin lama proses pembangunan PLTP. Tesis ini membahas tentang penerapan pembangunan PLTP dengan kapasitas 65 MW dengan cara membangun pembangkit yang terletak di lokasi sumur produksi atau yang di sebut dengan PLTP mulut tambang. Analisis pembangunan PLTP tersebut terdiri dari beberapa skenario yang dengan acuan kapasitas dan lokasi pada pembangkit pada PT. X. Hasil analisa menunjukkan bahwa dengan membangun PLTP mulut tambang maka produksi listrik bisa lebih cepat dan lebih ekonomis.

Geothermal power plant development takes a long time, especially the drillings and constructions process. The bigger capacity of the plant the more production wells needed and the more times need to build the plant. This Thesis analyses about application of geothermal power plant development with 65 MWs capacity which the plant build at the production wells, we called it wellhead power plant. The analyses consist of some scenarios based on the plant capacity and location of PT. X. The analysis shows that build the wellhead geothermall power plant takes shorter time and more economics."
Depok: Fakultas Teknik Universitas Indonesia, 2016
T47439
UI - Tesis Membership  Universitas Indonesia Library
cover
Naufal Auliya
"ABSTRAK
Beban selalu bertumbuh dari tahun ke tahun berikutnya, in harus diikuti oleh jumlah pasokan yang memadai sehingga kualitas suplai terpenuhi. Kekurangan pasokan akan menyebabkan gangguan terhadap konsumen sehingga pemadaman paksa tidak dapat dihindari demi stabilitas listrik selalu terjaga. Keandalan pasokan daya dari pembangkit dalam melayani bebannya secara sistem diukur dari tingkat sebuah indeks dimana indeks ini disebut dengan indeks probabilitas kehilangan beban LOLP dan besar dari kerugian energi yang terbuang digambarkan pada besar energi yang tidak terlayani ENS . Berdasarkan hasil perhitungan dengan menggunakan perangkat lunak WASP IV didapatkan nilai penambahan pembangkit pada sistem Jawa Bali yang optimal dengan skenario I penambahan pembangkit pada periode 2016 hingga 2019 yaitu sebesar 24.834 MW dimana nilai dari indeks probabilitas kehilangan beban LOLP bisa dijaga dibawah 1 hari/tahun sesuai dengan yang tertulis pada RUPTL.

ABSTRACT
The power consumption of electricity are grow for the past year to the present for each period of years. This phenomenom has to be followed by an adequeate supply to fulfill the needs of electricity consumption by the consumer. The inadequate of supply will cause disruption to the power systemand forced outages can not be avoided for maintain the availability of the electricity. The reliability of power system can be measured by Lost of Load Probability LOLP Index and the amount of energy losses are defined as Energy Not Served ENS . Based on the calculation using WASP IV software, it is found that the optimum addition of power plant in the period 2016 until 2019 is about 24,834 MW. As the result with this scenario the value of LOLP can be kept below 1 day year that this standard stated in RUPTL."
2017
T48283
UI - Tesis Membership  Universitas Indonesia Library
cover
Niko Lastarda
"Dalam melayani sebuah sistem kelistrikan dibutuhkan pembangkit yang handal dan efisien. Pembangkit Listrik Tenaga Gas Uap PLTGU merupakan salah satu pilihan pembangkit thermal yang mempunyai kriteria tersebut. Terdapat beberapa jenis konfigurasi PLTGU. Khusus untuk PLTGU dengan dua turbin gas memliki dua jenis konfigurasi, yaitu konfigurasi 2G-2H-3S dua turbin gas, dua HRSG, tiga turbin uap dan konfigurasi 2G-2H-1S dua turbin gas, dua HRSG, satu turbine uap . Mode operasi dari setiap jenis konfigurasi menghasilkan keandalan dan efisiensi yang berbeda.
Penelitian ini bertujuan untuk menghitung efisiensi dan keandalan dari dua jenis konfigurasi PLTGU yang menggunakan dua turbin gas, sehingga dapat menentukan pengaruh jenis konfigurasi terhadap efisiensi dan keandalan PLTGU. Dengan menggunakan metode energi input ouput untuk menentukan besar efisiensi dan dengan menghitung Equivalent Availability Factor EAF untuk mendapatkan faktor kesiapan atau keandalan pembangkit.
Dari hasil perhitungan didapatkan konfigurasi 2G-2H-1S memliki nilai efisiensi yang lebih tinggi dari konfigurasi 2G-2H-3S, terhitung Untuk mode operasi Full Blok Cycle konfigurasi 2G-2H-1S memliki efisiensi maksimum 55.5 sedangkan konfigurasi 2G-2H-3S efisiensi maksimum 53.5 . Sedangkan untuk nilai keandalan konfigurasi 2G-2H-3S lebih handal dibandingkan dengan konfigurasi 2G-2H-1S. Untuk mode operasi Full Blok Cycle memliki 93.39 EAF, sedangkan konfigurasi 2G-2H-3S 92.62 EAF. Dari segi keekonomian kedua jenis konfigurasi memiliki nilai kelayakan, dimana untuk konfigurasi 2G-2H-1S lebih ekonomis dilihat dari NPV 371,286,536 USD dan IRR 12 serta waktu pengembalian modal yang relative lebih cepat 9 tahun. Dengan mengetahui konfigurasi PLTGU yang handal, efisien dan ekonomis dapat dijadikan dasar pengambilan keputusan untuk pemilihan konfigurasi PLTGU yang sesuai dengan kebutuhan beban dasar, beban menengah, atau beban puncak di sebuah sistem kelistrikan.Kata Kunci : EAF, Efisiensi, Keandalan, Konfigurasi PLTGU, PLTGU.

In serving the electrical systems required a reliable and efficient plants. Combined Cycle Power Plant CCPP is one of the thermal power plants that have a selection criteria. There are several types of CCPP configurations. Especially for CCPP with two gas turbines have two types of configurations, the configuration of 2G 2H 3S two gas turbines, two HRSG, three steam turbines and the configuration of 2G 2H 1S two gas turbines, two HRSG, one steam turbine , The mode of operation of each type of configuration produces a different reliability and efficiency.
This study aimed to quantify the efficiency and reliability of two types of power plant configuration that uses two gas turbines, so as to determine the effect of this type of configuration on the efficiency and reliability of the CCPP. By using the input energy ouput to determine the efficiency and to calculate Equivalent Availability Factor EAF to obtain readiness factors or reliability of the power plant. From the results of the calculation.
Calculation resulting from the configuration of 2G 2H 1S has a higher efficiency values of configuration 2G 2H 3S, accounting for full block cycle operating modes configuration 2G 2H 1S discount maximum efficiency of 55.5 , while the configuration of 2G 2H 3S efficiency a maximum of 53.5 . As for the value of reliability configuration 2G 2H 3S is more reliable than the configuration of 2G 2H 1S. For full block cycle operating modes discount EAF 93.39 , while the configuration 2G 2H 3S 92.62 EAF. In terms of economics both types of configurations have a feasibility value, which for configuration 2G 2H 1S more economical views of NPV 371,286,536 USD and IRR 12 and the payback time is 9 years faster. By knowing the configuration of a reliable, efficient and economical power plant can be used as a basis for a decision on the selection of CCPP configurations in accordance with based load, medium load, or peak load requirements in an electrical system.
"
Depok: Fakultas Teknik Universitas Indonesia, 2017
T48049
UI - Tesis Membership  Universitas Indonesia Library
cover
Mohammad Dicky Amrullah
"Indonesia merupakan salah satu negara yang memiliki jumlah gunung berapi terbanyak di dunia, bahkan potensi energi panas bumi Indonesia merupakan yang terbesar di dunia. Mengacu pada data dari Kementerian Energi dan Sumber Daya Mineral RI, kapasitas terpasang pembangkit listrik tenaga panas bumi (PLTP) belum maksimal yaitu sebesar 1.405,4 MW atau 1,1% dari bauran penggunaan energi nasional. Pada Program 35.000 MW yang dicanangkan oleh pemerintah pada tahun 2015, pembangkit listrik berbasis energi baru terbarukan (EBT) diberikan porsi sebesar 25%. Pembangkit listrik tenaga panas bumi (PLTP) yang merupakan pembangkit listrik berbasis energi baru dan terbarukan (EBT) mulai dianggap sebagai salah satu solusi ketenagalistrikan nasional. Namun, pembangkit listrik tenaga panas bumi (PLTP) dapat menyebabkan permasalahan lingkungan apabila tidak dioperasikan dengan benar. Untuk mencegah resiko seperti itu, manajemen aset yang baik menjadi suatu kebutuhan.
Metode penilaian reliability adalah salah satu metode manajemen aset yang umum digunakan pada industri pembangkit listrik. Dengan mengetahui nilai reliability suatu aset, strategi maintenance dapat disusun secara efektif. Objek perhitungan reliability pada penelitian ini adalah power generation system PLTP Unit 4 Kamojang. Untuk mengetahui nilai reliability dari plant, analisis reliability block diagram (RBD) perlu dilakukan. Setiap diagram blok pada RBD dibagi berdasarkan sistem maupun equipment yang terdapat pada PLTP yaitu steam supply system, main cooling water system, gas extraction system, auxiliary cooling water system, dan closed cooling system. Formula perhitungan dari RBD diterapkan pada tabel kalkulasi reliability, sehingga perhitungan dapat dilakukan dengan efisien dan gangguan yang terjadi pada sistem dapat dilihat pada tabel kalkulasi reliability. Performa reliability dan availability PLTP Unit 4 Kamojang pada tahun 2015 tergolong baik dimana masing-masing mencapai nilai 99% dan 91%.

Indonesia is considered as a world major volcanic country and was gifted with the great geothermal energy resources. Despite having a big potential, according to data from the Ministry of Energy and Mineral Resources, the installed capacity for geothermal power plant is just in the amount of 1405.4 MW, or just 1.1 % of national energy use. As the 35,000 MW Project which were announced by the government in 2015 goes on, the portion of renewable energy-based electricity generation amounted to 25%, geothermal power plant (PLTP), which is renewable energy ? based power plant is considered as a solution for the national electricity industry. However, geothermal power plant (PLTP) can also cause an environmental problem if it isn't operated properly. To prevent major risks like that, a good asset management is needed.
One of asset management method is making a reliability assessment. By knowing the reliability value of asset, maintenance strategies can be programmed effectively. A reliability assessment is applicated on Unit 4 Kamojang Geothermal Power Plant. To determine the reliability value of plant, an analysis of reliability block diagram (RBD) is needed. Each block diagram, divided by the components of the systems in geothermal power plant. They are steam supply system, main cooling water system, gas extraction system, auxiliary cooling water system, and closed cooling system. RBD philosophy should be applied to the reliability calculation table, so that the calculation can be done efficiently and the disturbance on the system can be seen in reliability calculation table. Reliability and availability performance of geothermal power plants in 2015 can be said good. Each of them reach a value of 99% and 91%.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
S65806
UI - Skripsi Membership  Universitas Indonesia Library
cover
Arif Rakhmawan
"Tantangan utama dalam proses pendistribusian gas di wilayah Indonesia Timur adalah kondisi geografis daerahnya dimana terdiri dari berbagai pulau yang tersebar, variasi jumlah kebutuhan gas dan ketersediaan infrastruktur perpipaan yang kurang memadai. Transportasi gas bumi dalam bentuk rantai suplai Mini LNG sampai ke titik pembangkit listrik adalah salah satu opsi yang potensial untuk menggantikan minyak diesel sebagai bahan bakar. Optimisasi logistik digunakan untuk mendapatkan skenario transportasi LNG yang terbaik dengan biaya suplai terendah.
Berdasarkan analisa dan hasil perhitungan optimisasi logistik disimpulkan bahwa pembagian 4 zona distribusi di Indonesia Timur adalah yang paling optimal dengan menggunakan metode transportasi Milk and Run. Kapasitas kapal pengangkut LNG untuk daerah Sulawesi Tengah dan Sulawesi Selatan masing-masing adalah 1 buah kapal berkapasitas 30.000 m3. Daerah Maluku memiliki 1 buah kapal berkapasitas 19.000 m3 dan untuk daerah Papua adalah 3 buah kapal masing-masing berkapasitas 30.000 m3, 10.000 m3 dan 2.500 m3.
Jumlah dan kapasitas Tangki Regasifikasi untuk daerah Sulawesi Tengah adalah 4 buah tangki berkapasitas 7.000 m3, 5.000 m3, 4.000 m3 dan 4.500 m3. Daerah Sulawesi Selatan terdiri dari 2 buah tangki 4.000 m3, 2 buah tangki 3.000 m3, dan 2 buah tangki 5.000 m3. Daerah Maluku terdiri dari 2 buah tangki 2.300 m3, 8 buah tangki 1.200 m3 dan 4 buah tangki 600 m3. Untuk Daerah Papua memiliki 4 buah tangki 7.500 m3, 1 buah tangki 2.500 m3, 9 buah tangki 1.200 m3 dan 1 buah tangki 600 m3. Biaya suplai tertinggi untuk 4 wilayah tersebut sebesar 13,48 USD/MMBTU (Maluku) yang mana masih dibawah harga suplai minyak diesel sebesar 15.6 USD/MMBTU.

The main challenge in the process of gas distribution in Eastern Indonesia is the geographical conditions of the region which consists of scattered islands, a variety of natural gas demand and the lack of the existing piping infrastructure. Gas transportation in the form of supply chain with small scale LNG delivered to the Power Plant is a potential option replacing diesel oil as a fuel. Logistics optimization is used to find the best scenario of LNG transportation with the lowest supply cost.
Based on analysis and the results of the logistic optimization calculations concluded that 4 distribution zones in the Eastern Indonesia are the most optimal distribution area by using of Milk and Run?s transportation methods. The Small LNG carrier capacity for Sulawesi Tengah and Sulawesi Selatan region each are 1 unit of 30.000 m3. Maluku region has 1 unit of 19.000 m3 and Papua region has 3 vessels which has a capacity of 30.000 m3, 10.000 m3 and 2.500 m3 respectively.
The number and capacity of LNG Storage Tank in the Regasification Terminal for Sulawesi Tengah are 4 Tanks which has a capacity of 7.000 m3, 5.000 m3, 4.000 m3 and 4.500 m3 respectively. Sulawesi Selatan region consists of 2 units of 4.000 m3, 2 units of 3.000 m3, and 2 units of 5.000 m3. The Maluku region consists of 2 units of 2.300 m3, 8 units of 1.200 m3 and 4 units of 600 m3. And for Papua region has 4 units of 7.500 m3, 1 unit of 2.500 m3, 9 units of 1.200 m3 and 1 unit of 600 m3. The highest Supply Cost of each region is 13,48 USD/MMBTU (Maluku) which is still lower than supply cost of diesel oil about 15.6 USD/MMBTU.
"
Depok: Fakultas Teknik Universitas Indonesia, 2016
T46749
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>