Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 211122 dokumen yang sesuai dengan query
cover
Dean Saptadi
"Gerakan tanah merupakan salah satu bencana alam yang cukup sering terjadi di Indonesia. Tercatat pada tahun 2020 telah terjadi bencana gerakan tanah sebanyak 1152 peristiwa yang tersebar di seluruh wilayah Indonesia. Provinsi Jawa Barat menjadi salah satu wilayah yang rentan akan terjadinya gerakan tanah. Penelitian ini bertujuan untuk mengetahui zona kerentanan gerakan tanah pada Kabupaten Garut, Provinsi Jawa Barat dan menentukan metode yang memiliki tingkat akurasi lebih baik pada lokasi penelitian. Penentuan zona kerentanan gerakan tanah dilakukan dengan menggunakan metode Weight of Evidence (WoE) dan Logistic Regression (LR). Parameter penyebab kerentanan gerakan tanah yang digunakan pada penelitian ini yaitu elevasi, kemiringan lereng, aspek lereng, curvature, Normalized Differential Vegetation Index (NDVI), jarak terhadap sungai, jarak terhadap jalan, jarak terhadap kelurusan, tata guna lahan, litologi, dan curah hujan pada setiap bulannya. Penelitian ini juga menggunakan data kejadian gerakan tanah yang terjadi selama tahun 2000 hingga tahun 2020. Data kejadian gerakan tanah dibagi menjadi dua kelompok, yaitu data training set sebesar 70% dan data test setsebesar 30%. Kedua data tersebut digunakan untuk validasi model berupa success rate dan predictive rate. Penelitian ini menghasilkan 12 peta kerentanan gerakan tanah berdasarkan data setiap bulannya dari masing-masing metode. Peta kerentanan gerakan tanah terbagi menjadi empat zona kerentanan gerakan tanah. Hasil validasi success rate dan predictive rate pada penelitian ini menunjukkan bahwa metode WoE memiliki tingkat akurasi yang lebih tinggi pada success rate dan metode LR memiliki tingkat akurasi yang lebih tinggi pada predictive rate. Berdasarkan hasil tersebut, dapat disimpulkan bahwa kedua metode tersebut dapat melengkapi satu sama lain.

Landslides are one of the most frequent natural disasters in Indonesia. It was recorded that in 2020 there have been 1152 landslides events disasters spread throughout Indonesia. West Java Province is one of the areas that vulnerable to landslides. This research aims to determine the landslide vulnerability zone in Garut Regency, West Java Province and to determine which method has better accuracy at this research. In this study, determination of landslide vulnerability zone was carried out using Weight of Evidence (WoE) and Logistic Regression methods. The parameter that causing landslide vulnerability that used in this study are elevation, slope, slope aspect, curvature, normalized differential vegetation index (NDVI), distance to river, distance to road, distance to lineament, land use, lithology, and rainfall on a monthly basis. This study also used data of landslide events that occurred from 2000 to 2020. Landslide events data divided into two groups, training set (70%) and test set (30%). Both data is used for validation model of success rate and predictive rate. This study produced 12 landslide vulnerability maps based on monthly data from each method. The landslide vulnerability map is divided into four landslide vulnerability zones. The results of the success rate and predictive rate validation show that the WoE method has a higher accuracy at success rate and the LR method has a higher accuracy at predictive rate. Based on these results, it can be concluded that the two methods can complement each other."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Agus Syahputra Lingga
"Gerakan Tanah merupakan bencana alam yang paling sering terjadi di Indonesia khususnya di daerah Kabupaten Tasikmalaya, Jawa Barat. BPBD Kabupaten Tasikmalaya, dari Januari hingga September 2021 terdapat 260 kejadian bencana. Dari total kejadian bencana itu, 51 persen atau 133 kejadian di antaranya bencana gerakan tanah. Penelitian ini bertujuan untuk mengetahui zona kerentanan gerakan tanah berdasarkan parameter-parameter yang ada untuk menghasilkan peta persebaran zona kerentanan gerakan tanah di daerah Kabupaten Tasikmalaya dengan bantuan Sistem Informasi Geografis (SIG). Selain itu, penelitian ini juga berfokus pada pengaruh cell size terhadap nilai AUC pada daerah penelitian. Oleh karena itu digunakan beberapa cell size untuk mengetahui pengaruh tersebut. Adapun cell size yang digunakan adalah 15, 20, 25, 30 dan 35. Penelitian ini menggunakan 2 metode dalam menentukan peta zona gerakan gerakan tanah yaitu metode frequency ratio dan logistic regression. Frequency ratio bertujuan untuk mengetahui tingkat signifikan dari setiap kelas faktor. Sementara itu logistic regression menghasilkan nilai probabilitas gerakan tanah dan nilai signifikan dari setiap faktor penyebab gerakan tanah. Nilai probabilitas gerakan tanah bernilai 0 dan 1 semakin mendekati angka satu maka semakin tinggi tingkat zona kerentanannya. Terdapat 125 data kejadian gerakan tanah yang terdapat pada daerah penelitian dimana akan dibagi menjadi 80% data training dan 20% data validasi. Adapun parameter-parameter pendukung pada gerakan tanah adalah litologi, aspek lereng, kemiringan lereng, elevasi, penggunaan lahan, curah hujan, jarak dari kelurusan, jarak dari sungai, kelengkungan (curvature) dan NDVI. Kemudian akan dilakukan uji model. Uji model ini didapatkan dari grafik AUC. Uji ini bertujuan untuk mengetahui apakah peta dapat diterapkan atau tidak. Pada penelitian ini, model pada frequency ratio memiliki nilai AUC berkisar 0,73 – 0,81 sedangkan pada model logistic regression memiliki nilai AUC berkisar 0,58 – 0,85. Dari hasil nilai AUC tersebut model frequency ratio termasuk kedalam model sedang – baik sedangkan pada model logistic regression termasuk kedalam model buruk – sedang. Kedua model ini dapat diterapkan pada daerah penelitian.

Landslide is the most frequent natural disaster in Indonesia, especially in the Tasikmalaya Regency, West Java. BPBD Tasikmalaya Regency, from January to September 2021 there were 260 disaster events. Of the total disaster events, 51 percent or 133 incidents were landslides. This study aims to determine the vulnerability zones of ground movement based on existing parameters to produce a map of the distribution of ground movement vulnerability zones in the Tasikmalaya Regency area with the help of a Geographic Information System (GIS). In addition, this study also focuses on the effect of cell size on AUC values in the study area. Therefore, several cell sizes are used to determine the effect. The cell sizes used are 15, 20, 25, 30 and 35. This study uses 2 methods in determining the ground motion zone map, namely the frequency ratio method and logistic regression. Frequency ratio aims to determine the significant level of each factor class. Meanwhile, logistic regression produces probability values of ground motion and significant values of each factor causing ground motion. The value of the probability of ground motion is 0 and 1, the closer to number one, the higher the level of the zone of susceptibility. There are 125 data on ground motion events in the research area which will be divided into 80% training data and 20% validation data. The supporting parameters for ground motion are lithology, slope aspect, slope, elevation, land use, rainfall, distance from fault, distance from river, curvature and NDVI. Then a model test will be carried out. This model test is obtained from the AUC graph. This test aims to determine whether the map can be applied or not. In this study, the frequency ratio model has an AUC value ranging from 0.73 to 0.81 while the logistic regression model has an AUC value ranging from 0.58 to 0.85. From the results of the AUC value, the frequency ratio model is included in the medium - good model, while the logistic regression model is included in the bad - medium model. Both of these models can be applied to the research area. "
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Elvita Rahmawanti
"Analisis kerentanan gerakan tanah sangat diperlukan sebagai upaya mitigasi untuk mengurangi kerugian yang diakibatkan oleh gerakan tanah. Namun ketidaktepatan pemilihan faktor pengontrol dalam pemodelan kerentanan gerakan tanah, sering kali menghasilkan peta kerentanan yang kurang akurat dan kurang rasional. Faktor linier diskrit berupa jarak terhadap sungai, jarak terhadap jalan, dan jarak terhadap struktur, tidak memiliki makna keterkaitan yang jelas antara faktor pengontrol dengan evolusi gerakan tanah, yang menyebabkan penurunan akurasi pemodelan. Oleh karena itu, penelitian ini mengusulkan faktor pengontrol kontinu berbasis densitas spasial seperti densitas sungai, densitas jalan, dan densitas struktur untuk meningkatkan kesesuaian faktor linier. Kabupaten Sumedang dipilih sebagai lokasi pada penelitian kali ini, dengan 65 sejarah gerakan tanah dan 12 faktor pengontrol terpilih. Pertama, jarak terhadap jalan, sungai, dan struktur, serta 9 faktor lainnya merupakan faktor asli dari pemodelan kerentanan gerakan tanah. Kedua, jarak terhadap jalan, sungai, dan struktur, masing-masing diganti dengan densitas sungai, densitas jalan, dan densitas struktur menjadi faktor yang ditingkatkan. Ketiga, dilakukan perhitungan nilai frequency ratio untuk mengetahui faktor yang dominan terhadap gerakan tanah. Keempat, pemodelan kerentanan gerakan tanah berdasarkan logistic regression dengan faktor asli dan faktor dikembangkan, dikonstruksikan dan dibandingkan. Terakhir, dilakukan uji validasi pemodelan gerakan tanah. Hasil menunjukkan bahwa (1) nilai FR >1 pada kelas setiap faktor menunjukkan pengaruh dominan terhadap gerakan tanah, seperti elevasi 552 – 738 m, kemiringan lereng 24° – 29°, dan lainnya. (2) Zona kerentanan gerakan tanah dibagi menjadi empat yaitu, tinggi, menengah, rendah, sangat rendah, dengan persebaran dari tinggi ke rendah terletak pada arah barat daya ke timur laut lokasi penelitian. (3) Hasil uji validasi terhadap peta kerentanan gerakan tanah menggunakan faktor yang dikembangkan lebih tinggi dibandingkan dengan faktor asli, dapat disimpulkan bahwa faktor densitas lebih layak daripada faktor linier.

Landslide susceptibility analysis is needed as a mitigation effort to reduce losses caused by soil movement. Inaccurate selection of controlling factors in landslide susceptibility modeling, often results in less accurate and less rational susceptibility maps. Discrete linear factors such as distance to rivers, distance to roads, and distances to structures, do not have a clear relationship between controlling factors and the evolution of landslide, which leading to a decrease in modeling accuracy. Therefore, this study proposes continuous control factors based on spatial density such as river density, road density, and structural density to improve the suitability of linear factors. Sumedang Regency was chosen as the location for this study, with 65 landslide histories and 12 control factors selected. First, distance to roads, rivers, and structures, and 9 other factors constitute the original factors from landslide susceptibility modeling. Second, distance to roads, rivers, and structures, respectively replaced by river density, road density, and structural density to constitue improved factors. Third, the calculation of the frequency ratio value is carried out to determine the dominant factor in landslide susceptibility. Fourth, landslide susceptibility modeling based on logistic regression with original factors and improved factors, constructed and compared. Finally, the landslide susceptibility modeling is validated. Results show that (1) the FR value >1 in the class of each factor show a dominant influence on landslide, such as elevation 552 – 738 m, slope slope 24° – 29°, and others. (2) The landslide susceptibility zone is divided into four susceptibility levels, high, medium, low, and very low, with the distribution from high to low located in the southwest to northeast of the study area. (3) The results of the validation test on landslide susceptibility map using improved factors are higher than the original factors, it can be concluded that the density factor is more feasible than the linear facto"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Berutu, Kevin Boi Karina
"Penelitian ini bertujuan untuk mengidentifikasi zona kerentanan longsor pada Kabupaten Lebak, Provinsi Banten dengan menggunakan dua model yakni Frequency Ratio dan Logistic Regression. Penelitian ini menggunakan 44 data titik longsor yang terjadi pada daerah penelitian, titik longsor tersebut dibagi menjadi dua bagian yakni 35 titik untuk mengindentifikasi zona rentan longsor dan sisanya sebanyak 9 titik digunakan untuk validasi. Zona rentan longsor tersebut dapat diketahui dengan menganalisis faktor-faktor pemicu terjadinya longsor, pada penelitian ini faktor pemicu tersebut terdiri atas sudut lereng, aspek lereng, elevasi, Normalized Differential Vegetation Index (NDVI), curvature, jarak terhadap kelurusan, jarak terhadap sungai, penggunaan lahan, litologi dan curah hujan. Nilai curah hujan yang digunakan pada peneltian ini adalah jumlah curah hujan rata-rata setiap bulannya yang terjadi selama 10 tahun pada daerah penelitian, sehingga akan dihasilkan peta zona rentan longsor setiap bulannya pada daerah penelitian. Hasil dari analisis dengan kedua model tersebut kemudian dibagi atas 3 tingkat kerentanan yakni rendah, menengah, dan tinggi serta nilai AUC yang didapatkan oleh kedua model tersebut setiap bulannya mencapai diatas 50%.

This study aims to identify landslide susceptibility zones in Lebak Regency, Banten Province by using two models Frequency Ratio and Logistic Regression. This study uses 44 data of landslide points that occur in the study area, the landslide points are divided into two parts, 35 points to identify landslide susceptibility zones and 9 points are used for validation. The landslide susceptibility zone can be identified by analyzing factors that maybe trigger landslides, in this study the trigger factors consist of slope angle, slope aspect, elevation, Normalized Differential Vegetation Index (NDVI), curvature, distance to straightness, distance to rivers, usage land, lithology and rainfall. The rainfall value used in this research is the average monthly rainfall that occurs for 10 years in the study area, so a monthly landslide susceptibility zone map will be produced in the study area. The results of the analysis with the two models were then divided into 3 vulnerability zones low, intermediate, and high, and the AUC value obtained by the two models each month reached above 50%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Maltin Palulun
"Penelitian geologi dilakukan di Kabupaten Sukabumi yang memiliki luas sekitar 4.145  dan terbagi menjadi 47 Kecamatan. Berdasarkan data statistik BNPB tahun 2021, tercatat di Jawa Barat terjadi kurang lebih 585 bencana dan 268 diantaranya adalah tanah longsor. Bencana tanah longsor tersebut diketahui berdampak pada lebih dari 8000 orang baik secara material maupun imaterial. Dari 268 bencana tanah longsor tersebut, 44 diantaranya terjadi di Kabupaten Sukabumi. Tujuan penelitian adalah untuk mendapatkan informasi mengenai faktor apa saja yang mempengaruhi kerentanan gerakan tanah di daerah penelitian dan daerah zonasi kerentanan gerakan tanah dalam waktu yang cepat. Penelitian dilakukan berdasarkan metode frequency ratio dan information value yang telah dikemas dengan menggunakan LSAT toolbox. Dari kesepuluh parameter kerentanan gerakan tanah yang dipakai, intensitas curah hujan, jenis litologi, dan kemiringan lereng adalah faktor utama terjadinya longsor di Kabupaten Sukabumi. Berdasarkan metode frequency ratio dan information value, persebaran gerakan tanah di wilayah Kabupaten Sukabumi dibagi menjadi 5 (lima) kelas yaitu kelas sangat rendah, rendah, sedang, tinggi, dan sangat tinggi. Dalam analisis menggunakan kedua metode tersebut, wilayah Kabupaten Sukabumi didominasi oleh kelas kerentanan gerakan tanah yang tinggi-sangat tinggi. Tipe kerentanan gerakan tanah tersebut ditemukan dominan pada Formasi Beser. Kemampuan prediksi dan keberhasilan algoritma frekuensi rasio lebih baik daripada algoritma nilai informasi.

Geological research was carried out in Sukabumi Regency, which has an area of around 4,145 km² divided into 47 sub-districts. Based on BNPB statistical data for 2021, West Java recorded approximately 585 disasters, 268 of which were landslides. The landslide disaster is known to have impacted more than 8,000 people both materially and immaterially. Of the 268 landslides, 44 occurred in Sukabumi Regency. The aim of the research is to obtain information about the factors influencing the vulnerability to land movements in the research area and the zoning area for land movement susceptibility in a short time. The research was carried out based on the frequency ratio and information value method, which was packaged using the LSAT toolbox. Of the ten landslide vulnerability parameters used, rainfall intensity, lithology type, and slope are the main factors causing landslides in Sukabumi Regency. Based on the frequency ratio and information value methods, the distribution of land movement potential in Sukabumi Regency is divided into five classes: very low, low, medium, high, and very high. In the analysis using these two methods, the Sukabumi district area is dominated by the high to very high ground movement vulnerability class. The type of landslide vulnerability was found to be dominant in the Beser Formation. The prediction ability and success of the frequency ratio algorithm are better than the information value algorithm."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ivan Antonio Yoshua
"Gerakan tanah merupakan sebuah kejadian bahaya geologi yang memiliki dampak buruk bahkan memakan korban jiwa. Indonesia sendiri memiliki frekuensi kejadian yang tinggi dalam bencana gerakan tanah di mana pada tahun 2021 sebanyak 1506 peristiwa terjadi di wilayah Indonesia. Banyak faktor yang memengaruhi kejadian gerakan tanah di mana umumnya faktor geologi seperti litologi, kemiringan lereng, dan vegetasi sebagai faktor pengontrol terhadap kerentanan gerakan tanah. Selain itu, faktor iklim merupakan faktor yang cukup memengaruhi kejadian gerakan tanah. Terjadinya perubahan iklim menjadi perhatian tentang bagaimana dampak yang dihasilkan terhadap kerentanan gerakan tanah. Penelitian ini melakukan analisis faktor-faktor pengontrol kerentanan gerakan tanah termasuk pengaruh perubahan iklim terhadap kejadian gerakan tanah menggunakan metode logistic regression dengan menghubungkan variabel bebas berupa faktor-faktor pemicu gerakan tanah dan variabel terikat berupa kejadian gerakan tanah. Faktor iklim juga dianalisis menggunakan proyeksi data iklim masa depan dengan skenario shared socioeconomic pathways (SSPs) untuk memperlihatkan seberapa pengaruh perubahan iklim yang terjadi terhadap kejadian gerakan tanah. Penelitian ini menjelaskan adanya pengaruh dari faktor elevasi, kemiringan lereng, aspek, plan curvature, profile curvature, litologi, vegetasi, jarak terhadap struktur, jarak terhadap jalan, jarak terhadap sungai, curah hujan, dan temperatur terhadap kerentanan gerakan tanah. Penelitian ini juga menghasilkan 5 peta kerentanan gerakan tanah berdasarkan perbedaan kondisi masa sekarang, kondisi tahun 2021-2040, dan kondisi tahun 2040-2060. Berdasarkan hasil tersebut, adanya kenaikan luas wilayah zona kerentanan tinggi pada skenario peningkatan iklim.

Landslides are geological hazards that have severe consequences, including fatalities. Indonesia has experienced frequent landslide events, with 1,506 incidents occurring in the country in 2021 alone. Various factors influence landslide occurrences, predominantly geological factors such as lithology, slope angle, and vegetation, which act as controlling factors for landslide susceptibility. Additionally, climate factors significantly affect landslide events. Climate change raises concerns about the resulting impacts on landslide susceptibility. This study analyzes the controlling factors of landslide susceptibility, including the influence of climate change on landslide occurrences, using logistic regression to establish a connection between independent variables representing landslide triggers and the dependent variable representing landslide occurrences. Climate factors are also examined using future climate data projections based on Shared Socio-economic Pathways (SSPs) scenarios to illustrate the extent of climate change impact on landslide events. This study explained the influence of elevation, slope, aspect, plan curvature, profile curvature, lithology, vegetation, distance to structures, distance to roads, distance to rivers, rainfall, and temperature on the susceptibility of soil movement. The study also generated five landslide vulnerability maps based on the current conditions, the conditions between 2021 and 2040 and the conditions between 2040 and 2060. The results showed that there is an increase in the area of high susceptibility zones under the climate change scenario."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Cesna Yuda Gestri
"Gerakan tanah merupakan salah satu bencana alam geologi paling sering terjadi dan merusak di indonesia. Oleh karena itu pemetaan zona kerentanan gerakan tanah dapat dilakukan guna membantu stackholder dalam langkah pencegahan. Salah satu yang penting dalam penilaian kerentanan gerakan tanah adalah pemilihan unit pemetaan. Pada penelitian ini bertujuan untuk membandingkan akurasi unit pemetaan slope unit dan grid cell serta mengeksplor faktor paling mengontrol dan zonasi kondisi kerentanan gerakan tanah di Kabupaten Sumedang. Dalam pembuatan pemetaan kerentanan gerakan tanah ini menggunakan data gerakan tanah sebanyak 332 titik dan 10 faktor pengkondisi gerakan tanah. Index of Entropy Model digunakan untuk mengkuantifikasi faktor pengontrol gerakan tanah. Analisis pemetaan gerakan tanah berdasarkan slope unit dan grid cell dihasilkan dengan menggunakan metode Logistic Regression. Kurva AUC digunakan untuk mengevaluasi peta kerentanan gerakan tanah dengan menghitung akurasi training dan akurasi predictive. Dari hasil didapatkan faktor pengontrol pada penelitian ini adalah faktor aspek, ketinggian, kemiringan, curah hujan bulan agustus. Zona kerentanan gerakan tanah dibagi menjadi 4, yaitu sangat rendah, rendah, sedang, dan tinggi. Nilai akurasi training dan predictive metode Grid Cell (AUC = 0,831; 0,842; 0,828; 0,83) sedikit lebih baik daripada metode Slope Unit (AUC = 0,794; 0,792; 0,752; 0,757), meskipun Slope Unit menyerupai bentuk lahan lebih baik daripada Grid Cell.

Land movement is one of the most frequent and destructive geological natural disasters in Indonesia. Therefore, mapping of land movement vulnerability zones can be carried out to assist stackholders in preventive measures. One of the important things in assessing land movement susceptibility is the selection of mapping units. This research aims to compare the accuracy of slope unit and grid cell mapping units and explore the most controlling factors and zoning of land movement vulnerability conditions in Sumedang Regency. In making this land movement vulnerability mapping, 332 points of land movement data and 10 land movement conditioning factors were used. The Index of Entropy Model is used to quantify factors controlling land movement. Analysis of land movement mapping based on slope units and grid cells was produced using the Logistic Regression method. The AUC curve is used to evaluate the land movement susceptibility map by calculating training accuracy and predictive accuracy. From the results obtained, the controlling factors in this study were aspect, height, slope, and rainfall in August. Land movement vulnerability zones are divided into 4, namely very low, low, medium and high. The training and predictive accuracy values of the Grid Cell method (AUC = 0.831; 0.842; 0.828; 0.83) are slightly better than the Slope Unit method (AUC = 0.794; 0.792; 0.752; 0.757), although the Slope Unit resembles landforms better than the Grid Cell."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Qalbi
"Gerakan tanah adalah suatu peristiwa bencana alam dimana terjadinya perpindahan blok massa batuan, tanah, atau campuran keduanya yang disebabkan oleh rendahnya kestabilan yang dimiliki oleh massa tersebut. Kabupaten Bandung Barat termasuk ke dalam salah satu Kabupaten dengan potensi gerakan tanah tertinggi di Provinsi Jawa Barat, hal ini menjadi penyebab utama terjadinya bencana longsor. Salah satu upaya dalam mengatasi bencana gerakan tanah ini adalah dengan memetakan zona- zona yang memiliki kerentanan terjadinya bencanan gerakan tanah. Peta zona kerentanan gerakan tanah merupakan peta yang memanfaatkan data inventarisasi longsor untuk memetakan zona-zona kerentanan gerakan tanah. Secara umum pembuatan peta ini di Indonesia masih banyak menggunakan data titik, sedangkan penggunaan data berbasis titik dianggap kurang representatif karena produk dari longsoran akan berbentuk area melainkan titik. Maka dari itu pada penelitian ini akan digunakan data berbasis poligon. Penelitian ini menggunakan metode Weight of Evidence (WOE) untuk memetakan zonasi kerentanan gerakan tanah di Kabupaten Bandung Barat. Untuk mengetahui resolusi optimal dilakukan pengujian dengan 4 resolusi piksel. Hasil dari kedua model menunjukkan kelayakan untuk digunakan dengan resolusi optimal pada data poligon di piksel 40 dan data titik pada 30 untuk success rate dan 40 untuk success rate.

Ground movement is a natural disaster event in which mass blocks of rock, soil, or a mixture of the two move due to the low stability of the mass. West Bandung Regency is one of the regencies with the highest potential for ground movement in West Java Province, this is the main cause of landslides. One of the efforts to overcome this land movement disaster is to map the zones that are vulnerable to land movement disasters. The land movement vulnerability zone map is a map that utilizes landslide inventory data to map land movement vulnerability zones. In general, making these maps in Indonesia still mostly uses point data, while the use of point-based data is considered less representative because the product of landslides will be in the form of areas but points. Therefore, in this research, polygon-based data will be used. This research uses the Weight of Evidence (WOE) method to map the zoning of land movement vulnerability in West Bandung Regency. To find out the optimal resolution, testing was carried out with 4 pixel resolutions. The results of both models show the feasibility of being used with optimal resolution for polygon data at 40 pixels and point data at 30 for success rate and 40 for success rate."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Vido Ghifari
"Longsor merupakan salah satu bencana yang sering terjadi di Indonesia. Pada tahun 2021 wilayah Jawa Barat paling banyak mengalami bencana alam. Oleh karena itu, diperlukan identifikasi terkait dengan zona kerentanan longsoran dalam mitigasi bencana sehingga dapat mengurangi dampak longsoran. Penelitian ini dianalisis menggunakan metode Frequency Ratio (FR) dan Weight of Evidence (WoE). Berdasarkan hasil data yang di peroleh, terdapat 125 titik longsoran. Data tersebut di bagi menjadi dua untuk data train sebanyak 80% (100 titik) dan data testing sebanyak 20% (25 titik). Penelitian ini menggunakan sepuluh parameter, yaitu elevasi, kemiringan lereng, aspek lereng, curvature, NDVI, jarak dari sungai, jarak dari kelurusan, formasi, tutupan lahan, dan curah hujan setiap bulan. Hasil dari analisis tersebut akan menghasilkan peta zona kerentanan longsor setiap bulan yang dibagi atas 4 tingkat kerentanan, yaitu sangat rendah, rendah, menengah, dan tinggi. Model tersebut di validasi menggunakan kurva ROC dan mendapatkan nilai AUC di atas 50%.

Landslide is one of the disasters that often occurs in Indonesia. In 2021 the West Java region experienced the most natural disasters. Therefore, it is necessary to identify the landslide susceptibility mapping in disaster mitigation to reduce the impact of the landslide. This research analyzed using the Frequency Ratio (FR) and Weight of Evidence (WoE) methods. Based on the results of the data obtained, there are 125 landslide points. The data is divided into 80% for training data (100 points) and 20% for testing data (25 points). This study used ten parameters, elevation, slope, slope aspect, curvature, NDVI, distance from river, distance from lineament, lithology (formation), land cover, and rainfall. The results of this analysis will produce a landslide susceptibility zone map every month which is divided into 4 levels of landslide susceptibility class, very low, low, medium, and high. The model was validated using the ROC curve and obtained an AUC value above 50%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andri Setiawan
"Penelitian ini membahas tentang tingkat kerentanan tanah longsor di Kabupaten Cianjur. Bencana tanah longsor merupakan salah satu bencana yang sering terjadi di Indonesia, khususnya di wilayah-wilayah yang mempunyai lereng tidak stabil. Peristiwa tanah longsor dipengaruhi oleh faktor alam dan faktor manusia. Di Indonesia, bencana tanah longsor seringkali merugikan manusia berupa harta benda, kerusakkan lingkungan bahkan hingga hilangnya nyawa manusia. Kabupaten Cianjur memiliki topografi yang berbukit-bukit dan memiliki morfologi wilayah yang beragam (heterogen). Penelitian ini bertujuan untuk memprediksi wilayah potensi longsor, wilayah terdampak tanah longsor dan wilayah rentan tanah longsor di Kabupaten Cianjur. Metode penelitian yang digunakan adalah metode SINMAP (Stability Index Mapping) untuk menghasilkan wilayah potensi longsor dan metode analisis spasial untuk menentukan wilayah terdampak dan rentan tanah longsor. Alat dan Bahan yang digunakan dalam penelitian ini yaitu peta administrasi Kabupaten Cianjur, peta topografi Kabupaten Cianjur, peta jenis tanah dan Global Positioning System (GPS) untuk mengecek koordinat titik longsor. Hasil penelitian ini menunjukkan bahwa 43 % luas wilayah penelitian merupakan wilayah yang berpotensi longsor, sedangkan 44 % dari luas total wilayah penelitian yang merupakan wilayah terdampak dan rentan tanah longsor. Penelitian ini juga menunjukkan bahwa wilayah potensi tanah longsor cenderung merata dan menyebar di wilayah penelitian, dan wilayah terdampak dan wilayah rentan tanah longsor cenderung lebih dominan di Cianjur bagian Utara.

This study discusses the level of vulnerability of the landslide in Cianjur. Landslides are one of the disasters that often occur in Indonesia, particularly in areas that have unstable slopes. Events landslides affected by natural factors and human factors. In Indonesia, landslides often detrimental to humans in the form of property, environmental damage and even to loss of human lives. Cianjur Regency topography is hilly and has the morphology of a region as diverse (heterogeneous). This study aims to predict potential areas of landslides, mudslides affected areas and areas prone to landslides in Cianjur. The method used is the method SINMAP (Stability Index Mapping) to generate potential areas of landslides and methods of spatial analysis to determine the area affected and vulnerable to landslides. Tools and materials used in this study are maps Cianjur regency administration, topographic maps Cianjur, soil type maps and Global Positioning System (GPS) to check the coordinates of landslides. The results showed that 43% of the area of ​​research is an area that is prone to landslide, while 44% of the total area of ​​research that is affected areas and are vulnerable to landslides. This study also shows that the area of ​​potential landslides tend evenly and spread in the area of ​​research, and the affected areas and areas prone to landslides tend to be more dominant in the northern part of Cianjur."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2015
S61102
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>