Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 125584 dokumen yang sesuai dengan query
cover
Denanir Fadila Nasiri
"Legal reasoning merupakan metode yang digunakan untuk menerapkan aturan atau Undang-Undang terhadap fakta yang dimiliki dengan tujuan untuk memperoleh argumentasi hukum. Salah satu metode legal reasoning adalah dengan penalaran induktif, yaitu didasarkan pada kasus-kasus terdahulu. Mahkamah Agung di Indonesia melalui situs Direktori Putusan Pengadilan, yang menyediakan dokumen hasil proses pengadilan yang saat ini menampung jumlah dokumen yang sangat besar. Kumpulan dokumen tersebut dapat dimanfaatkan untuk melakukan aktivitas legal reasoning, seperti klasifikasi jenis tindak pidana (criminal offense). Pada penelitian ini, penulis mengusulkan metode deep learning untuk mengklasifikasikan jenis tindak pidana. Hal ini dapat berguna untuk memberikan efisiensi dan referensi kepada praktisi hukum maupun memudahkan masyarakat untuk memahami dasar hukum dari suatu kasus. Secara spesifik, salah satu rancangan model yang diusulkan adalah dengan penerapan model LEAM (Label Embedding Attentive Model) dengan penambahan sejumlah keyword pada label embedding. Model ini secara konsisten memberikan performa yang baik dalam eksperimen, termasuk pada imbalanced dataset dengan perolehan f1-score 68%.

Legal reasoning is a sequence of activities to identify law rules and obtain legal arguments. One of the method in legal reasoning is by using inductive reasoning, which analyzes previous decided cases. Indonesia’s Supreme Court stores the court decision documents online in a large sum. These collections can be utilized to perform legal reasoning, where in this research we focus on the classification of criminal offense. We performed pre-processing tasks including conversion of document to text and cleaning text. We then compared deep learning models, such as LSTM, BiLSTM, CNN+LSTM, and LEAM (Label Embedding Attentive Model). Instead of using only the label name in LEAM, we also carried out experiments by adding related keywords for each label. The LEAM model with additional keywords obtained the best result in an imbalanced dataset with 68% macro average f1-score."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Jauzak Hussaini Windiatmaja
"Sumber informasi di jejaring berita daring adalah instrumen yang memungkinkan individu membaca berita, menerbitkan berita, dan berkomunikasi. Hal ini sudah menjadi tren dalam masyarakat yang sangat mobile. Oleh karena itu, proses verifikasi fakta suatu pemberitaan menjadi sangat penting. Dengan pertimbangan tersebut, sebuah tools berbasis web service untuk verifikasi fakta menggunakan metode deep learning dengan teknik ensemble dibangun. Penggunaan teknik ensemble pada model deep learning adalah proses beberapa model pembelajaran mesin digabungkan secara strategis untuk menyelesaikan masalah menggunakan lebih dari satu model. Untuk melatih model, dibangun sebuah dataset. Dataset berisi pasangan klaim dan label. Klaim dibangun dengan data crawling di kanal berita berbahasa Indonesia. Tiga model deep learning dibangun dan dilatih menggunakan dataset yang dibuat, dengan arsitektur jaringan dan hyperparameter yang berbeda. Setelah model dilatih menggunakan dataset, ketiga model diagregasikan untuk membentuk sebuah model baru. Untuk memastikan bahwa model agregat berfungsi lebih baik daripada model tunggal, performa model deep learning ensemble dibandingkan dengan model deep learning dasar. Hasil penelitian menunjukkan bahwa model ensemble memiliki akurasi 85,18% sedangkan model tunggal memiliki akurasi 83,9%, 83,19%, dan 81,94%. Hasil ini menunjukkan bahwa model ensemble yang dibangun meningkatkan kinerja verifikasi fakta dari tiga model tunggal. Hasil penelitian juga menunjukkan bahwa metode deep learning mengungguli performa metode machine learning lain seperti naive bayes dan random forest. Untuk memvalidasi kinerja tools yang dibangun, response time dari web service diukur. Hasil pengukuran menunjukkan rata-rata response time 6.447,9 milidetik.

Information sources on social networks are instruments that allow individuals to read news, publish news, and communicate. This is a trend in a highly mobile society. Therefore, the process of verifying facts is very important. With these considerations, we built a web service-based tool for fact verification using deep learning methods with ensemble technique. The use of ensemble techniques in deep learning models is a process in which several machine learning models are combined to solve problems. To train the model, we created a dataset. Our dataset of Indonesian news contains pairs of claims along with labels. Claims are built by crawling data on Indonesian news channels. Three deep learning models have been built and trained using the previously created dataset with different network architectures and hyperparameters. After the model is trained, three models are aggregated to form a new model. To ensure that the aggregated model performs better than the single model, the deep learning ensemble model is compared to the single models. The results showed that the ensemble model has an accuracy of 85.18% while the single models have an accuracy of 83.9%, 83.19%, and 81.94% consecutively. These results indicate that the ensemble model built improves the fact-verification performance of the three single models. The results also show that by using the same dataset, deep learning methods outperform other machine learning methods such as naive bayes and random forest. To validate the performance of the tools we created, the response time of the web service is measured. The measurement result shows an average response time of 6447.9 milliseconds."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Adawiyah Ulfa
"Pengembangan inhibitor Dipeptidyl Peptidae-4 (DPP-4) sangat diperlukan dalam pengobatan Diabetes Mellitus tipe 2 dengan efek samping yang rendah. Pemodelan hubungan kuantitatif struktur aktivitas (QSAR) merupakan pendekatan analisis hubungan struktur kimia dengan aktivitasnya yang banyak digunakan dalam desain obat penyakit Diabetes. Pada tesis ini, model QSAR klasifikasi dibangun untuk memprediksi struktur aktivitas senyawa pada inhibitor DPP-4 yang dapat memblokir kerja enzim DPP-4. Dalam representasi molekul digunakan circular fingerprint ECFP dan FCFP yang menyajikan notasi SMILES dalam format vektor biner. Fingerprint ECFP dan FCFP yang berdiameter 4 dan 6 sebagai input data dalam membangun model QSAR klasifikasi. Pada QSAR klasifikasi dengan pendekatan deep learning memberikan waktu yang cepat dalam proses virtual screening senyawa aktif atau tidak aktif dalam inhibitor DPP-4. Penelitian ini menggunakan model Hybrid Deep Learning 1D CNN-LSTM untuk memprediksi aktivitas senyawa inhibitor dalam kelas aktif atau tidak aktif berdasarkan nilai aktivitas biologis dengan proporsi data latih dan data uji yang berbeda. Dalam arsitektur 1D CNN-LSTM terdiri dari model 1D CNN sebagai tahap ektraksi fitur dan output dari lapisan konvolusi 1D CNN digunakan dalam lapisan LSTM. Selain itu, pemilihan fitur dengan metode Random Forest-Recursive Feature Elimination (RF-RFE) digunakan untuk memperoleh fitur yang optimal dari dataset ECFP dan FCFP. Selanjutnya, penelitian ini membandingkan performa model dengan menerapkan pemilihan fitur RF-RFE dan tanpa pemilihan fitur RF-RFE. Hasil penelitian ini menunjukkan bahwa model QSAR klasifikasi menggunakan Hybrid Deep Learning yaitu 1D CNN-LSTM dengan pemilihan fitur RF-RFE memperoleh performa model yang lebih baik dibandingkan model tanpa pemilihan fitur optimal. Performa model 1D CNN-LSTM dengan pemilihan fitur RF-RFE menggunakan data ECFP_4 dengan proporsi data latih 80% memiliki akurasi sebesar 0.9075, sensitivitas 0.9008, spesifisitas 0.9142, dan nilai MCC 0.8151.

The development of Dipeptidyl Peptidase-4 (DPP-4) inhibitors is urgently needed in the treatment of Type 2 Diabetes Mellitus with low side effects. Activity structure quantitative relationship modeling (QSAR) is an analytical approach to the relationship between chemical structure and activity which is widely used in diabetes drug design. In this thesis, a classification QSAR model was built to predict the structure of the activity of the DPP-4 inhibitor compound that can block the action of the DPP-4 enzyme. In molecular representation, ECFP and FCFP circular fingerprints are used which present SMILES notation in binary vector format. ECFP and FCFP fingerprints with diameters of 4 and 6 as input data in building a classification QSAR model. The QSAR classification with a deep learning approach provides fast time in the virtual screening process for active or inactive compounds in DPP-4 inhibitors. This study uses the Hybrid Deep Learning 1D CNN-LSTM model to predict the activity of inhibitor compounds inactive or inactive classes based on the value of biological activity with different proportions of training data and test data. The 1D CNN-LSTM architecture consists of a 1D CNN model as the feature extraction stage and output of 1D CNN convolution layer is used in the LSTM layer. In addition, feature selection using the Random Forest-Recursive Feature Elimination (RF-RFE) method was used to obtain optimal features from the ECFP and FCFP datasets. Furthermore, this study compares the performance of the model by applying the RF-RFE feature selection and without the RF-RFE feature selection. The results of this study indicate that the classification QSAR model using Hybrid Deep Learning, namely 1D CNN-LSTM with RF-RFE feature selection, obtains better model performance than the model without optimal feature selection. The performance of the CNN-LSTM 1D model with RF-RFE feature selection using ECFP_4 data with a proportion of 80% training data has an accuracy of 0.9075, sensitivity of 0.9008, specificity of 0.9142, and an MCC value of 0.8151.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Hasnan Fiqih
"Hampir separuh dunia bergantung pada makanan yang berasal dari laut sebagai sumber protein utama. Di Pasifik Barat dan Tengah 60% dari ikan tuna ditangkap secara illegal, tidak dilaporkan, dan tidak diatur dengan regulasi dapat mengancam ekosistem laut, pasokan ikan global, dan mata pencaharian lokal. Salah satu solusi yang dapat dilakukan adalah dengan menggunakan kamera keamanan untuk menangkap gambar aktivitas kapal. Pada penelitian ini akan dibuat sistem untuk mengklasifikasi jenis ikan yang ditangkap dari gambar kamera keamanan kapal tersebut. Sistem ini menggunakan model transfer learning yang sudah dilakukan fine tuning dan dilatih menggunakan dataset yang disediakan oleh The Nature Conservancy. Dari penelitian ini didapatkan performa terbaik dengan akurasi 98.19% menggunakan model EfficientNetV2L dan optimizer Stochastic Gradient Descent (SGD) dengan learning rate 1e-4, momentum 0.9, weight decay 1e-6, dan split ratio training testing 80/20. Dengan sistem ini pengolahan data untuk menghitung jumlah penangkapan ikan berdasarkan spesies akan lebih efisien.

Almost half of the world depends on food that comes from the sea as the main source of protein. In the West and Central Pacific 60% of tuna fish are caught illegally, unreported and unregulated, threatening marine ecosystems, global fish supplies and local livelihoods. One possible solution is to use a security camera to capture images of ship activity. In this study a system will be created to classify the types of fish caught from the ship's security camera images. This system uses a transfer learning model that has been fine tuned and trained using the dataset provided by The Nature Conservancy. From this study, the best performance was obtained with an accuracy of 98.19% using the EfficientNetV2L model and the Stochastic Gradient Descent (SGD) optimizer with a learning rate of 1e-4, momentum of 0.9, weight decay of 1e-6, and split ratio training testing of 80/20. With this system, data processing to calculate the amount of fish caught by species will be more efficient.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Alrafiful Rahman
"COVID-19 merupakan penyakit pernapasan seperti pneumonia yang mengakibatkan kematian pada jutaan orang setiap harinya. Januari 2020, "Organisasi Kesehatan Dunia" WHO menyatakan COVID-19 sebagai wabah penyakit virus yang menjadi perhatian internasional sebagai darurat kesehatan masyarakat yang menjadi perhatian internasional, dikenal sebagai pandemi dunia. Dilaporkan dari 205 negara di seluruh dunia, pada 1 April 2020, penularan virus COVID-19 sekitar ada lebih dari 900000 kasus COVID-19 yang dikonfirmasi dan hampir 50000 kematian. Berdasarkan laporan WHO, angka kematian 2-3% orang karena virus. Sangat penting untuk melakukan tes diagnostik sejak dini stadium berdasarkan kriteria sebagai gejala klinis, "Reverse-Transcription Polymerase Chain Reaction" (RT-PCR), sehingga dapat segera mengisolasi orang yang terinfeksi. Mendiagnosis penyakit virus COVID-19 dengan pencitraan yang lebih efektif menggunakan citra CT dada. Model DenseNet201, MobileNet, Xception, InceptionV3, ResNet152V2, dan VGG19 untuk memeriksa keakuratannya dalam pengenalan gambar. Untuk menganalisis kinerja model, 1888 sampel dari gambar CT paru-paru dikumpulkan dari situs resmi Kaggle. Model penggabungan (concatenate) pada arsitektur CNN yang telah terlatih seperti penggabungan (concatenate) antara ResNet152V2 dengan VGG19 memiliki accuracy sebesar 99,65%, sensitivity sebesar 99,66%, precision sebesar 99,66%, recall sebesar 99,66%, specificity sebesar 99,64%, dan skor F-measure sebesar 99,66%; gabungan DenseNet201 dan MobileNet diperoleh saat batchsize 32 dan 64 dengan learning rate 0,0001 diperoleh accuracy sebesar 99,65%, sensitivity sebesar 99,64%, precision sebesar 99,64%, recall sebesar 99,64%, specificity sebesar 99,66%, dan F-measure sebesar 99,64%; serta gabungan DenseNet201 dan MobileNet diperoleh saat batchsize 32 dan 64 dengan learning rate 0,001 maupun gabungan InceptionV3 dan Xception saat batchsize 32 dan learning rate 0,0001 diperoleh accuracy sebesar 99,65%, sensitivity sebesar 100%, precision sebesar 99,28%, recall sebesar 100%, specificity sebesar 99,31%, dan F-measure sebesar 99,64%.

COVID-19 is a respiratory disease like pneumonia that kills millions of people every day. January 2020, the WHO "World Health Organization" declared COVID-19 as a viral outbreak of international concern as a public health emergency of international concern, known as a world pandemic. Reported from 205 countries around the world, as of April 1, 2020, the transmission of the COVID-19 virus was around more than 900000 confirmed cases of COVID-19 and nearly 50000 deaths. Based on the WHO report, the death rate of 2-3% of people is due to the virus. To isolate the infected person immediately, it is very important to carry out a diagnostic test early based on the criteria as a clinical symptom, "Reverse-Transcription Polymerase Chain Reaction" (RT-PCR). Diagnosing COVID-19 viral disease with more effective imaging using chest CT images. DenseNet201, MobileNet, Xception, InceptionV3, ResNet152V2, and VGG19 models for accuracy in image recognition. To analyze the model's performance, 1888 samples of CT images of the lungs were collected from the official Kaggle website. The concatenate model on the CNN architecture that has occurred, such as the concatenate between ResNet152V2 and VGG19, has an accuracy of 99.65%, sensitivity of 99.66%, the precision of 99.66%, recall of 99.66%, specificity by 99.64%, and the F-measure score of 99.66%; the combination of DenseNet201 and MobileNet was obtained when batch size 32 and 64 with a learning rate of 0.0001 obtained an accuracy of 99.65%, the sensitivity of 99.64%, the precision of 99.64%, recall of 99.64%, specificity of 99.66 %, and F-measure of 99.64%; and the combination of DenseNet201 and MobileNet obtained at batch size 32 and 64 with a learning rate of 0.001 or a combination of InceptionV3 and Xception at batch size 32 and a learning rate of 0.0001 obtained an accuracy of 99.65%, the sensitivity of 100%, precision of 99.28%, recall of 100%, specificity of 99.31%, and F-measure of 99.64%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Daniel Adi Nugroho
"Dalam rangka melakukan pengendalian alih fungsi lahan pertanian diperlukan kuantifikasi luas dan sebaran lahan sawah, dimana salah satu metode yang efisien dalam pemetaan lahan baku sawah di wilayah tropis adalah dengan melakukan proses klasifikasi lahan baku sawah menggunakan data multitemporal dari citra Synthetic Aperture Radar (SAR). Tujuan utama dari penelitian ini adalah untuk melakukan kajian spasiotemporal perubahan lahan sawah di Kabupaten Indramayu berdasarkan lahan baku sawah tahunan yang diperoleh dari hasil pemanfaatan algoritma Deep Learning, yaitu Long Short-Term Memory (LSTM) untuk melakukan klasifikasi biner sawah dan non-sawah pada data SAR multitemporal dari satelit Sentinel-1. Akurasi hasil dari klasifikasi LSTM dievaluasi terhadap hasil observasi lapangan tahun 2021 sebagai tolok ukurnya, dengan metode klasifikasi tersupervisi lainnya, yaitu Support Vector Machine dan Random Forest, sebagai pembanding. Model LSTM yang didapatkan dalam penelitian ini selanjutnya dipakai untuk melakukan proses klasifikasi data lahan baku sawah tahunan. Hasil penelitian menunjukkan bahwa algoritma LSTM memberikan akurasi klasifikasi tertinggi dibandingkan algoritma SVM dan RF. Kajian spasiotemporal tutupan lahan sawah pada kurun waktu tahun 2017 hingga 2021 menunjukkan bahwa terjadi fluktuasi luasan dan sebaran lahan sawah tiap tahun, dengan tingkat perubahan terbesar pada Kecamatan Tukdana dan Kecamatan Kandanghaur. Berdasarkan kajian literatur sekunder, penambahan lahan sawah yang terkonsentrasi di Kecamatan Tukdana diperkirakan merupakan akibat dari penjarahan lahan perkebunan tebu oleh warga, sedangkan pengurangan lahan sawah yang terkonsentrasi di Kecamatan Kandanghaur diperkirakan merupakan akibat banjir rob yang berkepanjangan.

In order to manage the conversion of agricultural land, it is necessary to quantify the area and distribution of rice fields, where one of the efficient methods in mapping raw rice fields in the tropics is to carry out the process of classifying raw rice fields using multitemporal data from Synthetic Aperture Radar (SAR) images. The main objective of this research is to conduct a spatiotemporal study of changes in paddy fields in Indramayu Regency based on annual rice field map obtained from the use of the Deep Learning algorithm, namely Long Short-Term Memory (LSTM) to perform a binary classification of rice fields and non-rice fields on the data. Multitemporal SAR from the Sentinel-1 satellite. The accuracy of the results of the LSTM classification is evaluated against the results of field observations in 2021 as a benchmark, with other supervised classification methods, namely Support Vector Machine and Random Forest, for comparison. The LSTM model obtained in this study is then used to carry out the process of classifying the annual raw land data for rice fields. The results showed that the LSTM algorithm gave the highest classification accuracy compared to the SVM and RF algorithms. The spatiotemporal study of paddy field cover in the period 2017 to 2021 shows that there are fluctuations in the area and distribution of paddy fields every year, with the largest changes in Tukdana and Kandanghaur sub-districts. Based on a secondary literature review, the addition of rice fields concentrated in Tukdana District is estimated to be the result of looting of sugarcane plantations by residents, while the reduction of rice fields concentrated in Kandanghaur District is estimated to be the result of prolonged tidal flooding."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dwi Guna Mandhasiya
"Ilmu Data adalah irisan dari matematika dan statistika, komputer, serta keahlian domain. Dalam beberapa tahun terakhir inovasi pada bidang ilmu data berkembang sangat pesat, seperti Artificial Intelligence (AI) yang telah banyak membantu kehidupan manusia. Deep Learning (DL) sebagai bagian dari AI merupakan pengembangan dari salah satu model machine learning yaitu neural network. Dengan banyaknya jumlah lapisan neural network, model deep learning mampu melakukan proses ekstrasi fitur dan klasifikasi dalam satu arsitektur. Model ini telah terbukti mengungguli teknik state-of-the-art machine learning di beberapa bidang seperti pengenalan pola, suara, citra, dan klasifikasi teks. Model deep learning telah melampaui pendekatan berbasis AI dalam berbagai tugas klasifikasi teks, termasuk analisis sentimen. Data teks dapat berasal dari berbagai sumber, seperti sumber dari media sosial. Analisis sentimen atau opinion mining merupakan salah satu studi komputasi yang menganalisis opini dan emosi yang diekspresikan pada teks. Pada penelitian ini analisis peforma machine learning dilakukan pada metode deep learning berbasis representasi data BERT dengan metode CNN dan LSTM serta metode hybrid deep learning CNN-LSTM dan LSTM-CNN. Implementasi model menggunakan data komentar youtube pada video politik dengan topik terkait Pilpres 2024, kemudian evaluasi peforma dilakukan menggunakan confusion metric berupa akurasi, presisi, dan recall.

Data Science is the intersection of mathematics and statistics, computing, and a domain of expertise. In recent years innovation in the field of data science has developed very rapidly, such as Artificial Intelligence (AI) which helped a lot in human life. Deep Learning (DL) as part of AI is the development of one of the machine learning models, namely neural network. With the large number of neural network layers, deep learning models are capable of performing feature extraction and classification processes in a single architecture. This model has proven to outperform state-of-the-art machine learning techniques in areas such as pattern recognition, speech, imagery, and text classification. Deep learning models have gone beyond AI-based approaches in a variety of text classification task, including sentiment analysis. Text data can come from various sources, such as source from social media. Sentiment analysis or opinion mining is a computational study that analyze opinions and emotions expressed in text. In this research, machine learning performance analysis is carried out on a deep learning method based on BERT data representation with the CNN and LSTM and hybrid deep learning CNN-LSTM and LSTM-CNN method. The implementation of the model uses YouTube commentary data on political videos related to the 2024 Indonesia presidential election, then performance analysis is carried out using confusion metrics in the form of accuracy, precision, and recall."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Hadi Nursalim
"Salah satu organ tubuh yang paling penting adalah jantung. Darah dapat didistribusikan dengan baik ke seluruh tubuh jika terdapat jantung. Organ lain akan berhenti bekerja dan orang tersebut akan meninggal jika jantung di dalam tubuh tidak berfungsi dengan baik. Salah satu jenis penyakit jantung adalah terjadinya gejala arrhythmia, yaitu suatu bentuk kondisi jantung yang ditandai dengan laju atau irama detak jantung. Detak jantung bisa lebih cepat dari biasanya, atau terlalu lambat, atau bahkan memiliki pola yang tidak teratur. Metode yang paling umum dan banyak digunakan oleh ahli jantung dan praktisi medis untuk memantau dan mendeteksi penyakit atau kelainan pada jantung adalah dengan menggunakan elektrokardiogram (EKG) yang dianalisis secara manual, sehingga dapat memakan waktu yang lama dan rentan terhadap kesalahan. Penerapan Artificial Intelligence diharapkan mampu memberikan peranan penting dalam mempercepat kinerja kardiologi. Dalam penelitian ini digunakan Model CNN dengan Arsitektur ResNet-50 untuk mengklasifikasikan detak jantung normal dan detak jantung beberapa jenis arrhythmia yang akan divisualisasikan dengan algoritma Grad-CAM. Dari hasil eksperimen pengklasifikasian, didapatkan tingkat akurasi rata-rata sebesar 94% dan meningkat menjadi 99% untuk setiap kelas setelah dilakukan visualisasi dengan menggunakan algoritma Grad-CAM.

One of the most important organs of the body is the heart. Blood can be well distributed throughout the body if there is a heart. Other organs will stop working and the person will die if the heart in the body is not functioning properly. One type of heart disease is the occurrence of symptoms of arrhythmia, which is a condition in which the heartbeat rate is too fast, to slow, or irregular. Currently, the most common and widely used method by cardiologists and other medical practitioners to monitor and detect diseases or abnormalities in the heart is to use an electrocardiogram (ECG), which is analyzed manually. where the task can take a long time and is prone to errors. The application of Artificial Intelligence is expected to play an important role in accelerating the performance of cardiologists. In this study, a CNN model with ResNet-50 architecture was used to classify normal heart rates and heart rates of several types of arrhythmia that would be visualized with the Grad-CAM algorithm. From the results of the classification experiment, an average accuracy rate of 94% was obtained and increased to 99% for each class after visualization using the Grad-CAM algorithm."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Raihan Kenji Rizqillah
"Fatik menjadi salah satu indikator utama yang menjadi perhatian pada penggunaan paduan alumunium sebagai aplikasi struktural pesawat terbang, dimana sebanyak lebih dari 50% kecelakaan dirgantara disebabkan oleh kegagalan fatik material. Metode eksperimental trial and error untuk mendesain material memerlukan waktu panjang, biaya tinggi, serta efisiensi penelitian yang dipengaruhi oleh intuisi dan keberuntungan dari peneliti menimbulkan urgensi pendekatan lain dalam penelitian mekanika material. Penelitian mekanika material berbasis Pembelajaran Mesin (PM) dapat memanfaatkan data-data eksperimen dan penelitian terdahulu, sehingga dapat memangkas biaya dan waktu penelitian. Pada penelitian ini telah berhasil dikembangkan dua model deep learning yang mampu memetakan dengan baik hubungan antara data paduan alumunium dengan sifat fatik yang dihasilkan. Model dibuat dengan arsitektur Deep Neural Network menggunakan TensorFlow. Model S2P (Structure to Performance) dapat memprediksi performa fatik suatu paduan alumunium dari data komposisi, perlakuan panas, sifat mekanis, dan pembebanan fatik yang diterima. Model P2S (Performance to Structure) dapat memprediksi komposisi paduan alumunium yang dapat memenuhi performa fatik yang diharapkan. Kedua model menghasilkan performa baik berdasarkan pada metrik penilaian R2, yaitu senilai 0,92 untuk model S2P dan 0,96 untuk model P2S. Formula matematika sifat mekanis dan sifat fatik paduan alumunium dibuat sebagai fungsi dari variabel unsur paduan dan perlakuan panas. Pengembangan model deep learning prediksi sifat paduan alumunium berbasis fitur atomik menunjukkan bahwa total elektronegatifitas berpengaruh besar terhadap sifat mekanis dan sifat fatik.

Fatigue is one of the main concern of the utilization of aluminum alloys as aircraft structural applications, since more than 50% of aerospace accidents are caused by material fatigue failure. The experimental trial and error method for designing materials requires long time and high costs. Research efficiency is also influenced by intuition and luck of the researcher. These condition raises the urgency of other approaches in material mechanics research. Machine Learning (ML) based material mechanics research can take advantage of experimental data and previous research, which ables reduce research costs and time. In this research, two deep learning models have been successfully developed. The models are able to map the relationship between aluminum alloy data and the resulting fatigue properties. The model is built on a fully connected Deep Neural Network architecture using TensorFlow. The S2P (Structure to Performance) model can predict the fatigue performance of an aluminum alloy from the data of composition, heat treatment, mechanical properties, and fatigue loading condition. The P2S (Performance to Structure) model can predict the composition of aluminum alloys that can meet the expected fatigue performance. Both models produce good performance based on the R2 scoring metric, which is 0.92 for the S2P model and 0.96 for the P2S model. Mathematical formulas for mechanical properties and fatigue properties of alloys are made as a function of alloying and heat treatment variables. The development of atomic feature based deep learning model shows that the total electronegativity has a large impact on the mechanical properties and fatigue properties."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Adi Yudho Wijayanto
"Tujuan utama penggunaan peralatan Pressure Relief Device (PRD) adalah untuk memastikan keamanan bejana tekan dalam sistem bertekanan. Seiring berjalannya waktu, peralatan PRD dapat mengalami penurunan kualitas dan gagal menjalankan fungsi yang diharapkan, sehingga harus diidentifikasi sebagai mode kegagalan. Untuk memitigasi potensi risiko yang terkait dengan hal ini, direkomendasikan agar pendekatan seperti inspeksi berbasis risiko (RBI) diterapkan. Meskipun RBI telah diadopsi secara luas, metode ini bergantung pada teknik kualitatif, sehingga menyebabkan variasi yang signifikan dalam penilaian risiko peralatan. Studi ini mengusulkan metode analisis risiko baru yang menggunakan pembelajaran mesin berbasis pembelajaran mendalam untuk mengembangkan model penilaian risiko untuk peralatan PRD terkait dengan mode kegagalan failure on leakage. Pendekatan inovatif ini akan mengurangi waktu penilaian, meningkatkan akurasi, dan menurunkan biaya pemrosesan dengan memberikan hasil penghitungan yang tepat. Penelitian ini mengembangkan program prediksi risiko yang menggunakan pembelajaran mesin berbasis deep learning yang dirancang secara eksplisit untuk mode kegagalan failure on leakage pada peralatan pelepas tekanan. Dataset yang digunakan dalam proses pengembangan model mengikuti standar API 581 dan berisi 168 dataset. Berbagai parameter model digunakan, antara lain test size 20%, nilai random state 0, 150 epoch, learning rate 0,001, dan 3 layers dengan nilai dense 128, 64, dan 32. Performa model dievaluasi menggunakan validation confusion matrix, yang menunjukkan akurasi 94%.

The primary objective of deploying Pressure Relief Device (PRD) equipment is to ensure the safety of pressure vessels within a pressurized system. Over time, PRD equipment may degrade and fail to perform its intended function, which must be identified as a failure mode. To mitigate potential risks associated with this, it is recommended that an approach such as risk-based inspection (RBI) be implemented. Despite the widespread adoption of RBI, the method relies on qualitative techniques, leading to significant variations in equipment risk assessments. This study proposes a novel risk analysis method that uses deep learning-based machine learning to develop a risk assessment model for PRD equipment related to the fail-on-leakage failure mode. This innovative approach will reduce assessment times, improve accuracy, and lower processing costs by providing precise calculation results. The research develops a risk prediction program that uses deep learning-based machine learning designed explicitly for failure-on-leakage failure mode in pressure relief equipment. The dataset used in the model development process adheres to API 581 standards and comprises 168 data points. Various model parameters are employed, including a test size of 20%, a random state value of 0, 150 epochs, a learning rate of 0.001, and 3 layers with dense values of 128, 64, and 32. The model's performance is evaluated using a validation confusion matrix, which indicates an accuracy of 94%."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>