Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 155201 dokumen yang sesuai dengan query
cover
David Febraldo
"Kendaraan listrik memerlukan energi listrik untuk beroperasi yang disimpan didalam baterai. Kendaraan listrik menghasilkan panas pada baterai yang digunakan. Panas baterai yang berlebih dapat mengurangi masa pakai dan menyebabkan terjadinya ledakan. Penggunaan pipa kalor sebagai sistem pendingin memiliki potensi menjadi solusi masalah panas berlebih pada kendaraan listrik. Tujuan penelitian adalah menyusun konsep keberlanjutan penerapan pipa kalor pada baterai kendaraan listrik. Pengujian dilakukan dengan membangun prototipe, analisis ekonomi melalui cost comparison serta analisis persepsi sosial melalui kuisioner. Hasil menunjukkan penggunaan pipa kalor mampu menjaga temperatur baterai dibawah 40 °C. Penggunaan pipa kalor dalam jangka panjang dapat memberikan keuntungan dan teknologi ini diterima secara sosial oleh peneliti dan para ahli. Saran untuk penelitian adalah perlu dilakukan penelitian lebih lanjut mengenai penerapan pipa kalor pada baterai, perlu adanya pengembangan kebijakan terkait lokasi pembuangan, mekanisme pengelolaan dan penyuluhan kepada masyarakat.

The increase in the use of electric vehicles is increasing over time. Electric vehicles require electrical energy to operate which is stored in the battery. Electric vehicles generate heat in the batteries used. Excessive battery heat can reduce its life and cause an explosion. The use of heat pipes as a cooling system has the potential to be a solution to the problem of overheating in electric vehicles. The aim of the research is to develop the concept of sustainability applying heat pipes to electric vehicle batteries. Testing is done by building prototypes, economic analysis through cost comparison and analysis of social perceptions through questionnaires. The results show that the use of heat pipes is able to maintain the battery temperature below 40 °C. The use of heat pipes in the long term can provide benefits and this technology is socially accepted by researchers and experts. Suggestions for research are that further research is needed regarding the application of heat pipes to batteries, it is necessary to develop policies related to disposal locations, management mechanisms and outreach to the community."
Jakarta: Sekolah Ilmu Lingkungan Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Herka Manda Putra
"ABSTRAK
Manajemen termal sangatlah penting untuk memastikan kestabilan termal dan daya tahan jangka panjang pada baterai litium-ion. Pipa kalor pipih bersirip digunakan pada penelitian ini untuk membantu pelepasan kalor yang dibangkitkan oleh pemanas melalui baterai. Baterai litium-ion dimodelkan dengan menggunakan aluminium yang menyerupai modul baterai. Sistem saluran pendingin baterai yang dilengkapi dengan kipas diterapkan untuk meningkatkan laju perpindahan kalor yang di lepas oleh pipa kalor. Plat konduksi juga dipasang agar kalor yang diterima oleh pipa kalor dapat diperhitungkan. Pembangkitan kalor divariasikan agar pengaruh hambatan termal dapat terlihat. Dengan adanya pipa kalor, temperatur baterai berkurang secara signifikan. Permodelan baterai 3 dimensi disimulasikan dan dibandingkan dengan hasil data eksperimental. Dengan menggunakan pipa kalor, penurunan temperatur baterai dapat mencapai 55,58 °C pada pembangkitan daya 150 W. Hasil simulasi memperlihatkan persebaran temperatur pada dinding baterai dengan error rata-rata temperatur permukaan baterai terkecil yang menggunakan pipa kalor dan tanpa pipa kalor sebesar 10,70 % dan 5,33 %.

ABSTRACT
Thermal management is critical to ensure thermal stability and long term durability of the lithium-ion battery. Finned heat pipes are used in this study to help dissipating heat generated by heater through the batteries. Lithium-ion batteries modeled by using aluminum that resembles a battery module. The system contain of air duct which is streamed air by fan to increase heat transfer rate. Conduction plate is also fitted so that the heat received by the heat pipe can be calculated. The heat generation is variated so that the effect thermal resistance can be seen. With the heat pipe, the battery temperature is significantly reduced. Model is developed to describe the thermal distribution of the lithium-ion batteries, and compared through both simulation and experiment. By using two heat pipes, battery temperature can be reduce up to 55.58 °C at 150 W heat generation. The simulation shows the temperature distribution on battery surface using heat pipe and without heat pipe with the lowest average error temperature surfaces are 10.70 % and 5.33 %
"
2016
S64919
UI - Skripsi Membership  Universitas Indonesia Library
cover
Syahnaz Tiara Putri
"Peningkatan bahan bakar fosil menjadi permasalahan yang perlu diatasi, salah satunya dengan cara penggunaan kendaraan listrik berbasis baterai. Perkembangan dari penggunaan kendaraan listrik, sejalan pula dengan peningkatan lithium-ion battery yang memiliki masa pakai yang pendek, sehingga baterai tersebut perlu diolah untuk mencapai keberlanjutan. Penelitian ini bertujuan untuk menganalisis empat opsi kebijakan pengelolaan baterai kendaraan listrik di beberapa negara yang sudah diimplementasikan. Dengan menggunakan hasil wawancara, kuesioner, dan data sekunder, hasil penelitian menunjukkan skema kebijakan performance standard lebih efektif dilakukan di Indonesia. Selain itu, kebijakan dengan skema deposit sulit untuk diterapkan di negara berkembang yang masyarakat memiliki penghasilan menengah ke bawah.

Increasing fossil fuels is a problem that needs to be addressed, one of which is by using battery-based electric vehicles. The development of the use of electric vehicles is also in line with the increase in lithium-ion batteries which have a short service life, so these batteries need to be processed to achieve sustainability. This study aims to analyze four policy options for managing electric vehicle batteries in several countries that have been implemented. By using the results of interviews, questionnaires, and secondary data, the results of the research show that standard performance policy schemes are more effectively implemented in Indonesia. In addition, policies with deposit schemes are difficult to implement in developing countries where people have middle to lower incomes."
Depok: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ma'Arif Hasan
"Penelitian ini bertujuan untuk menganalisis kinerja Hybrid Energy Storage System (HESS) yang merupakan kombinasi hibridisasi antara baterai jenis Lithium-Ion dan super kapasitor dalam aplikasi kendaraan listrik. Penelitian ini menggunakan tiga varian baterai dan tiga varian superkapasitor sesuai dengan spesifikasi yang telah ada di pasaran. Adapun kriteria yang digunakan untuk menentukan kinerja HESS adalah pengujian kombinasi baterai dan superkapasitor terhadap 3 (tiga) kondisi mobilitas kendaraan listrik yang sangat bergantung pada kondisi riil dijalan dan behavior pengemudi. Tiga kondisi mobilitas itu adalah mode akselerasi yaitu saat kendaraan listrik sedang membutuhkan daya puncak, mode stabil dan deselerasi atau pengereman mendadak. Selain kinerja HESS, penelitian ini juga menganalisis pengaruh pemasangan superkapasitor terhadap kriteria yang digunakan serta memberikan rekomendasi kombinasi terbaik dari varian baterai dan superkapasitor yang diuji. Metode yang digunakan dalam penelitian ini adalah analisis simulasi parameter berdasarkan pembebanan riil di jalan dengan menggunakan Simulink Matlab R2022a dengan menghitung daya referensi kendaraan listrik berdasarkan kecepatan dalam Km/Jam, Torsi dan diameter roda merujuk pada spesifikasi manufaktur. Hasil penelitian menunjukkan bahwa dari 9 (Sembilan) kombinasi HESS yang diujikan, seluruhnya telah mampu memenuhi tiga kondisi mobilitas kendaraan listrik berdasarkan kondisi riil dijalan. Namun, dari 9 kombinasi HESS yang diujikan, rangkaian terbaik yang menjadi rekomendasi adalah rangkaian baterai dengan kapasitas 2.700 Wh dan superkapasitor dengan kapasitas 500 F.

This study aims to analyze the performance of the Hybrid Energy Storage System (HESS), which is a combination of hybridization between Lithium-Ion batteries and supercapacitors in electric vehicle applications. This study uses three battery variants and three supercapacitor variants according to the specifications that are already on the market. The criteria used to determine HESS performance are testing a combination of batteries and supercapacitors against 3 (three) conditions for electric vehicle mobility which are very dependent on real conditions on the road and driver behavior. The three mobility conditions are acceleration mode, which is when an electric vehicle is in need of peak power, stable mode and deceleration or sudden braking. In addition to HESS performance, this study also analyzes the effect of supercapacitor installation on the criteria used and provides recommendations for the best combination of battery and supercapacitor variants tested. The method used in this research is parameter simulation analysis based on real conditions on the road using Simulink Matlab R2022a by calculating the reference power of electric vehicles based on speed in km/hour, torque and wheel diameter referring to manufacturer specifications. The results of the study show that the 9 (nine) HESS combinations that have been tested, all of them have been able to fulfill the three conditions of electric vehicle mobility based on real conditions on the road. However, based on the 9 HESS combinations tested, there is one best combination circuit that is recommended, namely a battery with a capacity of 2.700 Wh and a supercapacitor with a capacity of 500 F."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Rangga Aji Pamungkas
"Peningkatan temperatur baterai litium-ion pada kendaraan listrik dapat mengakibatkan berkurangnya kapasitas dan jumlah siklus kerja sebuah baterai litium-ion. Bahkan, sel baterai dapat mengalami thermal runaway yang berakibat baterai litium-ion dapat terbakar dan meledak. Salah satu jenis alat penukar kalor yang bisa digunakan sebagai sistem manajemen termal pada baterai litium-ion adalah pipa kalor melingkar pelat datar. Penelitian ini dilakukan untuk menguji kinerja pipa kalor melingkar pelat datar dan mencari nilai hambatan termal yang dihasilkan dengan variasi fluida kerja akuades, alkohol, dan aseton dengan filling ratio sebesar 60%. Dari hasil penelitian ini, aseton merupakan fluida kerja terbaik yang menghasilkan hambatan termal sebesar 0,22 Watt/°C dan temperatur evaporator sebesar 49,89°C pada beban fluks kalor sebesar 1,61 Watt/cm2.

The increasing temperature of lithium-ion battery used in electric vehicle can cause major thermal runaway that can result in battery fire and explosion. One of the heat exchanger that can be used as thermal management system for lithium-ion battery of electric vehicle is Flat Plate Loop Heat Pipe. This research was conducted to test the performance of flat plate loop heat pipe and to determine the thermal resistance of flat plate loop heat pipe that used aquades, alcohol, and acetone as working fluid with 60% of filling ratio. The result showed that acetone is the best working fluid from among of the two other working fluids and had a heat pipe thermal resistance 0.22 Watt/°C with evaporator temperature was 49.89°C under maximum heat flux load of 1.61 Watt/cm2.
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
S58609
UI - Skripsi Membership  Universitas Indonesia Library
cover
Akhmal Dzaky Baskara Gunawan
"Salah satu sektor yang paling banyak menghasilkan emisi adalah sektor transportasi sebanyak 23%. Pada abad ke-21. Kendaraan Bermotor listrik (KBL) mulai bermunculan di jalanan terutama yang menggunakan Lithium Ion Batteries (LIBs). KBL merupakan salah satu solusi dalam mengurangi polusi udara. KBL lebih unggul dibandingkan kendaraan yang menggunakan bahan bakar fosil sebagai sumber energinya. Indonesia menyambut hal ini dengan membuat instrumen hukum untuk mendorong program percepatan KBL melalui Peraturan Presiden No. 55/2019 yang diubah dengan Peraturan Presiden No. 79/2023. Instrumen ini hadir sebagai suatu upaya untuk mendorong penggunaan KBL oleh masyarakat Indonesia dalam mengurangi polusi udara. Namun, inovasi terhadap mobil listrik yang bertujuan untuk mengurangi emisi gas rumah kaca tidak lepas dari timbulnya suatu permasalahan baru. Permasalahan tersebut adalah potensi limbah baterai mobil listrik yang telah terpakai, sehingga dapat menimbulkan pencemaran lingkungan. Atas hal tersebut, penulis meninjau permasalahan pengelolaan limbah baterai KBL melalui konsep tanggung jawab produsen. Konsep tanggung jawab produsen pertama kali diperkenalkan dalam UU No. 18/2008. Konsep tanggung jawab produsen atau biasa disebut Extended Producer Responsibility (EPR), merupakan konsep yang menitikberatkan tanggung jawab produsen dalam pengelolaan barang yang mereka produksi. Hal ini penting, karena baterai KBL masuk kedalam kategori limbah B3, yang membutuhkan penanganan khusus dalam pengelolaannya. Penelitian ini menggunakan metode penulisan yuridis-normatif, yaitu melihat kesesuaian kebijakan pengelolaan limbah B3 dengan berbagai bahan hukum primer, sekunder, dan tersier. Selain itu, penulis utamanya akan mengaitkan kebijakan tersebut dengan konsep pengelolaan limbah B3 terutama konsep EPR. Berdasarkan penelitian ini, pemerintah perlu meningkatkan pengawasan pengelolaan limbah baterai KBL dengan peraturan yang sudah ada saat ini. Hal ini penting, agar konsep EPR yang masih dilakukan secara sukarela oleh produsen, dapat berjalan secara sirkular.

One of the sectors that produces the most emissions is the transportation sector, which accounts for 23%. In the 21st century. Electric Vehicles (Evs) began to appear on the streets, especially those using Lithium Ion Batteries (LIBs). They are one of the solutions in reducing air pollution. They are superior to vehicles that use fossil fuels as their energy source. Indonesia welcomed this by creating a legal instrument to encourage the acceleration of the KBL program through Presidential Regulation No. 55/2019 which was amended by Presidential Regulation No. 79/2023. This instrument is present as an effort to encourage the use of KBL by the Indonesian people in reducing air pollution. However, innovation in electric cars that aims to reduce greenhouse gas emissions cannot be separated from the emergence of a new problem. This problem is the potential waste of used electric car batteries, which can cause environmental pollution. For this reason, the author reviews the problem of KBL battery waste management through the concept of producer responsibility. The concept of producer responsibility was first introduced in Law No. 18/2008. The concept of producer responsibility or commonly called Extended Producer Responsibility (EPR), is a concept that emphasizes the responsibility of producers in the management of the goods they produce. This is important, because KBL batteries fall into the category of hazardous waste, which requires special handling in its management. This research uses a juridical-normative writing method, which looks at the suitability of B3 waste management policies with various primary, secondary, and tertiary legal materials. In addition, the author will mainly relate the policy to the concept of hazardous waste management, especially the concept of EPR. Based on this research, the government needs to improve the supervision of KBL battery waste management with the current regulations. This is important, so that the concept of EPR, which Is still carried out voluntarily by producers, can run circularly."
Depok: Fakultas Hukum Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Revaldy Putra Agatha
"Besarnya kenaikan angka emisi gas karbon saat ini tengah menjadi tantangan cukup besar bagi global. Saat ini kendaraan listrik sedang banyak digunakan karena dinilai dapat menjadi terobosan untuk mengurangi emisi gas karbon. Tujuan dari penelitian ini akan dibahas mengenai performa penggunaan sistem manajemen termal pasif pada baterai kendaraan listrik dengan menggunakan kombinasi heat sink, heat pipe dan phase change material. Pengujian dilakukan dengan mengukur temperatur pada dinding simulator baterai dengan menggunakan termokopel tipe K dengan modul NI DAQ 9214, c-DAQ 9174, dan tegangan listrik menggunakan digital power meter. Variasi pengujian dilakukan dengan memvariasikan besar daya pembangkitan panas pada heater yang terhubung pada simulator baterai sebagai representasi dari heat losses yang timbul saat baterai bekerja yaitu sebesar 9 W, 27 W, dan 45 W dan juga variasi komponen sistem pendingin yaitu pengujian baterai tanpa sistem pendingin, baterai dengan sistem pendingin heat sink, heat pipe, dan PCM serta baterai dengan sistem pendingin heat sink dan PCM. Dalam penelitian ini PCM yang digunakan adalah Rubitherm tipe RT 38. Hasil penelitian ini menunjukkan bahwa penurunan temperatur terbesar terjadi ketika dilakukan variasi daya pembangkitan panas 45 W dengan sistem pendingin menggunakan heat sink, heat pipe dan PCM dimana penurunan yang terjadi mencapai 22,95% dari 63,89 menjadi 49,23. Sedangkan pada daya 27 W temperatur baterai menurun sebesar 6,7% dari 49,4°C menjadi 46,09°C dan untuk daya pembangkitan panas 9 W temperatur baterai menurun sebesar 0,36% dari 41,20°C menjadi 41,05°C. Selain itu dilakukan juga variasi pengujian dengan menghilangkan heat pipe untuk melihat pengaruh penggunaannya. Didapatkan pada variasi 45 W temperatur baterai menurun sebesar 22,07% menjadi 49,79°C. Sementara pada daya 27 W temperatur baterai menurun sebesar 6,28% menjadi 46,3°C dan untuk daya 9 W terjadi penurunan temperatur sebesar 0,61% menjadi 40,95°C. Berdasarkan hasil penelitian tersebut dapat disimpulkan bahwa sistem pendinginan baterai menggunakan kombinasi heat sink, heat pipe dan PCM sebagai sistem pendingin pasif adalah metode pendinginan baterai yang efektif untuk mengurangi temperatur kerja pada baterai kendaraan listrik yang dapat dijadikan opsi penggunaannya untuk masa depan.

The current increase in carbon gas emissions poses a significant challenge globally. Electric vehicles are currently being widely used as they are considered a breakthrough in reducing carbon gas emissions. The objective of this research is to discuss the performance of using a passive thermal management system on electric vehicle batteries by utilizing a combination of heat sink, heat pipe, and phase change material (PCM). The testing was conducted by measuring the temperature on the battery simulator wall using a type K thermocouple with NI DAQ 9214 module, c-DAQ 9174, and electric voltage measured using a digital power meter. The testing variations were performed by varying the heat generation power on the heater connected to the battery simulator, representing the heat losses that occur during battery operation, namely 9 W, 27 W, and 45 W. Additionally, variations of cooling system components were tested, including battery testing without a cooling system, battery with a cooling system using heat sink, heat pipe, and PCM, as well as battery with a cooling system using heat sink and PCM. In this research, Rubitherm RT 38 type PCM was used. The results of this study indicate that the largest temperature reduction occurred when the heat generation power was varied at 45 W with a cooling system consisting of heat sink, heat pipe, and PCM, resulting in a reduction of 22.95% from 63.89°C to 49.23°C. For 27 W power, the battery temperature decreased by 6.7% from 49.4°C to 46.09°C, and for 9 W heat generation, the battery temperature decreased by 0.36% from 41.20°C to 41.05°C. Furthermore, testing variations were also performed by eliminating the use of heat pipe to observe its impact. It was found that at the 45 W variation, the battery temperature decreased by 22.07% to 49.79°C. Meanwhile, for 27 W power, the battery temperature decreased by 6.28% to 46.3°C, and for 9 W heat generation, there was a temperature reduction of 0.61% to 40.95°C. Based on the results of this research, it can be concluded that cooling the battery using a combination of heat sink, heat pipe, and PCM as a passive cooling system is an effective method to reduce operating temperature in electric vehicle batteries, which can be considered as an option for future use."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Zahran Mizuya Kusmana
"Kendaraan Listrik merupakan solusi untuk mengatasi permasalahan keterbatasan energi fosil saat ini. Kendaraan Listrik menggunakan Baterai sebagai sumber energi dalam sistem propulsi. Efisiensi Kendaraan Listrik menjadi faktor yang penting karena kendaraan membutuhkan efisiensi dan jarak tempuh yang tinggi. Baterai menjadi faktor utama yang mempengaruhi efisiensi Kendaraan listrik. Baterai memiliki tingkat kerapatan energi yang tinggi dan kapasitas penyimpanan energi yang besar. Kebutuhan untuk melepaskan energi secara cepat dalam kendaraan listrik membuat baterai harus memiliki Current Discharge yang besar. Current discharge mengacu pada laju aliran arus listrik dari baterai saat baterai digunakan untuk memberikan daya pada motor listrik kendaraan. Current discharge yang rendah dapat menyebabkan kinerja motor listrik menjadi kurang optimal dan jarak tempuh kendaraan menjadi lebih pendek. Selain itu, kapasitas energi pada baterai mempengaruhi seberapa jauh kendaraan listrik dapat berjalan. Kapasitas energi pada baterai mengacu pada jumlah energi listrik yang dapat disimpan oleh baterai, dan semakin besar kapasitas energi, semakin banyak energi listrik yang dapat disimpan oleh baterai.

Electric vehicles are a solution to overcome the current limitations of fossil fuels. Electric vehicles use batteries as a source of energy in the propulsion sistem. Efficiency of electric vehicles is an important factor because vehicles require high efficiency and long range. Batteries are the main factor that affects the efficiency of electric vehicles. Batteries have a high energy density and large energy storage capacity. The need to release energy quickly in electric vehicles requires batteries to have a high current discharge. Current discharge refers to the rate of flow of electrical current from the battery when the battery is used to power the electric motor of the vehicle. Low current discharge can cause the electric motor performance to be suboptimal and the vehicle range to be shorter. In addition, energy capacitance in batteries affects how far electric vehicles can travel. Energy capacitance in batteries refers to the amount of electrical energy that can be stored by the battery, and the larger the energy capacitance, the more electrical energy can be stored by the battery."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Zaki
"Peningkatan jumlah emisi karbon mendorong pemerintah Indonesia untuk menetapkan target bebas gas rumah kaca pada tahun 2060 dan membuat kebijakan penggunaan kendaraan listrik guna mendukung tercapainya target tersebut. Pada kendaraan listrik, baterai lithium-ion (Li-ion) berfungsi sebagai sumber tenaga utama. Namun, dalam proses penyimpanan dan penggunaan energi, baterai ini menghasilkan panas yang dapat menyebabkan suhu operasi melebihi 60℃, yang berpotensi menurunkan performa dan menyebabkan kerusakan. Oleh karena itu, diperlukan sistem manajemen termal yang efektif untuk menjaga suhu baterai dalam batas aman. Penelitian ini meneliti dan menguji Flat Loop Heat Pipe (FLHP) dengan fluida kerja air sebagai sistem pendinginan pasif untuk baterai ganda pada kendaraan listrik. Tujuan dari penelitian ini adalah untuk mengembangkan metode pengukuran kinerja FLHP dan mengetahui efisiensinya dalam manajemen termal baterai. Penelitian ini menggunakan FLHP dengan variasi rasio pengisian fluida, suhu pendingin, dan laju aliran pendingin pada kondensor. Dari penelitian ini, diketahui bahwa rasio pengisian optimal adalah 60%, yang memberikan performa termal terbaik dengan menjaga suhu operasi baterai pada kondisi ideal. Suhu pendingin optimal ditemukan pada 25°C dengan laju aliran pendingin optimal sebesar 1,5 liter per menit. Kombinasi ini memberikan efisiensi pendinginan terbaik, menjaga suhu baterai dalam batas aman, dan meningkatkan keselamatan serta kinerja baterai pada kendaraan listrik.

The increase in carbon emissions has prompted the Indonesian government to set a target of zero greenhouse gas emissions by 2060 and implement policies to promote the use of electric vehicles (EVs) to support this goal. In EVs, lithium-ion (Li-ion) batteries serve as the primary power source. However, during energy storage and usage, these batteries generate heat that can cause the operating temperature to exceed 60°C, potentially decreasing performance and causing damage. Therefore, an effective thermal management system is required to keep the battery temperature within safe limits. This study examines and tests a Flat Loop Heat Pipe (FLHP) with water as the working fluid as a passive cooling system for dual batteries in electric vehicles. The objective of this research is to develop a performance measurement method for FLHP and evaluate its efficiency in thermal management of the batteries. The study uses FLHP with variations in filling ratio, coolant temperature, and coolant flow rate at the condenser. The results indicate that the optimal filling ratio is 60%, providing the best thermal performance by maintaining the battery's operating temperature within the ideal range. The optimal coolant temperature was found to be 25°C with an optimal coolant flow rate of 1.5 liters per minute. This combination offers the best cooling efficiency, keeping the battery temperature within safe limits and enhancing the safety and performance of the batteries in electric vehicles."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bambang Ariantara
"ABSTRAK
Pembangkitan kalor pada baterai dan motor listrik akan meningkatkan temperatur kerjanya. Temperatur kerja yang terlalu tinggi dapat menurunkan kinerja dan memperpendek umur pakai baterai dan motor listrik. Kemajuan teknologi baterai telah menghasilkan baterai-baterai Li-Ion berdensitas energi sangat tinggi. Namun demikian, kemajuan ini disertai dengan resiko terjadinya thermal runaway yang dapat menyebabkan terjadinya kecelakaan serius seperti yang dialami oleh pesawat Boeing 787 Dreamliner di Jepang pada 16 Januari 2017. Untuk operasi kendaraan listrik yang aman, dengan kinerja yang tinggi serta umur pakai yang panjang diperlukan sistem manajemen termal SMT yang handal dengan bobot ringan, ukuran yang ringkas dan hemat energi. Pipa kalor merupakan perangkat termal yang memiliki kapasitas perpindahan kalor per satuan luas yang tinggi, berbobot ringan, berukuran ringkas dan tidak memerlukan pasokan daya eksternal. Pada penelitian ini dilakukan pengembangan prototipe SMT baterai dan motor kendaraan listrik berbasis pipa kalor serta pengembangan fabrikasi lotus-type porous copper LTP Copper untuk diterapkan sebagai sumbu kapiler pipa kalor. Prototipe SMT baterai dibuat mengunakan simulator baterai dengan menerapkan pipa kalor pipih berbentuk L yang bagian evaporatornya disisipkan di antara permukaan simulator baterai dan bagian kondensernya didinginkan dengan udara sekeliling. Prototipe SMT motor listrik menerapkan pipa kalor pipih berbentuk L yang bagian evaporatornya ditempatkan di bagian luar rumah motor dan bagian evaporatornya di depan kipas. Pada kedua prototip tersebut, pembangkitan kalor disimulasikan dengan pemanas listrik yang dayanya diatur melalui regulator tegangan. Kinerja prototip sistem manajemen termal baterai dan motor kendaraan listrik tersebut ditentukan secara eksperimental. LTP Copper difabrikasi menggunakan teknik slip casting dan sintering menggantikan proses Gasar. Struktur pori memanjang diperoleh dengan menggunakan pore former benang nilon. Parameter proses dioptimasi untuk mendapatkan permeabilitas dan laju pemompaan kapiler terbaik. SMT baterai berhasil menurunkan temperatur simulator baterai dari 71 C menjadi 50 C pada beban kalor 60 W. SMT motor listrik berhasil menurunkan temperatur permukaan motor dari 102.2 C menjadi 68.4 C pada beban kalor 150 W. LTP Copper berhasil dibuat dengan teknik slip casting dan sintering dan diterapkan sebagai sumbu kapiler pipa kalor melingkar. Pipa kalor melingkar tersebut dapat beroperasi pada rentang beban kalor yang lebar, yaitu 16 W hingga 160 W dan tahanan termal minimum 0,126 C/W pada beban kalor 148.6 W.

ABSTRACT
Heat generation in batteries and electric motors will increase the working temperature. Excessive working temperatures will degrade performance and shorten the life span. Advances in battery technology have resulted in a very high energy density Li Ion batteries. However, these advances are accompanied by the risk of thermal runaway that could lead to a serious accidents such as those experienced by a Boeing 787 Dreamliner aircraft in Japan on January 16, 2013. A safe operation with high performance and long service life requires a reliable thermal management system TMS with light weight, compact size, and low energy consumption. Heat pipes are thermal devices with a high heat transfer capacity per unit area, lightweight, compact size and requires no external power supply. This research develops the prototype of heat pipe based TMS of electric vehicle battery and motor and the fabrication of lotus type porous copper LTP Copper to be applied as heat pipe capillary wick. The prototype of the battery TMS was made using a battery simulator by applying L shaped flat heat pipes whose evaporator portion is inserted between the battery s simulator surfaces and the condenser portion cooled with ambient air. The prototype of the electric motor TMS also applied L shaped flat heat pipes whose evaporator section is placed on the outer surface and the condenser portion in front of the fan. In both prototypes, the heat generation is simulated with electric heaters whose power is regulated through a voltage regulator. The performance of the battery and motor TMS are determined experimentally. LTP Copper was fabricated using the slip casting and sintering techniques to replace a very complicated and costly Gasar process. Unidirectional pore structure is obtained by using nylon thread pore former. Process parameters consisting of copper powder diameter, pore former diameter, sintering temperature and holding time are optimized to obtain the best permeability and capillary pump rate. The battery TMS has successfully reduced the battery simulator temperature from 71 C to 50 C at 60 W heat load. The motor TMS has successfully reduced the surface temperature of the motor from 102.2 C to 68.4 C at 150 W heat load. LTP Copper with high permeability and capillary pumping rate was successfully made by slip casting and sintering technique and applied as a loop heat pipe capillary wick. The loop heat pipe could operate in a wide heat load range, which is 16 W to 160 W and a minimum thermal resistance of 0.126 C W at a 148.6 W heat load."
2017
D2296
UI - Disertasi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>