Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 19419 dokumen yang sesuai dengan query
cover
Strobel, Rainer
"This book investigates the physical layer aspects of high-speed transmission on twisted-pair copper wires, where the most performance-critical components are multi-input multi-output (MIMO) precoding and multi-line spectrum optimization as well as optimized scheduling of the transmission time slots on the fiber to the distribution point (FTTdp) copper link. The book brings theoretical results into the implementation, which requires the introduction of realistic channel models and more practical implementation constraints as found in the copper access network.
A good understanding of the transmission medium, twisted-pair telephone cable bundles is the basis for this work. Starting from the analysis of measurement data from twisted-pair cable bundles at high frequencies, it presents a MIMO channel model for the FTTdp network, which allows the characteristic effects of high-frequency transmission on copper cable bundles in simulation to be reproduced and the physical layer transmission methods on the copper channels to be analyzed and optimize.
The book also presents precoding optimization for more general power constraints and implementation constraints. The maximization of data rate in a transmission system such as G.fast or VDSL is a combinatorial problem, as the rate is a discrete function of the number of modulated bits. Applying convex optimization methods to the problem offers an efficient and effective solution approach that is proven to operate close to the capacity of the FTTdp channel.
In addition to higher data rates, low power consumption is another important aspect of the FTTdp network, as it requires many access nodes that are supplied with power from the subscriber side over the twisted- pair copper wires. Discontinuous operation is a method of quickly adding and removing lines from the precoding group. To implement this, the system switches between different link configurations over time at a high frequency. The transmission times of all lines are jointly optimized with respect to the current rate requirements. Discontinuous operation is used to save power, but also makes it possible to further increase the data rates, taking the current subscriber traffic requirements into account. These methods are compared with theoretical upper bounds, using realistic channel models and conditions of a system implementation. The performance analysis provides deeper insights into implementation complexity trade-offs and the resulting gap to channel capacity."
Switzerland: Springer Cham, 2019
e20501509
eBooks  Universitas Indonesia Library
cover
Roan Gylberth
"ABSTRAK
Neural networks merupakan salah satu pendekatan yang sering digunakan dalam melakukan analisis data. Dalam perkembangannya, neural networks mencapai kesuksesan dalam berbagai bidang, mulai dari pengenalan gambar, representasi bahasa,hingga bio informatika. Beberapa penelitian terakhir menunjukkan bahwa model neural networks memiliki kekurangan dalam melindungi informasi yang terdapat dalam training set agar tidak dapat dieksploitasi oleh pihak-pihak yang tidak berkepentingan. Kekurangan ini dapat dieksploitasi dengan membuat sebuah model yang dapat menentukan apakah seseorang berada dalam training set atau tidak, dan hasilnya dapat digunakan untuk melanggar privasi orang tersebut. Eksploitasi ini disebut dengan serangan membership inference. Serangan membership infrerence dapat dihindari oleh model yang memenuhi kriteria differential privacy, yaitu probabilitas keluaran dari model pada dua database yang berbeda pada satu baris pada dasarnya mirip. Pada tesis ini, dikembangkan algoritma optimisasi berbasis gradien seperti Momentum, Nesterov, RMSProp dan Adam yang memenuhi kriteria differential privacy. Algoritma yang dikembangkan digunakan untuk melatih model neural networks agar memenuhi kriteria differential privacy. Eksperimen yang dilakukan menunjukkan bahwa algoritma yang dikembangkan dapat digunakan untuk melatih model neural networks dan menghasilkan model yang lebih akurat dibandingkan algoritma stochastic gradient descent yang memenuhi kriteria differential privacy. Diperlihatkan juga pengaruh penjaminan privasi terhadap akurasi model yang dilatih menggunakan algoritma yang dikembangkan, yaitu penjaminan privasi yang lebih kuat menghasilkan akurasi model yang lebih rendah, dan sebaliknya.

ABSTRACT
Neural networks is one of the popular approach to analyze data. It has showed excellent ability to tackle complex problems in various domain, e.g., computer vision,language representation, and bioinformatics. At some point, neural network model may leak some information about the training data. This leakage could be exploited by adversaries to violate individuals in the training data. Membership inference attack is one kind of attacks that could be used by the adversary. This attack can be mitigated by using differentially private models. In this thesis, differentially private optimization algorithms, i.e., momentum, nesterov, rmsprop, adam, were developed. These algorithms then used to train a differentially private neural networks model. It was shown by the experiments conducted that these algorithms can be used to train a neural networks model, and yields better model accuracy compared to stochastic gradient descent algorithm. The tradeoff between privacy and utility is also studied.
"
2018
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Chester, Michael
New Jersey: Prentice-Hall, 1993
006.3 CHE n
Buku Teks SO  Universitas Indonesia Library
cover
"The second edition of the book augments the first edition with more tricks, which have resulted from 14 years of theory and experimentation by some of the world's most prominent neural network researchers. These tricks can make a substantial difference (in terms of speed, ease of implementation, and accuracy) when it comes to putting algorithms to work on real problems.
"
Berlin: Springer-Verlag, 2012
e20406731
eBooks  Universitas Indonesia Library
cover
New York: IEEE Press, 1992
R 006.3 NEU
Buku Referensi  Universitas Indonesia Library
cover
Fausett, Laurene
Englewood Cliffs, NJ : Prentice-Hall, 1994
006.3 FOU f
Buku Teks SO  Universitas Indonesia Library
cover
Bayu Adianto Prabowo
"Cylindrical Hidden Multi-Layer Perceptron Back Propagation (CHMLP-BP) adalah sistem jaringan syaraf tiruan berdasarkan multy-layer perceptron untuk mengenali objek 3 dimensi secara horizontal. Arsitektur CHMLP-BP dikembangkan lebih lanjut menjadi Hemisphere Structure of Hidden Layer (HSHL) sehingga mampu mengenali objek 3 dimensi secara vertikal dan horizontal dengan lingkup ½ bola. Efektifitas HSHL mendorong disempurnakannya arsitektur HSHL agar dapat mengenali objek 3 dimensi dengan lingkup 1 bola penuh. menjadi Spheric Structure of Hidden Layer. Dalam pengembangan SSHL dilakukan juga penambahan pemrosesan pada citra masukan dengan melakukan inversi dan perentangan nilai piksel citra masukan. Dilakukan juga modifikasi pada metode pengklasifikasian kelas pada neuron keluaran dari penggunaan batas treshold ½ untuk menentukan apakah neuron harus dibaca sebagai 1 atau 0 menjadi menggunakan metode greedy dengan harapan proses pembelajaran menjadi lebih mudah dan pengenalan objek 3 dimensi menjadi lebih baik. Metode eksperimen yang dilakukan pada SSHL menggunakan Percentage of Learning/Testing Paradigm. Kemampuan pengenalan objek 3 dimensi terbaik didapatkan pada jenis jaringan Multiplied untuk arsitektur SSHL Tunggal maupun Jamak dengan prosentase data pelatihan sebesar 47% didapatkan pengenalan sekitar 94% - 95% khususnya menggunakan Multiplied 3 Lapis yang mencapai 95.87%. Pengenalan terburuk pada SSHL didapatkan pada SSHL Tunggal Normal dengan prosentase data pelatihan sebesar 26% diperolah hasil pengenalan mencapai 81.02%."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2004
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Harwikarya
"Telah dilakukan penelitian metodologi segmentasi dan klasiiikasi citra synthetic aperture radar (SAR) bcrdasarkan Pulse Coupled Neural Networks (PCNN) dikombinasilcan dengan ciri teksturf Langkah awal penelitian ialah mencari variabel optimal pada persamaan PCNN. Segmentasi citra dilakukan menggunakan tiga macam metoda yang diusulkan yaitu pertama berdasarkan PCNN yang variabelnya telah dibuat optimal, kedua yaitu berdasarkan modiiikasi proses iterasi PCNN dan ketiga berdasarkan mod'kasi persamaan PCNN. Hasil segmentasi tiga teknik ini dapat memisahkan wilayah sesuai ground truth, tetapi pada jumlah iterasi tertentu masih telj adi tumpang tindih. Klasiikasi berdasarkan PCNN dilakukan dua tahap yaitu pertama mengelmraksi ciri tekstur citra. Ekstraksi ciri ini menggunakan perhitungan Grey Level Co-occurrence Matrix (GLCM). Dipilih tiga macam ciri yaitu diss|'m1`!arity, correlation dan angular second moment. Tiga ciri ini menjadi masukan pada PCNN untuk diiterasi. Hasil yang sangat menonjol dari rangkaian elcsperimcn. ini ialah didapatkannya variabel optimal persamaan PCNN yang tegar, metoda modiiikasi iterasi persamaan PCNN yang dapat menghlndari terjadinya tumpang tindih pada dua kelas wilayah hasil segmentasi, modiiikasi persamaan PCNN menjadi empat pereamaan yang dapat mempercepat segmentasi, dan hasil yang menonjol lainnya ialah dapat digunakannya PCNN ini untuk klasiftkasi ciua SAR yang bertekstur dan multi wilayah setelah dikombinasikan dengan ciri tekstur dan ketepatan klasifilasi berdasarkan PCNN yang diusulkan mencapai 91,58$% untuk pita L, 88, 31% untuk pita C dan 85,33%, untuk pita P.

The new methodology on segmentation and classification of Synthetic Aperture Rofar (SAR) based on Pulse Coupled Neural Networks (PCNN) and features texture was proposed in this dissertation. The tirst step of this research is timing the variables of the PCNN. The segmentation is based on new methods which proposed in this dissertation. First by iterating the images used optimal PCNN, the second method by modifying the iteration of the PCNN, and the third method by modilymg the equations of the PCNN. The results of these experiments are good enough, but in one of some iterations the result was overlap, in this case two area of the image were appeared in the binary image. The classification based on PCNN would be in two steps, Erst was the features extraction. The features were extracted by using the Gray Level Co-occurrence Matrix (GLCM). Three features, dissimilarity, correlation and angular second moment were selected to be processed by the PCCNN. The significant results of the experiments are, optimal variables of the PCNN which are robust, the new method of iteration of the PCNN which be able to avoid over lapping in segmentation, the new method of modification PCNN equation could increases the speed of segmentation and classification, and new method the application of PCNN in the segmentation and classification ofthe textural and multi region SAR images. Total accuracy for L band is 9l,58%, C band is 88,31% and'P band is 85, 33%."
Depok: Universitas Indonesia, 2009
D968
UI - Disertasi Open  Universitas Indonesia Library
cover
Ozananda Fachristiary Adji
"Tujuan penelitian ini adalah melakukan studi awal guna memprediksi nilai kerma udara dan half value layer (HVL) pesawat CT scan berdasarkan citra fantom homogen. Penelitian ini dilakukan dengan menggunakan citra homogen dari fantom standar CT scan yang dilakukan ekstraksi fitur GLCM (Gray Level Co-occurence Matrix), dengan data tambahan berupa nilai kVp pengambilan citra. Sebagai label output adalah hasil pengukuran kerma udara dan HVL. Model yang digunakan berbasis artificial neural network, dengan hyperparameter ditentukan berdasarkan teknik hyperparameter tuning dengan menggunakan Teknik Gridsearch. Pencarian hyperparameter berupa fungsi aktivasi, jumlah hidden layer, jumlah hidden unit, kernel initializer, dan optimizer dilakukan dengan Analisa performa hasil. Kualitas performa klasifikasi model artificial neural network menggunakan confusion matrix menunjukkan akurasi sebesar 84,4% pada model yang dilatih menggunakan input fitur GLCM, sedangkan pada model artificial neural network yang menggunakan input fitur GLCM dan kVp menunjukkan akurasi sebesar 100%. Hasil ini menunjukkan bahwa fitur GLCM mampu menghasilkan akurasi yang baik untuk melakukan prediksi kerma udara dan HVL. Namun, jika disertai dengan fitur kVp sebagai input, maka proses training akan menghasilkan akurasi yang sangat baik, dengan gejala dominasi fitur kVp terhadap fitur GLCM.

The goals of this research is to do preliminary study to predict air kerma and half value layer (HVL) of CT scan base on phantom image which has homogeneous characteristic. This research starts with GLCM (Gray Level Co-occurence Matrix) feature extraction process from the phantom image, the kVp value also extracted from the phantom image dicom information. While the target during training is air kerma and HVL measurement resulted from the dosimeter and solid state device. Machine learning model used for this research is artificial neural network (ANN) base Machine Learning model. However, the hyperparameter have not yet been found. Thus, this problem could be solved by using Hyperparameter tuning technique, specifically using Gridsearch with variety of activation function, hidden layers, hidden units, kernel initializer, and optimizer as the parameter guideline. The performance of classification model is measured using confusion matrix technique. The classification performance show that the model which trained using GLCM feature only has 84.4% accuracy to predict air kerma and HVL. While, the classification performance show that the model which trained using GLCM feature and kVp that extracted from the dicom information has 100% accuracy to predict air kerma and HVL. Although, the model that train using GLCM feature and kVp can predict much better than the model which trained using GLCM feature only, it shows that GLCM feature is dominated by kVp feature that extracted from the dicom information."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Tujuan utama dari penelitian yang dilakukan adalah melakukan pengenalan pola isyarat tangan statis dalam bahasa Indonesia. Pengenalan pola isyarat tangan statis dalam bentuk citra secara garis besar dilakukan dalam 3 tahapan yang meliputi: 1) Segmentasi bagian citra yang akan dikenali berupa tangan dan wajah, 2) ekstraksi ciri, dan 3) klasifikasi pola. Data citra yang diterapkan ada 15 kelas kata isyarat statis. Segmentasi dilakukan dengan menggunakan filter HSV
dengan ambang berdasarkan warna kulit. Ekstraksi ciri dilakukan dengan dekomposisi wavelet Haar filter sampai level 2. Klasifikasi dilakukan dengan menerapkan sistem jaringan syaraf tiruan perambatan balik dengan arsitektur 4096 neuron pada lapisan input, 75 neuron pada lapisan tersembunyi dan 15 neuron pada lapisan output. Sistem diuji dengan menggunakan 225 data validasi dan akurasi yang dicapai adalah 69%.

Abstract
The main objective of this research is to perform pattern recognition of static hand gesture in Indonesian sign language. Basically, pattern recognition of static hand gesture in the form of image had three phases include: 1) segmentation of the image that will be recognizable form of the hands and face, 2) feature extraction and 3) pattern
classification. In this research, we used images data of 15 classes of words static. Segmentation is performed using HSV with a threshold filter based on skin color. Feature extraction performed with
the Haar wavelet decomposition filter to level 2. Classification is done by applying the back propagation system of neural network architecture with 4096 neurons in input layer, 75 neurons in hidden layer and 15 neurons in output layer. The system was tested by using 225 data validation and accuracy achieved was 69%."
[Direktorat Riset dan Pengabdian Masyarakat Universitas Indonesia, Universitas Jenderal Soedirman. Fakultas Sains dan Teknik], 2010
pdf
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>