Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 9133 dokumen yang sesuai dengan query
cover
Chen, Daniel X. B.
"This book introduces readers to the theory and practice of extrusion bio-printing of scaffolds for tissue engineering applications. The author emphasizes the fundamentals and practical applications of extrusion bio-printing to scaffold fabrication, in a manner particularly suitable for those who wish to master the subject matter and apply it to real tissue engineering applications. Readers will learn to design, fabricate, and characterize tissue scaffolds to be created by means of extrusion bio-printing technology."
Switzerland: Springer Cham, 2019
e20502997
eBooks  Universitas Indonesia Library
cover
"This book presents selected proceedings of the International Conference on Production and Industrial Engineering (CPIE) 2018. Focusing on recent developments in the field of production and manufacturing engineering, it provides solutions to wide-ranging contemporary problems in manufacturing engineering and other allied areas using analytical models and the latest numerical approaches. The topics covered in this book include conventional and non conventional machining, casting, welding, materials and processing. As such it is useful to academics, researchers and practitioners working in the field of manufacturing and production engineering.;"
Singapore: Springer Nature, 2019
e20509202
eBooks  Universitas Indonesia Library
cover
Rusyda Fajarani
"Kerusakan tulang adalah salah satu penyebab utama kecacatan manusia yang secara keseluruhan menyebabkan penurunan kualitas hidup. Teknologi rekayasa jaringan telah dikembangkan untuk solusi kerusakan tulang dengan menerapkan perancah berbasis biomaterial. Berbagai material polimer alami dan sintesis dapat digunakan sebagai material perancah tulang untuk membantu adhesi dan proliferasi sel. Material konduktif berbasis karbon juga dapat dikombinasikan dalam perancah tulang dan telah diteliti dapat meningkatkan kekuatan mekanis perancah serta membantu proses pertumbuhan sel. Pada penelitian ini, dilakukan pengembangan perancah tulang menggunakan material kolagen, hydroxypropyl methylcellulose (HPMC), dan poly(vinyl alcohol) (PVA), dengan penambahan material multiwalled carbon nanotube (MWCNT) dan reduced graphene oxide (rGO). Material kolagen diekstraksi secara mandiri menggunakan metode deep eutectic solvent dari sumber ikan king kobia. Kolagen hasil ekstraksi dikarakterisasi secara fisika kimia dengan SEM, FTIR, XRD, dan DSC, dengan hasil karakterisasi menunjukkan kolagen mengandung gugus amida dan memiliki struktur triple helix khas kolagen. Dengan demikian kolagen king kobia hasil ekstraksi cocok untuk dilanjutkan sebagai material perancah. Fabrikasi perancah dilakukan menggunakan freeze-drying, kemudian dikarakterisasi secara fisika kimia dengan mengamati morfologi melalui SEM, identifikasi gugus fungsi melalui FTIR, sifat mekanik tekan, porositas, wettability, swelling, dan laju degradasi. Hasilnya menunjukkan perancah berpori dan struktur saling terhubung dengan kekuatan mekanik sekitar 9 MPa yang telah sesuai dengan tulang trabekular, porositas tinggi mencapai 90%, swelling tinggi mencapai 300% tetapi dapat tetap mempertahankan integritas perancah, laju degradasi yang sesuai dengan kehilangan massa perancah yang kurang dari 20% dalam 28 hari, serta sifat hidrofilik dengan sudut kontak air kurang dari 90o. Hasil ini menunjukkan perancah yang difabrikasi dapat menjadi kandidat yang potensial dalam aplikasi rekayasa jaringan tulang. Selain itu, karakteristik konduktivitas perancah dievaluasi melalui pengukuran elektrokimia menggunakan cyclic voltammetry (CV), menghasilkan perancah konduktif yang ditandai dengan pembentukan puncak redoks.

Bone damage is one of the leading causes of human disability which leads to an overall decrease in quality of life. Tissue engineering technology has been developed for bone damage solutions by applying biomaterial-based scaffolds. Various natural and synthetic polymeric materials can be used as bone scaffold materials to facilitate cell adhesion and proliferation. Carbon-based conductive materials can also be combined in bone scaffolds and have been investigated to increase the mechanical strength of the scaffold and assist the cell growth process. In this research, bone scaffolds were developed using collagen, hydroxypropyl methylcellulose (HPMC), and poly(vinyl alcohol) (PVA), with the addition of multiwalled carbon nanotube (MWCNT) and reduced graphene oxide (rGO) materials. Collagen material was extracted independently using deep eutectic solvent method from king cobia fish source. The extracted collagen was characterized physically and chemically by SEM, FTIR, XRD, and DSC, with the characterization results showing that collagen contains amide groups and has a typical triple helix structure of collagen. Thus, the extracted king cobia collagen is suitable to be continued as a scaffold material. The scaffolds were fabricated using freeze-drying and characterized physically and chemically by observing morphology through SEM, functional group identification through FTIR, compressive mechanical properties, porosity, wettability, swelling, and degradation rate. The results showed porous scaffolds and interconnected structures with mechanical strength of about 9 MPa which is compatible with trabecular bone, high porosity of up to 90%, high swelling of up to 300% but still maintaining the integrity of the scaffold, suitable degradation rate with mass loss of less than 20% in 28 days, and hydrophilic properties with water contact angle of less than 90o. These results suggest the fabricated scaffold could be a potential candidate in bone tissue engineering applications. In addition, the conductivity characteristics of the scaffolds were evaluated through electrochemical measurements using cyclic voltammetry (CV), resulting in conductive scaffolds characterized by the formation of redox peaks."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Maulana Ghiffary
"Osteoartritis merupakan penyakit kronis yang ditandai dengan kemunduran tulang rawan dan menyebabkan kekakuan, nyeri, dan gangguan pergerakan. Strategi rekayasa jaringan tulang menggunakan perancah dapat menjadi alternatif yang menjanjikan untuk regenerasi jaringan tulang yang rusak. Penelitian ini bertujuan untuk fabrikasi dan karakterisasi perancah dengan material chitosan (CS), hyaluronic acid (HA), hydroxyapatite (Hap) dengan kombinasi penambahan graphite (Gr), graphene oxide (GO), dan multiwalled carbon nanotube (MWNCT) untuk aplikasi rekayasa jaringan tulang. Dalam penelitian ini, dilakukan sintesis GO dan fungsionalisasi kimia dari material Gr dan MWNCT. Fabrikasi perancah dilakukan dengan metode freeze drying. Seluruh kelompok perancah dilakukan karakterisasi SEM dan FTIR, uji tekan dan porositas, uji swelling, wettability, dan laju degradasi. Fabrikasi perancah dibagi menjadi empat kelompok yaitu CS/HA/HAp, CS/HA/HAp/GO, CS/HA/HAp/f-Gr, dan CS/HA/HAp/f-MWNCT dengan ukuran diameter 1 cm, tinggi 1,5 cm, dan luas permukaan luas permukaan 4,71-6,28 cm2. Keseluruhan perancah memiliki ukuran pori yang bervariasi dan terdistribusi pada permukaan. Berdasarkan hasil FTIR, perancah mengandung gugus fungsi O-H, C=O, C-O-C, amida I, amida II, dan fosfat (PO43-). Pada uji kekuatan tekan, keseluruhan perancah memiliki CS/HA/HAp memiliki kekuatan tekan dan young modulus yang serupa dengan cancellous bone sebesar 5,76-6,14 MPa dan 3,95-471 MPa. Perancah memiliki laju porositas dengan rentang 13,8- 86,6%. Perancah memiliki kemampuan wettabiliy yang baik dengan rentang persentase 726-1069%. Rasio swelling perancah berada pada rentang 25,2-39,3%. Laju degradasi perancah cukup terkontrol dengan rentang 16,7-35,5%. Berdasarkan seluruh hasil karakterisitik, perancah CS/HA/HAp dengan penambahan GO merupakan kandidat terkuat sebagai perancah ideal pada penelitian ini. Perancah GO mempunyai karakteristik yang berada diantara perancah kontrol dan perancah f-MWNCT/f-Gr.

Osteoarthritis is a chronic disease characterized by the deterioration of cartilage and causes stiffness, pain, and impaired movement. The bone tissue engineering strategy using scaffolds can be a promising alternative for the regeneration of damaged bone tissue. This study aims to fabricate and characterize scaffolds with chitosan (CS), hyaluronic acid (HA), hydroxyapatite (Hap) with a combination of addition of graphite (Gr), graphene oxide (GO), and multiwalled carbon nanotubes (MWNCT) for tissue engineering applications. In this study, GO synthesis and chemical functionalization of Gr and MWNCT materials were carried out. Scaffolding was done by freeze drying method. All groups of scaffolds were characterized by SEM and FTIR, compressive and porosity tests, swelling, wettability, and rate of degradation tests. Scaffolding was divided into four groups, namely CS/HA/HAp, CS/HA/HAp/GO, CS/HA/HAp/f-Gr, and CS/HA/HAp/f-MWNCT with a diameter of 1 cm, height 1, 5 cm, and a surface area of ​​4.71-6.28 cm2. The entire scaffold has varying pore sizes and is distributed over the surface. Based on the results of FTIR, the scaffold contains functional groups O-H, C=O, C-O-C, amide I, amide II, and phosphate (PO43-). In the compressive strength test, all scaffolds having CS/HA/HAp had similar compressive strength and young modulus with cancellous bone of 5.76-6.14 MPa and 3.95-471 MPa. Scaffolds have porosity rates in the range of 13.8-86.6%. Scaffolds have good wetability with a percentage range of 726-1069%. The swelling ratio of the scaffolds was in the range of 25.2-39.3%. The rate of degradation of the scaffold was quite controlled with a range of 16.7-35.5%. Based on all the characteristic results, the CS/HA/HAp scaffold with the addition of GO was the strongest candidate as the ideal scaffold in this study. The GO scaffold has characteristics that are between the control scaffold and the f-MWNCT/f-Gr scaffold."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
"Biomedical foams are a new class of materials, which are increasingly being used for tissue engineering applications. Biomedical Foams for Tissue Engineering Applications provides a comprehensive review of this new class of materials, whose structure can be engineered to meet the requirements of nutrient trafficking and cell and tissue invasion, and to tune the degradation rate and mechanical stability on the specific tissue to be repaired.
Part one explores the fundamentals, properties, and modification of biomedical foams, including the optimal design and manufacture of biomedical foam pore structure for tissue engineering applications, biodegradable biomedical foam scaffolds, tailoring the pore structure of foam scaffolds for nerve regeneration, and tailoring properties of polymeric biomedical foams.
Chapters in part two focus on tissue engineering applications of biomedical foams, including the use of bioactive glass foams for tissue engineering applications, bioactive glass and glass-ceramic foam scaffolds for bone tissue restoration, composite biomedical foams for engineering bone tissue, injectable biomedical foams for bone regeneration, polylactic acid (PLA) biomedical foams for tissue engineering, porous hydrogel biomedical foam scaffolds for tissue repair, and titanium biomedical foams for osseointegration."
Cambridge, UK: Woodhead, 2014
e20426814
eBooks  Universitas Indonesia Library
cover
"The book includes the best articles presented by researchers, academicians and industrial experts at the International Conference on Innovative Design and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018). The book discusses new concept in designs, and analysis and manufacturing technologies for improved performance through specific and/or multi-functional design aspects to optimise the system size, weight-to-strength ratio, fuel efficiency and operational capability. Other aspects of the conference address the ways and means of numerical analysis, simulation and additive manufacturing to accelerate the product development cycles.Describing innovative methods, the book provides valuable reference material for educational and research organizations, as well as industry, wanting to undertake challenging projects of design engineering and product development."
Singapore: Springer Nature, 2019
e20509046
eBooks  Universitas Indonesia Library
cover
Bronzino, Joseph D.
Boca Raton, FL: CRC Press/Taylor & Francis Group, 2015
610BROM001
Multimedia  Universitas Indonesia Library
cover
Lacroix, Damien
"This book focuses on the mechanobiological principles in tissue engineering with a particular emphasis on the multiscale aspects of the translation of mechanical forces from bioreactors down to the cellular level. The book contributes to a better understanding of the design and use of bioreactors for tissue engineering and the use of mechanical loading to optimize in vitro cell culture conditions. It covers experimental and computational approaches and the combination of both to show the benefits that computational modelling can bring to experimentalists when studying in vitro cell culture within a scaffold. With topics from multidisciplinary fields of the life sciences, medicine, and engineering, this work provides a novel approach to the use of engineering tools for the optimization of biological processes and its application to regenerative medicine. The volume is a valuable resource for researchers and graduate students studying mechanobiology and tissue engineering. For undergraduate students it also provides deep insight into tissue engineering and its use in the design of bioreactors. The book is supplemented with extensive references for all chapters to help the reader to progress through the study of each topic."
Singapore: Springer Singapore, 2019
e20502131
eBooks  Universitas Indonesia Library
cover
Bojana Obradovic, redactor
"Cell and tissue engineering” introduces the principles and new approaches in cell and tissue engineering. It includes both the fundamentals and the current trends in cell and tissue engineering, in a way useful both to a novice and an expert in the field.
The book is composed of 13 chapters all of which are written by the leading experts. It is organized to gradually assemble an insight in cell and tissue function starting form a molecular nano-level, extending to a cellular micro-level and finishing at the tissue macro-level. In specific, biological, physiological, biophysical, biochemical, medical, and engineering aspects are covered from the standpoint of the development of functional substitutes of biological tissues for potential clinical use. Topics in the area of cell engineering include cell membrane biophysics, structure and function of the cytoskeleton, cell-extracellular matrix interactions, and mechanotransduction. In the area of tissue engineering the focus is on the in vitro cultivation of functional tissue equivalents based on the integrated use of isolated cells, biomaterials, and bioreactors. The book also reviews novel techniques for cell and tissue imaging and characterization, some of which are described in detail such as atomic force microscopy"
Berlin: [, Springer], 2012
e20418158
eBooks  Universitas Indonesia Library
cover
Cornelia Kasper, editor
"This book about the cell-surface interaction, studying cell-surface interactions In vitro : a survey of experimental approaches and techniques, harnessing cell-biomaterial interactions for obsteochondral tissue regeneration, interaction of cells with decellularized biological materials, evaluation of biocompatibility using In vitro methods : interpretation and limitations, artificial scaffolds and mesenchymal stem cells for hard tissues, bioactive glass-based scaffolds for bone tissue engineering, microenvironment design for stem cell fate determination, stem cell differentiation depending on different surfaces, designing the biocompatibility of biohybrids, interaction of cartilage and ceramic matrix, and bioresorption and degradation of biomaterials."
Heidelberg : Springer, 2012
e20406231
eBooks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>