Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 143080 dokumen yang sesuai dengan query
cover
Rizky Aulia Avicenna
"Hidrogen merupakan bahan bakar potensial yang dapat menggantikan bakar fosil. Hidrogen dapat diproduksi dengan berbagai cara, diantaranya adalah dengan Photo Electro Catalysis (PEC) untuk aplikasi water splitting dari salty water. Sel PEC dapat menggunakan material semikonduktor TNA. Namun TiO2 memiliki band gap yang lebar sehingga secara hanya aktif pada sinar UV, dan kurang aktif didaerah sinar tampak. Sementara itu jika TiO2 dimodifikasi dengan WO3 aktivitasnya dapat menjangkau daerah sinar tampak. Dalam penelitian ini dilakukan elektrodeposisi WO3 pada TiO2, lalu dilakukan karakterisasi dan kemampuannya menghasilkan arus cahaya pada daerah sinar tampak, serta uji produksi hidrogen dari air. Hasil karakterisasi menunjukkan terjadinya penurunan band gap seiring dengan lama waktu elektrodeposisi, yaitu 5 menit, 10 menit, dan 15 menit yang masing – masing menghasilkan penurunan band gap sebesar 3.12 eV; 2,97 eV; dan 2,87eV. Lebih lanjut dari uji Multiple Pulse Amperometry (MPA) dibawah sinar UV diamati terjadinya peningkatan arus cahaya dari TNA saja dibandingkan dengan WO3/TiO2 yakni 0.00031 mA/cm2 ­menjadi 0.0037 mA/cm2. Penerapan aplikasi PEC dengan penerapan fotoanoda WO3/TiO2 dan katoda Pt/rTNA menghasilkan produksi gas sebanyak 0,0026 mikromol hidrogen dalam waktu 4 jam penyinaran cahaya.

Hydrogen is a potential fuel that can replace fossil fuels. Hydrogen can be produced in various ways, and one is through Photo Electro Catalysis (PEC) for water-splitting applications from salty water. PEC cells can utilize TNA semiconducting materials. However, TiO2 has a wide band gap, making it only active under UV light and less active in the visible light range. On the other hand, if TiO2 is modified with WO3, its activity can extend to the visible light range. In this study, electrodeposition of WO3 onto TiO2 was performed, followed by characterization and its ability to generate photocurrent in the visible light range, as well as hydrogen production from water. The characterization results showed a decrease in the band gap with increasing electrodeposition time: 5 minutes, 10 minutes, and 15 minutes, resulting in band gap reductions of 3.12 eV, 2.97 eV, and 2.87 eV, respectively. Furthermore, multiple pulse amperometry (MPA) tests under UV light revealed an increase in photocurrent from TNA compared to WO3/TiO2, with values of 0.00031 mA/cm2 and 0.0037 mA/cm2, respectively. The implementation of the PEC application using WO3/TiO2 photoanode and Pt/rTNA cathode resulted in the production of gas, specifically hydrogen, with a yield of 0,0026 micromoles in 4-hours light exposure.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hanif Fathurrahman
"Seiring produksi bahan bakar fosil yang terbatas, terutama minyak, secara bertahap menurun seiring waktu, ketersediaan listrik yang sangat bergantung pada sumber daya ini untuk penghasilan akan secara tak terelakkan menurun. Karena listrik adalah nyawa yang menggerakkan seluruh operasi, ia memainkan peran penting dalam memastikan fungsi yang lancar dari mesin dan memfasilitasi berbagai tugas. Kegagalan dalam mempertimbangkan ketersediaan, keandalan, dan penggunaan sumber daya listrik secara optimal dapat menyebabkan gangguan dan ketidakefisienan dalam jadwal produksi. Studi ini bertujuan untuk berkontribusi dalam bidang sistem produksi terkait energi dengan mengusulkan pendekatan baru yang menggabungkan model untuk pemprofilan konsumsi energi. Model yang diusulkan ini menggunakan representasi blok energi, dengan mempertimbangkan berbagai kondisi selama proses manufaktur, yaitu: Turning-on, Idle, Processing, Turning-off, dan Off, yang semuanya mengonsumsi energi. Selain itu, studi ini memperkenalkan konsep sub-kondisi transien untuk setiap kondisi, yang belum dieksplorasi dalam penelitian sebelumnya. Pendekatan ini memungkinkan pemahaman yang lebih akurat dan komprehensif tentang konsumsi energi dalam sistem produksi, membuka jalan bagi pengembangan strategi optimalisasi energi yang efisien. Lebih lanjut, studi ini mencakup formulasi matematis untuk membantu pengambilan keputusan mengenai apakah lebih menguntungkan untuk menjaga mesin diam atau mematikannya, dengan mempertimbangkan konsumsi energi. Untuk memvalidasi model yang diusulkan, empat set data jadwal produksi yang berasal dari data aplikasi dunia nyata digunakan. Dataset ini dimodifikasi untuk menciptakan empat skenario yang berbeda, masing-masing mewakili berbagai kondisi konsumsi energi dan penggunaan sub-kondisi transien. Hasil dari skenario ini menunjukkan bahwa representasi konsumsi energi yang paling lengkap, dengan mempertimbangkan sub-kondisi transien, memberikan keamanan yang lebih kuat dalam pemodelan penggunaan energi. Namun, penting untuk diakui bahwa menggabungkan kondisi tambahan ini menimbulkan tantangan dalam hal kompleksitas pemodelan. Meskipun demikian, model yang diusulkan menawarkan wawasan berharga untuk mengelola penggunaan energi secara efektif, meminimalkan gangguan potensial, dan memaksimalkan penggunaan sumber daya energi yang tersedia dalam batasan ketersediaan listrik yang terbatas. Dengan memanfaatkan penelitian ini, industri dapat mengambil keputusan yang berinformasi untuk mengoptimalkan konsumsi energi mereka, berkontribusi pada sistem produksi yang lebih berkelanjutan dan efisien.

As the production of finite fossil fuels, particularly oil, gradually declines over time, the availability of electricity, which heavily relies on these resources for generation, will inevitably diminish. Since electricity is the lifeblood powering the entire operation, it plays a vital role in ensuring the smooth functioning of machinery and facilitating various tasks. Failing to consider the availability, reliability, and optimal utilization of electricity resources can lead to disruptions and inefficiencies in production schedules. This study aims to contribute to the field of energy-related production systems by proposing a novel approach that incorporates a model for profiling energy consumption. The proposed model utilizes the energy block representation, taking into account various states during the manufacturing process, namely: Turning-on, Idle, Processing, Turning-off, and Off states, which all consume energy. Additionally, the study introduces the concept of a transient sub-state for each state, which has not been explored in previous research. This approach enables a more accurate and comprehensive understanding of energy consumption in production systems, paving the way for the development of efficient energy optimization strategies. Furthermore, the study includes a mathematical formulation to aid in decision-making regarding whether it is more beneficial to keep a machine idle or turn it off, considering energy consumption. To validate the proposed model, four sets of production schedule data derived from real-world application data were utilized. These datasets were modified to create four distinct scenarios, each representing different states of energy consumption and the usage of transient sub-states. The results of these scenarios demonstrate that the most complete representation of energy consumption, considering transient sub-states, provides a stronger safeguard in modeling energy usage. However, it is essential to acknowledge that incorporating these additional states poses challenges in terms of modeling complexity. Nevertheless, the proposed model offers valuable insights for effectively managing energy usage, minimizing potential disruptions, and maximizing the utilization of available energy resources within the constraints of limited electricity availability. By leveraging this research, industries can make informed decisions to optimize their energy consumption, contributing to more sustainable and efficient production systems."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Simanjuntak, Schandra Ricardo. Marulitua
"Saat ini ketergantungan masyarakat Indonesia terhadap bahan bakar fosil sangat tinggi dan nilainya selalu meningkat setiap waktunya. Padahal kebutuhan tersebut tidak mampu dipenuhi oleh kapasitas kilang pengolah minyak bumi yang saat ini ada di Indonesia. Akibatnya pemerintah Indonesia harus melakukan impor bahan baku dan produk bahan bakar. Selain itu beberapa pihak telah memprediksi bahwa jumlah cadangan minyak bumi global semakin mendekati masa akhir. Adapun dampak buruk penggunaan bahan bakar fosil terhadap lingkungan semakin memicu manusia untuk berupaya mencari alternatif dari bahan bakar fosil. Bioethanol (C2H5OH) merupakan salah satu potensi bahan bakar alternatif yang bisa didapatkan dari tanaman pati melalui proses biokimia. Mengingat Indonesia adalah negara dengan tanah yang subur, maka sumber bahan baku ini relatif mudah didapat, dan bersifat terbarukan. Bioethanol dapat digunakan dalam bentuk campuran dengan bahan bakar fosil, namun ada kecenderungan pencampuran bioethanol dengan bensin menghasilkan campuran yang tidak sepenuhnya homogen. Maka dari itu diperlukan suatu aditif yang dapat meningkatkan homogenitas campuran. Sehingga pada penelitian ini dilakukan uji penggunaan bahan bakar campuran bensin – bioethanol yang ditambahi aditif oksigenat, pada mesin spark ignition (SI). Kemudian dilakukan analisis terhadap kinerja mesin, emisi gas pembakaran, dan coefficient of variation (COV) di ruang bakar. Aditif yang digunakan yaitu cyclohexanol dan cyclooctanol dengan volume yang divariasikan. Pencampuran bioethanol dapat memperbaiki emisi gas buang, serta COV. Lalu ketika ditambahi aditif, didapat perbaikan pada specific fuel consumption (SFC) dengan emisi dan COV yang semakin membaik.

The dependency of Indonesian citizens to fossil fuel is very high and the amount were continuously increasing every time. At the same time, the capacity of oil refinery within the nation was being unable to cover the needs. As the result, the government of Indonesia have to do an import for some part of petroleum raw materials and also fuel products. Moreover, several parties had predicted that the recent global petroleum reserve were not far from its end limit of depletion. Also the environmental impact of combustion gas resulted from burning fossil fuel has further convincing people to find an alternative for fossil fuel. Bioethanol (C2H5OH) is one of potential fuel alternative which can be obtained through biochemistry process of starch plant. Considering that Indonesia is a country which has a fertile land, finding the source would not be a big problem. Bioethanol may be used in mixture form with fossil fuel, but there is a problem with homogeneity of the mixture. So that it requires an additive in which was able to increase the homogeneity of the mixture. As a result, in this research the examination were done by mixing the gasoline – bioethanol with oxygenated additives and use it as a fuel on unmodified spark ignition (SI) engine. Then going through the process of analysis for engine performances, exhaust gas emissions, and coefficient of variations (COV). The additive used is cyclohexanol and cyclooctanol in which the volume was variated. It is an evident that the use of gasoline – bioethanol mixture resulted in better exhaust emission and COV. Then the addition of additives gives a further good effect to specific fuel consumptions (SFC), exhaust emission, and COV."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Luthvan Hood
"Salah satu hal permasalahan yang saat ini dihadapi oleh Indonesia saat ini adalah kebergantungan penggunaan sumber energi bahan bakar fossil sebagai sumber energi listrik untuk mengatasi peningkatan akan kebutuhan energi listrik. Salah satu sumber energi baru dan terbarukan penghasil tenaga listrik adalah energi surya dari matahari. Pemanfaatan energi surya yang diubah menjadi energi listrik diterapkan dengan menggunakan panel surya pada Pembangkit Listrik Tenaga Surya (PLTS). Pada sistem PLTS hal yang paling mempengaruhi kinerja dari sistem tersebut adalah panel surya dan kondisi cuaca. Teknologi Panel surya menghasilkan listrik DC yang selanjutnya dapat diubah menjadi listrik AC menggunakan inverter agar dapat dihubungkan ke beban AC. Nyatanya, peralatan listrik dengan teknologi inverter dapat membangkitkan disturbansi pada frekuensi 9-150 kHz. Penelitian ini bertujuan untuk menginvestigasi karakteristik disturbansi di frekuensi 9 - 150 kHz pada sistem panel surya dari sisi keluaran inverter sehingga dapat dijadikan acuan untuk penelitian dalam memprediksi, menganalisa dan mengetahui efeknya terhadap sistem kelistrikan dan kerja dari peralatan lain. Berdasarkan Hasil Penelitian Tegangan Disturbansi di frekuensi 9-150 kHz pada frekuensi dominannya mengalami kenaikan sebesar 7.97 % setiap kenaikan iradiasi matahari sebesar 100 W/m2. Lalu pada keadaan impor daya listrik, Tegangan Disturbansi mengalami kenaikan 14.1 % setiap penurunan impor daya sebesar 1000 W. Sedangkan pada keadaan ekspor daya, Tegangan Disturbansi mengalami kenaikan 5.39 % setiap kenaikan ekspor daya sebesar 1000 W.

One of the problems currently faced by Indonesia today is the reliance on the use of fossil fuel energy sources as a source of electrical energy to overcome the increase in electrical energy needs. One of the new and renewable energy sources producing electricity is solar energy from the sun. The use of solar energy which is converted into electrical energy is applied using solar panels in the Solar Power Plant. In the Solar Power Plant system the most influencing performance of the system are solar panels and weather conditions. Technology Solar panels produce DC electricity which can then be converted into AC electricity using an inverter so that it can be connected to an AC load. In fact, electrical equipment with inverter technology can generate disturbances at a frequency of 9 - 150 kHz. This study aims to investigate the characteristics of disturbances at the frequency of 9-150 kHz in the solar panel system from the inverter output side so that it can be used as a reference for research in predicting, analyzing and knowing the effect on the electrical system and work of other equipment. Based on the results of Disturbance Voltage Research at a frequency of 9-150 kHz the dominant frequency has increased by 7.97 % each increase in solar irradiation by 100 W / m2. Then in the state of electric power imports, the Disturbance Voltage increases by 14.1 % each decrease in import power by 1000 W. Whereas in the state of power exports, the Disturbance Voltage increases by 5.39 % each increase in export power by 1000 W."
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Najma
"Ketergantungan bahan bakar fosil di Indonesia memicu penggunaan biosolar dari CPO sebagai campuran bahan bakar fosil. Kebijakan ambisius pencampuran biosolar ditetapkan sebesar 20% namun hingga saat ini belum terpenuhi (12,7%) karena kualitas dari B20 yang memiliki kandungan air tinggi sehingga dapat merusak mesin kendaraan sedangkan pencampuran bioethanol belum diterapkan sama sekali dikarenakan aspek biaya. Oleh sebab itu, dibutuhkan alternatif lainnya agar dapat menaikkan penggunaan bahan bakar bersih sesuai yang diinginkan. Pada penelitian ini, dilakukan optimisasi sistem bahan bakar jangka panjang dengan minimum total biaya sistem hingga tahun 2050 menggunakan TIMES-VEDA pada spesifikasi kualitas bahan bakar tertentu yang dipengaruhi oleh ketersediaan suplai bahan baku sehingga diperoleh campuran bahan bakar yang optimum.Teknologi biofuel yang ditinjau adalah FAME, HVO, FT-Diesel, Bioethanol generasi pertama dan kedua. Hasil yang diperoleh untuk skenario IND-EURO adalah campuran FAME 50% di tahun 2020-2030 dan campuran FAME 47%-HVOSMR 53% di tahun 2035-2050. Untuk skenario EURO-SULPHUR IND di tahun 2020 adalah HVOSMR 30% sedangkan FAME 20% untuk tahun 2025-2030 dan campuran FAME 47%-HVOSMR 53% di tahun 2035-2050. Untuk skenario EURO adalah campuran FAME 47%-HVOSMR 53% di tahun 2020-2030 dan FAME 20% di tahun 2035-2050. Untuk campuran bensin semua skenario di tahun 2020 adalah Ethanol 5% dan Ethanol-Ethanol2G 20% ditahun 2035-2050. Perbedaan campuran Ethanol terjadi di skenario EURO untuk tahun 2025-2030 yaitu lebih rendah 5% sehingga pengurangan bahan bakar minyak masing-masing skenario secara berurut adalah 79%, 67% dan 55% untuk solar sedangkan 19%, 19% dan 17% untuk bensin.

Renewable fuel as a mix with petroleum fuel is one of solution to decrease the use of fossil fuels in Indonesia. The ambitious policy is to mix 20% of biosolar from CPO but until now still not meet the target (12.7%) due to the poor quality of B20 and for mix of bioethanol has not been implemented due to lack of financial support. Therefore, alternative renewable fuels are needed in order to meet the target. In this study, we apply optimization with a minimum total system cost up to 2050 using TIMES-VEDA on certain fuel quality specifications that are affected by the availability of raw material supply so that the optimum fuel blending is obtained. The biofuel technology reviewed is FAME, HVO, FT Diesel, Bioethanol first and second generation. The results obtained for the IND-EURO scenario are a blend of FAME 50% in 2020-2030 and blend of FAME 47% -HVOSMR 53% in 2035-2050. The scenario of EURO-SULPHUR IND has fuel mix HVOSMR 30% in 2020, FAME 20% for 2025-2030 and have same percentage of blend with scenario IND-EURO for 2035-2050. The EURO scenario has fuel blending of FAME 47%-HVOSMR 53% in 2020-2030 and FAME20% in 2035-2050. For all scenario gasoline blends are Ethanol 5% in 2020 and combination Ethanol-Ethanol2G 20% in the 2035-2050. Ethanol blend for scenario of EURO has 5% lower rather than other scenario in 2035-2050. Biofuel mix can reduce consumption diesel and gasoline respectively for each scenario are 79%, 67% and 55% and 19%, 19% and 17%."
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Dewi Azizah
"Dominasi penggunaan bahan bakar fosil sebagai sumber energi mendorong para peneliti untuk mengembangkan energi alternatif yang bersifat terbarukan dan ramah lingkungan. Hidrogen merupakan salah satu kandidat energi alternatif yang potensial. Hidrogen dapat diproduksi melalui metode ramah lingkungan dengan cara pemecahan air (water splitting), termasuk dari air laut yang ketersediannya melimpah di alam. Teknologi pemecahan air yang banyak dikembangkan saat ini adalah melalui fotoelektrokatalisis, yaitu dengan memanfaatkan sinar matahari menggunakan sel fotoelektrokimia dengan foto elektroda berbasis semikonduktor. Dalam penelitian ini dilakukan uji kinerja salah satu jenis sel tandem DSSC (Dyes Sensitized Solar Cell) yang ditandemkan dengan sel PEC (Photo Electrochemical). Untuk itu, dilakukan studi preparasi semikonduktor TiO2 yang digabungkan dengan BiOI sebagai foto elektroda bagian PEC dalam sistem tandem DSSC-PEC, untuk proses produksi hidrogen (H2) dari elektrolit air berkadar garam tinggi (salty water). Sintesis TiO2/BiOI dilakukan menggunakan metode anodisasi untuk pembentukan TiO2 nanotubes dan deposisi secara elektrokimia untuk pembentukan BiOI nanoflakes. Dalam penelitian ini dilakukan investigasi pengaruh variasi waktu deposisi BiOI (5 menit, 10 menit, dan 15 menit) terhadap kinerja fotoelektrokimia dan kemampuannya menghasilkan hidrogen. TiO2-nanotubes/BiOI hasil sintesis menunjukkan aktivitas fotokatalitik yang lebih baik daripada TiO2 nanotubes tunggal, dimana TiO2 nanotubes/BiOI aktif pada daerah visible dan memberikan respon photocurrent yang lebih tinggi. TiO2 nanotubes/BiOI dengan waktu deposisi 10 menit memperlihatkan respon photocurrent tertinggi dan dipilih untuk digunakan pada produksi H2. Sel tandem DSSC-PEC yang disintesis dengan perpanjangan zona katalisis foto elektroda TiO2 nanotubes/BiOI berhasil memproduksi hidrogen sebesar 0,0029 μmol/mL, saat dioperasikan selama 390 menit.

In order to reduce the use of fossil fuels as an energy sources encourages researchers to develop alternative energy that is renewable and environmentally friendly. Hydrogen is one of the potential candidates. Hydrogen can be produced via environmentally friendly methods by water splitting, including from sea water which is abundantly available in nature. One of water splitting methods that is being developed today is photo-electrocatalysis, which is by utilizing sunlight using photoelectrochemical cells with semiconductor-based electrodes. In this study, a performance test of one type of DSSC (Dyes Sensitized Solar Cell) tandem cell with PEC (Photo Electrochemical) cells was conducted. For this reason, a study of the preparation of the TiO2 semiconductor combined with BiOI as a photoelectrode in the DSSC-PEC tandem system was carried out for the production of hydrogen (H2) from a high salt water electrolyte. The preparation of TiO2/BiOI was carried out using anodization method for the formation of TiO2 nanotubes and electrochemical deposition for the formation of BiOI nanoflakes. This study investigated the effect of variations in BiOI deposition time (5 minutes, 10 minutes, and 15 minutes) on photoelectrochemical performance and its ability to produce hydrogen. The synthesized TiO2-nanotube/BiOI showed better photocatalytic activity than bare TiO2 nanotubes, where the TiO2 nanotube/BiOI was active in the visible region and gave a higher photocurrent response. TiO2 nanotubes/BiOI with a deposition time of 10 minutes responded to the highest photocurrent and were used for application in H2 production. The DSSC-PEC tandem cell prepared with the addition of the TiO2 nanotubes/BiOI photo-electrode catalysis zone succeeded in producing hydrogen as much as 0,0029 μmol/mL, during 390 minutes operation."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nurafni Setiawati
"Bahan bakar fosil merupakan sumber energi yang sering digunakan hingga saat ini. Namun, penggunaan bahan bakar fosil secara terus menerus akan menyebabkan krisis energi dan kerusakan lingkungan akibat gas rumah kaca yang dihasilkan. Hal tersebut mendorong para peneliti untuk mengembangkan energi alternatif yang lebih ramah lingkungan. Hidrogen merupakan kandidat terkuat untuk dijadikan energi terbarukan karena memiliki densitas energi yang tinggi dan hasil pembakaran hidrogen hanya air, sehingga tidak menghasilkan gas polutan. Hidrogen dapat diproduksi dengan proses pemecahan air menggunakan air asin yang ketersediaannya berlimpah di alam. Teknologi pemecahan air banyak dikembangkan saat ini melalui fotokatalisis dengan memanfaatkan cahaya matahari menggunakan sel fotoelektrokimia dengan fotoelektroda berbasis bahan semikonduktor. Penelitian inimelakukan sintesis R-TiO2 nanotubes/BiVO4/Co-Pi sebagai fotoanoda pada sel fotoelektrokimia untuk produksi hidrogen (H2) dari air berkadar garam tinggi. Sintesis TiO2 nanotubes dilakukan dengan metode anodisasi, kemudian direduksi dengan reduksi elektrokimia untuk menghasilkan R-TiO2 nanotubes. Waktu reduksi divariasikan dengan 90, 180, dan 300 detik. Semakin lama waktu reduksi, energi celah pita semakin kecil dan densitas arus yang dihasilkan semakin besar. Sehingga, waktu reduksi optimum R-TNA berada pada 300 detik dengan energi celah pita sebesar 2,82 eV dan densitas arus sebesar 0,0017 mA/cm2 pada 1,23 V vs RHE. Modifikasi R-TNA dengan BiVO4 dilakukan dengan metode Successive Ionic Layer Adsorption and Reaction (SILAR) yang menghasilkan energi celah pita lebih kecil sebesar 2,53 eV dan densitas arus yang lebih besar sebesar 0,0035 mA/cm2 pada 1,23 V vs RHE. Modifikasi R-TNA/BiVO4 dengan Co-Pi dilakukan dengan metode elektrodeposisi yang menghasilkan densitas arus lebih besar sebesar 0,0071 mA/cm2 pada 1,23 V vs RHE. Rangkaian sel fotoelektrokimia menggunakan R-TNA/BiVO4/Co-Pi sebagai fotoanoda dan R-TNA/Pt sebagai katoda dengan waktu pengujian 3 jam menghasilkan hidrogen dengan konsentrasi sebesar 0,0826% dari air berkadar garam tinggi.

Fossil fuel is an energy source that is often used today. However, the continuous use of fossil fuels will cause an energy crisis and environmental damage due to the greenhouse gases produced. This encourages researchers to develop alternative energy more eco-friendly. Hydrogen is the strongest candidate to use as renewable energy because it has high energy density and the product of hydrogen combustion is only water, so it doesn’t produce pollutants. Hydrogen can be produced by the process of water splitting from salty water, which is abundantly available in nature. Water splitting is currently being developed through photocatalysis by utilizing sunlight using photoelectrochemical cells with photoelectrodes based on semiconductor material. This study synthesized R-TiO2 nanotubes/BiVO4/Co-Pi as a photoanode in a photoelectrochemical cell for hydrogen production from salty water. TiO2 nanotubes were synthesized by anodizing method, then reduced by electrochemical reduction to produce R-TiO2 nanotubes. The reduction time was varied by 90, 180, and 300 seconds. The longer reduction time gives the smaller band gap energy and the larger photocurrent. Thus, the optimum reduction time of R-TNA is 300 seconds with a band gap energy of 2.82 eV and photocurrent of 0,0017 mA/cm2 at 1,23 V vs RHE. Modification of R-TNA with BiVO4 was carried out using the Successive Ionic Layer Adsorption and Reaction (SILAR) method has smaller band gap energy of 2.54 eV and larger photocurrent of 0,0035 mA/cm2 at 1,23 V vs RHE. Modification of R-TNA/BiVO4 with Co-Pi was carried out by electrodeposition method has the largest photocurrent of 0,0071 mA/cm2 at 1,23 V vs RHE. Photoelectrochemical cell using R-TNA/BiVO4/Co-Pi as photoanode and R-TNA/Pt as cathode for 3 hours produced hydrogen with a concentration of 0,0826% from salty water."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
cover
Hendi Kurniawan
"Proporsi penggunaan bahan bakar fosil diperkirakan akan membahas sekitar 75% dari produksi energi pada tahun 2050. Pengembangan energi hidrogen merupakan salah satu upaya untuk mencari bahan bakar alternatif yang ramah lingkungan. Hidrogen dapat disimpan di dalam senyawa yang disebut chemical hydrogen storage. Katalis nanopartikel logam dengan dukungan yang sangat dibutuhkan untuk meningkatkan selektivitas dan reaksi reaksi dehidrogenasi. Santa barbara amorphous 15 atau SBA-15 berhasil disintesis yang dibuktikan dengan karakterisasi TEM yang membuat struktur mesopori yang teratur. Variasi komposisi logam dan volume 3-aminopropyltriethoxysilane atau APTES yang digunakan dalam penelitian ini berpengaruh terhadap performa katalitik dari nanopartikel NiPt. Penggabungan support dengan nanopartikel nikel dan platina dilakukan melalui metode impregnasi basah menggunakan NiCl2.6H2O dan K2PtCl6 yang kemudian direduksi menggunakan NaBH4. Uji katalis untuk reaksi hidrogenasi hidrazin hidrat menggunakan alat buret gas. Pada uji katalis yang telah dilakukan, diketahui bahwa Ni75Pt25/SiO2 merupakan variasi komposisi logam terbaik dengan silika sebagai support serta NiPt/SBA-15-NH2-6 merupakan variasi volume APTES paling optimal.

The focus of this research was evaluate the catalytic activity of NiPt nanoparticles with SBA-15 as a support for hydrogen production from dehydrogenation of hydrous hydrazine. The development of hydrogen energy is one of many idea to find alternative fuels that are environmentally friendly. Hydrogen can be stored in a compound called chemical hydrogen storage. Santa barbara amorphous 15 or SBA-15 was successfully synthesized in this research and has been characterized by TEM to show the ordered mesoporous structure. Variations in metal composition and volume of 3-aminopropyltriethoxysilane (APTES) used in this study had affect the catalytic performance of NiPt nanoparticles. Silica with nickel and platinum nanoparticles was combined using the wet impregnation method with NiCl2.6H2O and K2PtCl6. The reduction of metal ion is using NaBH4. Catalytic activity test for the hydrogenation reaction of hydrous hydrazine was using a gas burette. The result show that, Ni75Pt25/SiO2 is the best variation of metal composition with silica as support and NiPt/SBA-15-NH2-6 is the best variation of APTES volume."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fahdnul Ashim
"Bahan bakar fosil digunakan sebagai bahan bakar mesin dan kendaraan bermotor untuk membantu aktivitas manusia, akan tetapi jumlahnya terbatas dan dapat menyebabkan masalah lingkungan. Air dan energi dari sinar matahari jumlahnya melimpah di bumi, namun potensinya belum banyak digunakan. Manusia pun mulai mengembangkan alat untuk dapat memanfaatkan kedua sumber daya alam tersebut, sehingga kedepannya bahan bakar fosil dapat digantikan. Metal Organic Frameworks (MOFs) merupakan material yang tersusun atas ion logam atau ion klaster yang dihubungkan dengan senyawa organik dan dapat digunakan sebagai fotokatalis untuk menghasilkan gas hidrogen dan gas oksigen dari air dengan bantuan sinar matahari. Penelitian ini mencoba mensintesis MOFs dengan menggunakan logam lantanida (Samarium, Europium dan Terbium) dengan ligan natrium perilena tetrakarboksilat (Na-PTC) secara solvotermal dalam air dan DMF dengan perbedaan waktu sisntesis 6, 24 dan 72 jam, sehingga menjadi Ln-MOFs yang kemudian dikarakterisasi dengan FTIR, UV-DRS, CV, TGA, XRD dan SEM-EDX. Hasil menunjukkan 3 buah Ln-MOFs baru berhasil disintesis dengan karakteristik IR dan nilai band gap yang hampir sama walau waktu sintesisnya berbeda, dengan nilai band gap 1,93 – 2,22 eV. Kemudian Ln-MOFs tersebut tidak tahan pada suhu di atas 100 oC, masih polikristal, berukuran 20 nm dan berpotensi sebagai fotokatalis untuk menghasilkan gas H2 dari air.

Fossil fuels are used as fuel for machines and vehicles to help human activities, but in limited numbers and can cause environmental problems. Water and energy from sunlight are abundant on earth, but their potential is not widely used. Humans have also begun to develop tools to be able to utilize these two natural resources so that in the future, fossil fuels can be replaced. Metal Organic Frameworks (MOFs) are materials composed of metal ions or cluster ions linked to organic compounds and can be used as photocatalysts to produce hydrogen gas and oxygen gas from the water with the help of sunlight. This study tried to synthesize MOFs using metal lanthanides (Samarium, Europium and Terbium) with sodium perylene tetracarboxylate (Na-PTC) ligands solvothermal in water and DMF with differences in synthesis time of 6, 24 and 72 hours, so that it becomes Ln-MOFs, which then characterized by FTIR, UV-DRS, CV, TGA, XRD and SEM-EDX. The results showed that 3 new Ln-MOFs were successfully synthesized with almost the same IR characteristics and band gap values even though the synthesis time was different, with a band gap value of 1.93 - 2.22 eV. Then the Ln-MOFs cannot withstand temperatures above 100 oC, are still polycrystalline, has a size of 20 nm and have the potential to be a photocatalyst to produce H2 gas from water."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>