Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 188175 dokumen yang sesuai dengan query
cover
Difa Sevina Hanum Widanty
"Salah satu penyumbang emisi CO2 terbanyak pada kategori industri manufaktur adalah pabrik semen yang menghasilkan 8% dari total emisi global. Oleh karena itu, penelitian ini dilakukan untuk melakukan analisis teknis dan ekonomi terkait dekarbonisasi pada pabrik semen. Terdapat 3 skenario yang dilakukan pada penelitian ini, yaitu skenario 0 yang meliputi proses produksi klinker, skenario 1 yang meliputi proses produksi klinker, calcium looping carbon capture, sintesis metanol, dan PV-elektrolisis, serta skenario 2 yang meliputi proses produksi klinker menggunakan bauran bahan bakar alternatif, calcium looping carbon capture, sintesis metanol, dan PV-elektrolisis. Hasil penelitian ini menunjukkan bahwa suhu optimum untuk sintesis metanol pada tekanan 50 bar adalah 230 oC dengan rasio umpan antara H2 dan CO2 sebesar 3. Efisiensi energi tertinggi didapatkan pada skenario 2B dengan nilai sebesar 56,42%, diikuti oleh skenario 2A dengan nilai sebesar 56,40%, dan terakhir skenario 1 dengan nilai sebesar 56,36%. Emisi CO2 pada skenario 0 didapatkan sebesar 108.125 kg CO2/jam, mengalami peningkatan pada skenario 1 sebesar 299.553 kgCO2/jam, menurun pada skenario 2A dengan emisi CO2 sebesar 252.586 kgCO2/jam, dan menurun kembali pada skenario 2B dengan emisi CO2 sebesar 250.061 kgCO2/jam. Nilai levelized cost of methanol untuk skenario 1 sebesar Rp8.660,84, skenario 2A sebesar Rp8.465,59, dan skenario 2B sebesar Rp8.388,50. 

One of the biggest contributors to CO2 emissions in the manufacturing industry category is cement industries which produce 8% of total global emissions. Therefore, this research was carried out to analyze technical and economic aspects related to decarbonization in cement factories. There are 3 scenarios carried out in this study, namely scenario 0 which includes the clinker production process, scenario 1 which includes the clinker production process, calcium looping carbon capture, methanol synthesis, and PV-electrolysis, and scenario 2 which includes the clinker production process using mixed alternative fuels, calcium looping carbon capture, methanol synthesis, and PV-electrolysis. The results from this research show that the optimum temperature for methanol synthesis at a pressure of 50 bar was 230oC with a feed ratio between H2 and CO2 of 3. The highest energy efficiency was obtained in scenario 2B with a value of 56.42%, followed by scenario 2A with a value of 56.40%, and finally scenario 1 with a value of 56.36%. CO2 emissions in scenario 0 are 108,125 kgCO2/hour, increased in scenario 1 of 299,553 kgCO2/hour, decreased in scenario 2A with CO2 emissions of 252,586 kgCO2/hour, and decreased again in scenario 2B with CO2 emissions of 250,061 kgCO2/hour. The levelized cost of methanol for scenario 1 is IDR 8,660.84, scenario 2A biomass is IDR 8,465.59, and scenario 2B is IDR 8,388.50."
Depok: Fakultas Kesehatan Masyarakat Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhamad Ariel Zhafran
"Pemanasan global akibat gas rumah kaca semakin meningkat dari tahun ke tahun. Hal tersebut memicu dilakukanya upaya-upaya untuk mengurangi gas rumah kaca. Salah satu upayanya yakni penangkapan CO2 yang mana CO2 termasuk kedalam gas rumah kaca dari gas buang industri. Dari berbagai sektor industri yang menghasilkan emisi CO2, industri semen menyumbang emisi sebanyak 689 kg CO2 per satu ton semen yang sangat banyak jika melihat kemajuan pembangunan infrastruktur. Disamping hal tersebut, didapati bahwa Indonesia masih sangat kekurangan pemasok metanol sehingga pada tahun 2019 Indonesia tercatat masih mengimpor metanol sebanyak US$279 juta. Dari beberapa pertimbangan yang telah dipaparkan, dilakukan penelitian ini untuk menguji kelayakan secara tekno-ekonomi dan evaluasi risiko dari produksi metanol menggunakan bahan baku CO2 dan H2 melalui proses hidrogenasi. Teknologi yang digunakan untuk mengambil CO2 dari gas buang pabrik semen adalah dengan MEA CO2 capture. Tujuan penelitian ini adalah untuk mendapatkan NPV, IRR, PI, dan PBP dan juga probabilitas NPV, PI, dan PBP menggunakan simulasi Monte-Carlo. Proses CO2 capture dan proses hidrogenasi CO2 disimulasikan menggunakan Aspen HYSYS dan Aspen Plus. Basis pajak karbon, harga metanol dan harga hidrogen yang digunakan dalam perhitungan tekno-ekonomi secara berturut-turut adalah $70/ton, $670/ton dan $2000/ton. Hasil NPV dari penelitian ini adalah 48,674 juta USD, IRR sebesar 22,72%, PI sebesar 1,079, dan PBP sebesar 5,12 tahun. Setelah 10.000 trial menggunakan Monte-Carlo, nilai NPV dan PI memiliki probabilitas untuk bernilai negatif yang secara berturut-turut sebesar 87,12% dan 86,06%. PBP memiliki probabilitas sebesar 72,28% untuk lebih dari 7 tahun. NPV akan bernilai nol jika harga metanol $531,6/ton atau harga hidrogen $2470/ton.

Global warming due to greenhouse gases seems to be increasing from year to year. Therefore, efforts have been made to reduce the causes of global warming. One of these efforts is the capture of CO2, which is included as a greenhouse gas from industrial exhaust gases. Of the various industrial sectors that produce CO2 emissions, the cement industry produces emissions of 689 kg CO2 per one ton of cement, which is a lot based on the development of infrastructure. In addition, Indonesia still lacks methanol suppliers, so that in 2019 Indonesia obtained US$279 of methanol. From these considerations, a study was conducted to assess using techno-economic and evaluate methanol production as raw material for CO2 and H2 through the hydrogenation process. The technology used to extract CO2 from the exhaust gas of a cement plant is MEA CO2 capture. The objective of this study is to find the NPV, IRR, PI, and PBP and the probability of NPV, PI, and PBP using the Monte-Carlo simulation. The CO2 capture process and the CO2 hydrogenation process were simulated using Aspen HYSYS and Aspen Plus. The basis carbon tax, methanol and hydrogen prices used in the techno-economic calculations are $70/ton, $670/ton, and $2000/ton, respectively. The results of the NPV of this study were 48.674 million USD, IRR of 22.72%, PI of 1.079, and PBP of 5.12 years. After 10,000 trials using Monte-Carlo, the NPV and PI values have a negative probability of 87.12% and 86.06%, respectively. PBP has a probability of 72.28% to be more than 7 years. The NPV will equal to zero if the price of methanol is $531.6/ton or hydrogen's price is $2470/ton.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rahmad Mudjiono
"Pabrik semen merupakan pabrik yang menggunakan energi tinggi secara intensif, yang mencapai 40 - 60% dari total biaya produksi. Penggunaan bahan bakar alternatif, secara signifikan dapat menurunkan biaya energi. PT Boral Indonesia, berencana akan membangun pabrik semen yang akan memaksimalkan penggunakan bahan bakar alternatif. Studi literatur, wawancara dan korespondensi dengan para ahli digunakan dalam penelitian tentang kebutuhan alat tambahan pabrik ini. Teknik Sampling dan wawancara digunakan untuk mendapatkan jenis dan besarnya potensi bahan bakar alternatif di sekitar Pabrik. Penelitian ini diharapkan dapat memberikan jawaban besarnya optimasi biaya produksi yang dapat dilakukan dengan penggunaan bahan bakar alternatif.

Cement manufacture is one the most intensive energy using industries, as the energy cost is about 40% ? 60% of the total production cost. Alternative fuels could significantly reduce the energy cost. PT Boral Indonesia are going to build Cement Plant, by maximizing the use of alternative fuels. Literature study, interview and correspondences with experts have been used in this research to identify the required additional equipment. Sampling method and interviews have been used to identify the type and the potential quantity of the alternative fuels within range of the factory. It is expected that this research forecast how much the production cost can be reduced."
Depok: Fakultas Teknik Universitas Indonesia, 2008
T40663
UI - Tesis Open  Universitas Indonesia Library
cover
Muhammad Raihan Pratama
"Bioenergy with carbon capture and storage (BECCS) memiliki potensi besar dalam mengurangi emisi karbon dari atmosfer hingga dapat mencapai emisi negatif. Teknologi ini dapat diintegrasikan pada sistem poligenerasi pembangkit listrik biomassa dan green chemicals seperti metanol. Penelitian ini bertujuan untuk memperoleh efisiensi energi sistem secara keseluruhan, biaya produksi dan CO2 avoidance cost (CAC), serta nilai emisi CO2eq dari integrasi BECCS pada sistem poligenerasi. Aspen Plus v.11 digunakan untuk simulasi proses sistem poligenerasi, sedangkan unit CCS disimulasikan dengan Aspen HYSYS v.11. Dengan memvariasikan kapasitas produksi listrik, tandan kosong kelapa sawit (TKKS) digunakan sebagai bahan bakar pembangkit listrik biomass integrated gasification combined cycle (BIGCC) sehingga dihasilkan gas buang mengandung CO2 yang ditangkap untuk sintesis metanol dan CCS. Hidrogen untuk sintesis green methanol diproduksi melalui elektrolisis PEM dengan variasi dua sumber energi listrik terbarukan, yaitu energi surya (PV-PEM) dan energi geotermal (GEO-PEM). Analisis lingkungan dilakukan dengan metode life cycle assessment (LCA) dengan lingkup cradle-to-gate dan analisis keekonomian dilakukan dengan metode levelized cost. Hasil penelitian menunjukkan bahwa efisiensi sistem keseluruhan lebih tinggi pada skema PV-PEM (11,33%) daripada GEO-PEM (7,05%). Sistem BECCS yang diintegrasikan pada pembangkit listrik BIGCC menunjukkan emisi negatif (-1,00 sampai -0,76 kg CO2eq/kWh). Untuk sintesis metanol, nilai emisi dengan skema PV-PEM (-1,14 sampai -1,28 kg CO2eq/kg MeOH) lebih tinggi daripada skema GEO-PEM (-1,52 sampai -1,65 kg CO2eq/kg MeOH). Pembangkit dengan kapasitas 30,87 MW memiliki biaya produksi dan nilai CAC (0,181 USD/kWh dan 67,66 USD/ton CO2) yang lebih besar daripada kapasitas 50 MW (0,139 USD/kWh dan 56,06 USD/ton CO2). Skema PV-PEM menghasilkan biaya produksi metanol (1.011-1.049 USD/ton) yang lebih besar daripada skema GEO-PEM (967-1.005 USD/ton).

Bioenergy with carbon capture and storage (BECCS) has enormous potential to reduce carbon emissions from the atmosphere that may reach net-negative emissions. This technology may be integrated within the polygeneration system of biomass power plant and green chemicals, such as methanol. This research aims to obtain the system’s overall energy efficiency, the production and CO2 avoidance cost, as well as the emission factor of integrating BECCS in the polygeneration system. The processes of polygeneration system are simulated in Aspen Plus v.11; meanwhile, the CCS unit processes are simulated in Aspen HYSYS v.11. By varying the electricity production capacities, oil palm empty fruit bunches (OPEFB) are used as fuel for biomass integrated gasification combined cycle (BIGCC) power plant to produce exhaust gas containing CO2, which is captured for the methanol synthesis and CCS. Hydrogen for green methanol synthesis is produced through PEM electrolysis powered by two different renewable energy sources, i.e., solar (PV-PEM) and geothermal energy (GEO-PEM). The environmental aspects are assessed with the life cycle assessment (LCA) with a cradle-to-gate scope, and the economic aspects are analyzed with the levelized cost method. The research shows that the overall system efficiency is higher in the PV-PEM scheme (11.33%) than in the GEO-PEM scheme (7.05%). The BECCS system integrated into the polygeneration system exhibits negative emissions (-1.00 to -0.76 kg CO2eq/kWh). The emission value for the methanol synthesis with the PV-PEM scheme (-1.14 to -1.28 kg CO2eq/kg MeOH) is higher than that with the GEO-PEM (-1.52 to -1.65 kg CO2eq/kg MeOH). The 30,87 MW-capacity BIGCC has a higher production cost and CAC value (0.181 USD/kWh and 67.66 USD/ton CO2) than the 50-MW capacity (0.139 USD/kWh and 56.06 USD/ton CO2). The PV-PEM scheme results in higher methanol production costs (1,011-1,049 USD/ton) than of the GEO-PEM scheme (967-1,005 USD/ton)."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Puan Chairunnisa Suriperdana
"Adanya regulasi carbon footprint trade serta kemajuan teknologi carbon capture, utilization, and storage (CCUS) menimbulkan urgensi instalasi CCUS pada seluruh kilang secara global. CO2 yang tertangkap dapat dijadikan peluang ekonomi baru dengan diolah kembali sebagai bahan baku proses produksi. CO2dapat diolah menjadi DME lewat proses dry methane reforming, methanol synthesis, dan methanol dehydration. Pemerintah Indonesia berencana untuk mengganti LPG dengan DME. Dengan demikian, dilakukan simulasi proses menggunakan Aspen Plus untuk melihat efektivitas produksi beserta analisis kelayakan investasi ditinjau dari nilai NPV, IRR, PBP, dan PI serta peninjauan probabilitas menggunakan simulasi Monte Carlo. Dari simulasi pada aspen plus, DME terproduksi sebanyak 868,04 ton / hari. Selanjutnya parameter keekonomian dihitung dengan harga jual DME $1.300/ton dan didapatkan nilai didapatkan NPV sebesar $1.783.715.566,19, IRR 58,44%, PBP 2,041 Tahun, dan PI 3,675 sehingga pabrik dapat dikatakan layak. Dari 1000 iterasi yang dilakukan pada simulasi, keempat parameter keekonomian menunjukkan nilai positif sehingga risiko finansial pabrik relatif aman.

The existence of carbon footprint trade regulations and advances in carbon capture, utilization, and storage (CCUS) technology have led to the urgency of CCUS installations at all refineries globally. Captured CO2 can be used as a new economic opportunity by being reprocessed as a raw material for the production process. CO2 can be processed into DME through dry methane reforming, methanol synthesis, and methanol dehydration processes. The Indonesian government plans to replace LPG with DME. Thus, a process simulation using Aspen Plus was carried out to see the effectiveness of production along with an investment feasibility analysis in terms of NPV, IRR, PBP, and PI values and a probability review using Monte Carlo simulation. From the simulation on Aspen Plus, DME was produced as much as 868.04 tons/day. Furthermore, the economic parameters were calculated with a DME selling price of $1,300/ton and obtained an NPV value of $1,783,715,566.19, IRR 58.44%, PBP 2.041 years, and PI 3.675 so that the plant can be said to be feasible. From 1000 iterations carried out in the simulation, the four economic parameters show positive values so that the financial risk of the plant is relatively safe."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yafi Refaalih Hefarizky
"Salah satu alternatif untuk mendapatkan peforma yang lebih bagus dalam proses dari segi teknis dan ekonomi adalah intensifikasi proses pada proses produksi biodiesel menggunakan distilasi reaktif. Penelitian ini melakukan komparasi dua skenario produksi biodiesel dari e-metanol (metanol dari hidrogenasi CO2 dengan CO2 berasal dari CO2 capture dan hidrogen berasal dari elektrolisis dengan PEM electrolyzer) tanpa intensifikasi proses (S1) dan produksi biodiesel dari e-metanol dengan intensifikasi proses menggunakan distilasi reaktif (S2).  Hasil penelitian didapatkan bahwa produksi biodiesel dengan distilasi reaktif menunjukan peforma yang lebih baik dari segi teknis maupun ekonomi. Dari segi teknis menunjukan, konversi reaktan yang didapatkan pada distilasi reaktif mencapai 95,22%. Selain itu kebutuhan ratio mol asam lemak dan metanol dari S2 (1:8) lebih sedikit dibanding dengan S1 (1:15). Kemudian dari analisis energi, juga didapatkan efisiensi dan produktifitas energi dari S2 (32% dan 7,788 kg/MJ) lebih tinggi dibanding dengan S1 (28% dan 3,788 kg/MJ). Lalu dari analisis emisi CO2, S2 lebih rendah emisi 68,2% dibanding S1. Terakhir untuk analisis ekonomi, kedua skenario menghasilkan nilai net present value yang negatif sehingga proyek tidak layak untuk dijalankan karena biaya investasi dari produksi hidrogen dengan sistem PEM+PV+baterai yang masih mahal namun nilai net present value negatif dari S2 masih 60,41% lebih rendah dibanding S1

One alternative to get better performance in the process from a technical and economic point of view is process intensification in the biodiesel production process using reactive distillation. This research compares two scenarios of biodiesel production from e-methanol (methanol from CO2 hydrogenation with CO2 comes from CO2 capture and hydrogen comes from electrolysis with PEM electrolyzer) without process intensification (S1) and biodiesel production from e-methanol with process intensification using distillation. reactive (S2). The results showed that biodiesel production by reactive distillation showed better performance from a technical and economic standpoint. From a technical point of view, the conversion of reactants obtained in reactive distillation reaches 95.22%. In addition, the need for the mole ratio of fatty acids and methanol from S2 (1:8) is less than that of S1 (1:15). Then from the energy analysis, it was also found that the energy efficiency and productivity of S2 (32% and 7.788 kg/MJ) were higher than those of S1 (28% and 3.788 kg/MJ). Then from the analysis of CO2 emissions, S2 has 68.2% lower emissions than S1. Finally, for economic analysis, both scenarios produce a negative net present value, so the project is not feasible to run because the investment costs of hydrogen production with the PEM+PV+battery system are still expensive, but the negative net present value of S2 is still 60.41% more lower than S1."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Astrid Annisa Purwaningtyas
"Studi ini mengeksplorasi simulasi beberapa skema proses power-to-methanol dengan menggunakan umpan syngas Metanol yang memiliki beberapa keunggulan dibandingkan bensin konvensional, seperti emisi lebih rendah, angka oktan lebih tinggi, pembakaran lebih bersih, dan desain mesin lebih irit. Namun sumber produksi metanol mempengaruhi dampak lingkungannya. Metanol yang dihasilkan dari bahan bakar fosil (gray-methanol atau brown-methanol) masih menghasilkan emisi yang tinggi, sedangkan metanol yang dihasilkan dari energi terbarukan (green-methanol) mampu menurunkan emisi secara signifikan. Studi ini mengusulkan konsep Power-to-Methanol, yang memanfaatkan listrik berlebih dari sumber terbarukan untuk menghasilkan metanol hijau dari CO2 dan H2. Studi ini membahas terkait dampak dari perbedaan setiap skema proses terhadap kebutuhan aliran umpan, hasil produksi metanol, konsumsi daya, analisis terhadap keekonomian, dan mengetahui skema proses yang terbaik untuk sintesis metanol. Hasil simulasi mengindikasiikan bahwa persentase komponen dari laju alir masuk reaktor berpengaruh terhadap jumlah metanol yang dihasilkan. Umpan reaktor dengan CO menghasilkan konversi dan efisiensi purifikasi yang lebih baik. Melalui hasil analisis ekonomi, ketiga skema dinyatakan tidak layak secara ekonomi dengan nilai NPV dan ROI dari Skema A, B, dan C berturut-turut adalah-$278.852.399,57, -$302.159.259,97, -$344.454.465,7 dan -20,61%,, -14,17%, dan -22,75%. Analisis sensitvitas dan kelayakan menunjukkan bahwa harga SOEC memiliki pengaruh paling besar terhadap profitabilitas. Secara keseluruhan, skema B merupakan skema dengan potensi terbaik dari segi teknis dan ekonomi apabila dibandingkan dengan kedua skema lainnya

This study explores the simulation of several power-to-methanol process schemes using Methanol syngas feed which has several advantages over conventional gasoline, such as lower emissions, higher octane number, cleaner combustion, and more economical engine design. However, the source of methanol production influences its environmental impact. Methanol produced from fossil fuels (gray-methanol or brown-methanol) still produces high emissions, while methanol produced from renewable energy (green-methanol) is able to reduce emissions significantly. This study proposes the Power-to-Methanol concept, which utilizes excess electricity from renewable sources to produce green methanol from CO2 and H2. This study explores at how alternative process schemes affect feed flow requirements, methanol production, power consumption, and economic feasibility in order to determine the optimal scheme for methanol synthesis. Simulation results show that reactor input flow composition affects methanol output, with CO feed resulting in higher conversion and purification efficiency. Economic study shows that all three designs are economically not feasible with NPVs and ROIs of -$278.85M, -$302.16M, -$344.45M, and -20.61%, -14.17%, -22.75%, respectively. Sensitivity and feasibility studies show that SOEC prices have a significant effect on profitability.  Scheme B has the most potential both technically and economically."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Septiadi Anggoro Nugroho
"Flue gas yang dihasilkan dari kilang minyak masih mengandung karbondioksida (CO2) dimana saat ini teknologi penangkapan CO2 dari flue gas dalam skala komersial masih terbatas termasuk pemanfaatannya menjadi produk yang bernilai lebih tinggi. Gas Hidrogen (H2) yang dihasilkan di kilang minyak PT.X dari hasil reaksi pada proses naphta reforming merupakan produk samping yang dapat dimanfaatkan bersama dengan CO2 dari flue gas untuk menghasilkan metanol sebagai komponen blending gasoline sekaligus meningkatkan valuable yield dari kilang minyak PT.X. Pada penelitian ini, dilakukan simulasi proses untuk 2 teknologi penangkapan CO2 dan proses sintesis metanol dalam rangka pemanfaatan CO2 dari flue gas dan hidrogen dari naphta reforming untuk kemudian dievaluasi keekonomian dan sensitivitasnya. Simulasi proses dilakukan dengan menggunakan piranti lunak Promax v5. Dari hasil simulasi diperoleh kesimpulan bahwa proses absorpsi amine lebih baik dalam kebutuhan energi dibandingkan membran. Pada proses sintesis metanol, diperoleh kinerja proses optimum pada temperatur reaktor 245 oC dengan yield 48,7%, konversi CO2 sebesar 75,8% dan konversi H2 sebesar 75,9%. Laju alir produk metanol dihasilkan pada kondisi optimum di seksi proses pemurnian sebesar 8,6 t/jam atau kapasitas unit 71 KTA. Hasil evaluasi keekonomian diperoleh nilai IRR 9,606% dimana berdasarkan analisis sensitivitas, untuk dapat memenuhi kelayakan investasi yaitu nilai IRR di atas hurdle rate sebesar 10,83%, perlu adanya kenaikan kapasitas oleh unit sintesis metanol sebesar 7% di atas kapasitas baseline yaitu pada kapasitas 75,6 KTA.

Flue gas produced from oil refineries still contains carbon dioxide (CO2) where currently the technology for capturing CO2 from flue gas on a commercial scale is still limited, including its utilization into higher value products. Hydrogen gas (H2) produced at the PT.X oil refinery from the reaction in the naphtha reforming process is a by-product that can be used together with CO2 from flue gas to produce methanol as a component of blending gasoline while increasing the valuable yield of the PT.X oil refinery. In this study, process simulations were carried out for 2 CO2 capture technologies and the methanol synthesis process in order to utilize CO2 from flue gas and hydrogen from naphtha reforming to evaluate the economics and sensitivity. Process simulation was carried out using Promax v5 software. From the simulation results, it can be concluded that the amine absorption process is better in terms of energy requirements than the membrane. In the methanol synthesis process, the optimum process performance was obtained at a reactor temperature of 245 oC with a yield of 48.7%, CO2 conversion of 75.8% and H2 conversion of 75.9%. The flow rate of the methanol product produced at the optimum conditions in the purification process section was 8.6 t/hour or a unit capacity of 71 KTA. The results of the economic evaluation obtained an IRR value of 9.606% which based on sensitivity analysis, to be able to meet the investment feasibility, namely the IRR value above the hurdle rate of 10.83%, it is necessary to increase the capacity of the methanol synthesis unit by 7% above the baseline capacity, namely at a capacity of 75.6 KTA."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Faisal Adi Jatmoko
"Lapangan gas X merupakan lapangan produksi gas alam yang memiliki produk samping berupa CO2. Dikarenakan sifatnya yang korosif dan dapat menurunkan nilai jual gas, gas tersebut umumnya akan dibuang ke atmosfer. Akan tetapi CO2 sebenarnya memiliki nilai ekonomis yang tinggi jika dapat dimanfaatkan untuk Enhanced Oil Recovery (EOR). Pada proses injeksi EOR untuk lapangan minyak Y, dibutuhkan CO2 dengan tingkat kemurnian lebih dari 95 %. Tingkat kemurniaan CO2 sangat berperan dalam menentukan banyaknya minyak yang yang dapat dipulihkan sedangkan CO2 dari lapangan gas X hanya memiliki tingkat kemurnian sebesar 76,2 % dengan kandungan air mencapai 16,5 %. Oleh karena itu dibutuhkan proses tambahan untuk dapat menaikkan tingkat kemurnian CO2. Pressure Swing Adsorption (PSA) dan Triethylene Glycol (TEG) Absorption dapat digunakan untuk menghilangkan kandungan air yang terkandung dalam CO2. Setelah dimurnikan, CO2 akan ditransmisikan untuk kemudian digunakan untuk injeksi CO2 sehingga didapat rancangan fasilitas integrasi CO2-EOR yang utuh.
Berdasarkan hasil analisa ekonomi diperoleh penggunaan PSA pada fasilitas integrasi memiliki nilai NPV sebesar 349.376.372,23 USD, IRR sebesar 19,87 % , dengan biaya investasi sebesar 214.918.114 USD . Sedangkan penggunaan TEG memiliki nilai NPV sebesar 390.869.013,8 USD, IRR sebesar 20,37 %, dan biaya investasi sebesar 240.111.000 USD. Berdasarkan hasil analisis yang telah dilakukan penggunaan PSA dan TEG meskipun memiliki nilai investasi yang besar diperoleh hasil yang paling optimal dari segi net present value (NPV) sebesar 423.392.895,6 USD, Internal return rate (IRR) sebesar 20,71 %, dan payback periode selama 4,06 tahun. Selanjutnya dengan membandingkan skema PSC dan gross split pada penggunaan PSA dan TEG dapat diketahui bahwa gross split lebih optimal dengan nilai NPV sebesar 155 juta USD dan sebesar 19,68 % dibandingkan PSC dengan NPV sebesar 60,53 juta USD dan IRR sebesar 14,32 %. Faktor lain adalah ketahanan terhadap laju produksi minyak dan perubahan harga minyak gross split lebih baik dibanding PSC. Sehingga rancangan fasilitas integrasi CO2-EOR yang paling layak adalah dengan penggunaan Pressure Swing Adsorption (PSA) dan Triethylene Glycol (TEG) Absorption sebagai unit pemurnian CO2 dengan mengunakan skema keekonomian gross split.

The X gas field is a natural gas production field that has a CO2 product. Due to its corrosive nature and can reduce the selling value of gas, the gas will generally be discharged into the atmosphere. But CO2 actually has a high economic value if it can be used for Enhanced Oil Recovery (EOR). In the EOR injection process for the Y oil field, CO2 is needed with a purity of more than 95%. The level of purity of CO2 plays an important role in determining the amount of oil that can be recovered while CO2 from the gas field X only has a purity level of 76.2% with a water content reaching 16.5%. Therefore an additional process is needed to be able to increase the CO2 purity level. Pressure Swing Adsorption (PSA) and Triethylene Glycol (TEG) Absorption can be used to eliminate the water content contained in CO2. Once purified, CO2 will be transmitted and then used for CO2 injection so that a complete design of CO2-EOR integration facilities is obtained.
Based on the results of economic analysis obtained the use of PSA at the integration facility has an NPV value of 349,376,372.23 USD, an IRR of 19.87%, with an investment cost of 214,918,114 USD. Whereas the use of TEG has an NPV value of 390,869,013.8 USD, an IRR of 20.37%, and an investment cost of 240,111,000 USD. Based on the results of the analysis that has been carried out using PSA and TEG even though having a large investment value, the most optimal results obtained in terms of net present value (NPV) of 423,392,895.6 USD, Internal return rate (IRR) of 20.71%, and payback period of 4.06 years. Furthermore, by comparing the PSC and gross split schemes on the use of PSA and TEG, it can be seen that gross split is more optimal with NPV value of 155 million USD and 19.68% compared to PSC with NPV of 60.53 million USD and IRR of 14.32% . Another factor is the resistance to the rate of oil production and the change in gross split oil prices better than the PSC. So that the most feasible design of CO2-EOR integration facilities is to use Pressure Swing Adsorption (PSA) and Triethylene Glycol (TEG) Absorption as CO2 purification units using gross split economic schemes.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
T51906
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Irham Bhirawa
"Dalam beberapa tahun terakhir, minat untuk beralih dari manufaktur baja primer berbahan bakar fosil ke manufaktur baja rendah emisi telah meningkat. Ada sejumlah rencana berbeda yang dikeluarkan, termasuk pemanfaatan CO2 untuk mensintesis metanol. Penelitian ini bertujuan untuk menganalisis aspek keteknikan dari proses pembuatan baja menggunakan teknologi blast furnace yang dilengkapi dengan konversi CO2 untuk menghasilkan methanol. Dan menganalisis kelayakan ekonomi dari skenario tersebut dan membandingkannya dengan teknologi blast furnace konvensional. Simulasi dijalankan menggunakan aplikasi Aspen Plus V12 dan Microsoft Excel. Proses pembuatan baja berbasis bijih besi disimulasikan menggunakan model tekno-ekonomi lalu dibandingkan dengan blast furnace standar. Teknologi mutakhir yang dipertimbangkan adalah blast furnace dengan konversi CO2 menjadi metanol. Analisis dilakukan untuk mempertimbangkan aspek keteknikan dari skenario tersebut. Selanjutnya, analisis kelayakan ekonomi dilakukan untuk menentukan apakah skenario tersebut lebih menguntungkan dari proses blast furnace konvensional. Hasil penelitian ini menunjukan bahwa skenario yang diusulkan mampu menurunkan lebih dari 80 persen total emisi CO2 yang dihasilkan pada proses blast furnace dengan mensintesis CO2 yang dihasilkan menjadi methanol. Lalu skenario tersebut dapat menghasilkan Net Present Value sebesar $ 80.696.126 dengan Payback Period selama 9.32 tahun lalu Internal Rate of Return sebesar 9.51% dan Return On Investment sebesar 10.80%.

Recently, interest in shifting from primary steel manufacturing using fossil fuels to low-emission steel manufacturing has increased. Several different plans have been issued, including using CO2 to synthesize methanol. This study aims to analyze the technical aspects of the steelmaking process using blast furnace technology equipped with CO2 conversion to produce methanol. As well as analyzing the economic feasibility of the scenario and comparing it with conventional blast furnace technology. The simulation is run using Aspen Plus V12 and Microsoft Excel applications. The iron ore-based steelmaking process is simulated using a techno-economic model and compared to a standard blast furnace. The latest technology being considered is the blast furnace, with converting CO2 to methanol. The analysis was carried out to consider the technical aspects of the scenario. Furthermore, an economic feasibility analysis is conducted to determine whether this scenario is more profitable than the conventional blast furnace process. The results of this study indicate that the proposed scenario can reduce more than 80% of total CO2 emission produced in the blast furnace process by synthesizing the CO2 produced into methanol. Then the purposed scenario (S2) produce Net Present Value of $ 80.696.126. with 9.32 Payback Period, and 9.51% of Internal Rate of Return and 10.80% Return On Investment."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>