Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 165262 dokumen yang sesuai dengan query
cover
Hilda Auliana
"Dalam dokumen Global Tuberculosis Report 2022, World Health Organization (WHO) melaporkan bahwa Indonesia tercatat sebagai negara dengan beban kasus tuberkulosis (TB) terbanyak kedua setelah India pada tahun 2021 lalu, di mana terhitung dari estimasi 969.000 kasus penderita TB di Indonesia, terdapat 525.765 (54,3%) kasus diantaranya belum ditemukan dan diobati, ini berpotensi menjadi sumber penularan serta meningkatan risiko transmisi komunal jika tidak mendapatkan penanganan segera. Menanggapi hal tersebut, dengan kemajuan teknologi kecerdasan buatan yang ada serta melalui peran pencitraan medis sebagai salah satu metode skrining pendukung, dikembangkan sebuah model pendeteksian berbasis arsitektur U-Net yang mampu secara otomatis mengenali dan melokalisasi area berbagai jenis kelainan indikator TB paru pada citra rontgen thorax. Selain melakukan tuning parameter, dibandingkan beberapa kasus segmentasi semantik multi-kelas, diantaranya terdiri atas 14 kelas kelainan spesifik, 5 kelas kelompok kelainan, dan 3 kelas kelompok kelainan, serta kasus segmentasi semantik biner. Hasil memperlihatkan bahwa pada kasus multi-kelas, semakin sedikit kelas yang digunakan, maka semakin besar nilai dice score yang didapat, yaitu mencapai 0,71. Sementara, jika dibandingkan dengan kasus segmentasi biner, meski dice score mengalami peningkatan, namun berdasarkan hasil visualisasi, kasus segmentasi multi-kelas kurang mampu dalam mengenali kondisi paru normal atau tidak memiliki kelainan.

In the Global Tuberculosis Report 2022 document, the World Health Organization (WHO) reports that Indonesia is listed as the country with the second highest burden of tuberculosis (TB) cases after India in 2021, where from an estimated 969.000 cases of TB sufferers in India, there are 525.765 ( 54,3%) cases of which have not been found and treated, this has the potential to become a source of transmission and increase the risk of communal transmission if treatment is not immediately received. In response to this, with advances in existing artificial intelligence technology and through the role of medical imaging as a screening support method, a detection model based on the U-Net architecture was developed that can automatically recognize and localize areas of various types of pulmonary TB marker indicators on chest X-ray images. In addition to parameter tuning, several cases of multi-class semantic segmentation were compared, which consisted of 14 specific disorder classes, 5 class disorder clusters, and 3 class disorder clusters, as well as cases of binary semantic segmentation. The results reveal that in the multi-class case, the fewer classes used, the greater the dice score obtained, which is 0,71. Meanwhile, when compared with binary segmentation cases, even though the dice score has increased, based on visualization results, multi-class segmentation cases are less able to recognize normal lung conditions or have no abnormalities."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Zulhandani
"Pendahuluan: Indonesia adalah negara dengan kasus tuberkulosis (TB) terbanyak ketiga di dunia (sekitar 10% dari total kasus di dunia) dan 6,5% dari infeksi TB merupakan kasus TB ekstrapulmonal, dimana 50% diantaranya menyerang tulang belakang. Saat ini regimen pengobatan TB masih mengandalkan kombinasi Obat Anti Tuberkulosis (OAT) yang diberikan secara oral. Pemberian OAT dalam jangka panjang memiliki angka kejadian efek samping yang cukup tinggi sebesar 8,3%, sehingga perlu dicari alternatif laindalam pengobatan TB. Penelitian ini bertujuan untuk menilai penggunaan teknologi pelepasan obat terkontrol atau slow release sebagai modalitas terapi lokal pada infeksi TB muskuloskeletal khususnya tulang belakang. Dengan ditempatkannya rifampisin yang bersifat hidrofobik di dalam kapsulasi senyawa hidrofilik non-imunogenik serta non karsinogenik seperti Polyvinil Alcohol (PVA), diharapkan memiliki kemampuan slow releasesehingga dapat diimplantasi pada fokus infeksi sebagai terapi lokal selama tenggat waktu yang diharapkan tanpa pasien harus mengkonsumsi obat oral.
Metode: Penelitian ini merupakan penelitian uji eksperimental invivo pada 12 tikus Sprague Dawley betina berusia 5-7 bulan dengan berat 180 – 220 gram dengan menggunakan desain penelitian post test only control group. Evaluasi dilakukan dengan mengukur kadar rifampisin dalam jaringan tulang belakang serta kadar SGOT dan SGPT dalam darah. Analisis dilakukan menggunakan metode deskriptif dan uji perbandingan menggunakan SPSS 25.
Hasil: Penelitian dilakukan hewan uji dengan median usia 5 bulan (5 – 7) yang terdiri dari 12 subjek betina (100%). Rerata berat badan hewan uji yaitu 196.5±3.92 gram. Sebanyak 7 subjek penelitian memiliki berat badan diatas 200-gram dan 5 subjek lainnya dengan berat dibawah 200-gram. Hasil uji normalitas ditemukan adanya distribusi data yang tidak normal pada usia (sig. <0.05), sementara pada variabel berat badan ditemukan adanya distribusi data yang normal (sig. >0.05). Penilaian secara kualitiatif menunjukkan bahwa sampel bubuk tulang pada kelompok perlakuan lokal memperlihatkan warna lebih kemerahan jika dibandingkan bubuk tulang pada kelompok perlakuan oral. Namun dalam pemeriksaan kadar rifampisin secara kuantitatif menggunakan metode HPLC, menunjukkan tidak terdeteksi kadar rifampisin pada kedua kelompok dimana rifampisin seharusnya terdeteksi pada retention time untuk sekitar menit 15,06 dengan panjang gelombang 254nm. Pada uji hipotesis antara perlakuan dan penanda fungsi hati berupa SGOT dan SGPT dilakukan dengan uji t-test tidak berpasangan, menunjukkan hasil yang signifikan (p=0.005 dan p=0.002). Terdapat perbedaan bermakna pada kedua kelompok yang menjelaskan bahwa terdapat hubungan antara metode pemberian rifampisin secara peroral dengan implantasi lokal rifampisin terenkapsulasi PVA dimana angka SGPT pada sampel darah kelompok perlakuan oral menunjukkan angka yang lebih tinggi. Namun sebaliknya SGOT pada kelompok perlakuan lokal justru menunjukkan angka yang lebih tinggi.
Kesimpulan: Deteksi kandungan rifampisin pada sampel jaringan tulang belakang menggunakan metode HPLC pasca implantasi sediaan rifampisin terenkapsulasi PVA pada hari ke 14, belum mampu membuktikan terjadinya slow release di dalam jaringan hidup secara kuantitatif dan belum dapat dinilai lebih efektif dari segi penyerapan obat ke dalam jaringan tulang belakang jika dibandingkan dengan pemberian rifampisin secara oral. Namun pemberian rifampisin terenkapsulasi PVA secara lokal pada tulang belakang menunjukkan efek hepatotoksitas yang lebih rendah dibandingkan dengan pemberian rifampisin secara oral dibuktikan dengan meinigkatnya angka SGPT di dalam darah.

Introduction: Indonesia is a country with the third most cases of tuberculosis (TB) in the world (about 10% of worldwide TB cases) and 6.5% of TB infections are extrapulmonary, of which 50% affect the spine. Current reliance on combination of oral Anti Tuberculosis Drugs (ATD) and long term medication has given a fairly high incidence of side effects of 8.3%. Under these circumstances, it is necessary to look for other alternatives in TB treatment. This study aims to assess the use of controlled or slow release drug technology as a local therapy modality in musculoskeletal TB infection cases, especially the spine. With the encapsulation of hydrophobic drug substances inside a non-immunogenic and non-carcinogenic hydrophilic compound such as Polyvinyl Alcohol (PVA), it is expected to have a slow release capability so that it can be implanted in the focus of infection as local therapy during the expected deadline without having the patient to take oral medication.
Method: This study is an in vivo experimental study on 12 female Sprague Dawley rats aged 5-7 months weighing 180 – 220 grams using a post test only control group research design. The evaluation was carried out by measuring the level of rifampicin in spinal tissue and the level of SGOT and SGPT in the blood sample. We analyze the result using a descriptive method and a comparison test using SPSS 25.
Results: The study was conducted on Sprague Dawley rat with a median age of 5 months (5 – 7) consisting of 12 female subjects (100%). The average body weight of the test subject was 196.5±3.92 grams. A total of 7 study subjects weighed above 200-grams and 5 other subjects were weighed under. The results of the normality test found that there was an abnormal distribution of data for age (sig. <0.05), while the weight variable was found to have a normal distribution of data (sig. >0.05). The qualitative assessment showed that the bone powder samples in the local treatment group showed a more reddish color than in the oral treatment group. However, quantitative measurement using the HPLC method, showed no detectable levels of rifampicin in both groups where rifampicin should have been detected at 15.06 minutes of retention time with a wavelength of 254nm. The hypothesis test between treatment and liver function markers in the form of SGOT and SGPT was carried out using unpaired t-test, showing significant results (p = 0.005 and p = 0.002). There was a significant difference in the two groups which explained that there was a relationship between the method of giving rifampin orally and local implantation of PVA-encapsulated rifampicin where the SGPT number in the blood sample of the oral treatment group showed a higher number. On the other hand, the SGOT in the local treatment group actually showed a higher number.
Conclusion: Detection of rifampicin content in spinal tissue samples using the HPLC method after implantation of PVA-encapsulated rifampicin preparations on day 14 has not been able to prove its slow release capability in living tissue quantitatively and cannot concluded to be more efficient in terms of absorption into the spinal tissue compared to oral administration. However, local administration of PVA-encapsulated rifampicin in the spine showed a lower hepatotoxicity effect than oral rifampicin as evidenced by an increase of SGPT levels in the blood.
"
Jakarta: Fakultas Kedokteran Universitas Indonesia, 2021
SP-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Pravyanti Suci Syahphira
"TB atau Tuberkulosis adalah suatu penyakit infeksi yang disebabkan oleh bakteri micro tuberculosis dan dapat disembuhkan dengan pengobatan teratur, diawasi oleh tim Pemantauan Terapi Obat (PTO). Proses pemantauan terapi obat merupakan proses yang panjang dan komprehensif dan harus dilakukan secara berkesinmabungan untuk sampai ke tujuan terapi tercapai. Penilitian ini bertujuan untuk melakukan pemantauan terapi obat pada pasien yang telah diseleksidengan mengidentifikasi data terapi untuk menetapkan ketepatan terapi dan mengidentifikasi masalah terkait penggunaan terapi tuberkulosis pada pasien yang memiliki komplikasi penyakit. PTO dilakukan secara retrospektif pada salah satu pasien menggunakan data sekunder berupa rekam medik pasien dan hasil laboratorium. Berdasarkan pemantauan terapi obat yang dilakukan terhadap Tn. A dan dilakukan analisis DRP untuk aspek kesesuaian dosis dan potensi interaksi obat. Dosis OAT yang diberikan kepada pasien sudah memenuhi kesesuaian dosis namun ditemukan potensi terjadinya interaksi obat dengan kategori monitor yaitu interaksi antara obat atorvastatin dan digoxin, kemudian interaksi rifampisin dengan isoniazid dan rifampisin dengan pirazinamid dengan kategori interaksi serius. Diperlukan monitoring terhadap gejala interaksi obat yang mungkin muncul dari ketiga kemungkinan interaksi obat ini serta memastikan pasien mengonsumsi obat-obatan secara teratur sesuai jadwal.

TB or Tuberculosis is an infectious disease caused by micro tuberculosis bacteria and can be cured with regular medication, supervised by the Drug Therapy Monitoring (PTO) team. The process of monitoring drug therapy is a long and comprehensive process and must be carried out continuously to achieve the goals of therapy. This study aims to monitor drug therapy in selected patients by identifying therapeutic data to determine the appropriateness of therapy and identify problems related to the use of tuberculosis therapy in patients who have disease complications. PTO was performed retrospectively on one of the patients using secondary data in the form of patient medical records and laboratory results. Based on the monitoring of drug therapy carried out on Mr. A and DRP analysis was carried out for aspects of dosage suitability and potential drug interactions. The dose of anti-tuberculosis drugs given to patients met the appropriate dose, but there was a potential for drug interactions in the monitoring category, namely interactions between atorvastatin and digoxin, then interactions between rifampicin and isoniazid and rifampicin with pyrazinamide in the category of serious interactions. It is necessary to monitor the symptoms of drug interactions that may arise from these three possible drug interactions and ensure that patients take drugs regularly according to schedule."
Depok: Fakultas Farmasi Universitas Indonesia, 2022
PR-pdf
UI - Tugas Akhir  Universitas Indonesia Library
cover
Nisrina Dinda Dhamayanti
"Kanker kulit berasal dari lesi kulit yang memiliki penampilan atau pertumbuhan jaringan kulit yang tidak biasa. Melanoma adalah kanker kulit paling berbahaya dan menyebabkan banyak kematian jika tidak terdeteksi sedini mungkin. Pendeteksian sedini mungkin mendesak untuk dilakukan mengingat dapat meningkatkan angka survival rate sebesar 95%. Cara pendeteksiaan saat ini yang menggunakan metode manual masih kurang handal dan memakan banyak waktu. Teknologi deep learning dapat menjadi solusi yang dapat dimanfaatkan untuk melakukan segmentasi lesi kulit. Untuk penelitian ini, penulis mengusulkan penggunaan teknik Residual U-Net berbasis deep-convolutional neural network untuk segmentasi lesi kulit. Teknik Residual U-Net yang diusulkan menggunakan Residual Block, Group Normalization, dan Tversky Loss ke dalam arsitektur berbasis U-Net. Penggunaan Residual Block dapat mengatasi permasalahan error jaringan yang tinggi akibat adanya vanishing gradient serta meningkatkan ekstraksi representasi fitur gambar. Model dilatih dan dievaluasi menggunakan dataset yang berasal dari International Skin Imaging Collaboration (ISIC) 2018. Penelitian ini berhasil meningkatkan kinerja model dalam melakukan segmentasi lesi kulit dengan nilai dice similarity coefficient, jaccard index, accuracy, sensitivity, specificity, dan precision masing-masing, sebesar 0.86, 0.76, 0.93, 0.88, 0.96, dan 0.85.

Skin cancer originates from skin lesions that have an unusual appearance or growth of skin tissue. Melanoma is the most dangerous skin cancer and causes many deaths if not detected early. Early detection is urgent to do considering it can increase the survival rate by 95%. The current detection method using the manual method is still less reliable and takes a lot of time. Deep learning technology can be a solution that can be used to segment skin lesions. For this study, the authors propose the use of a Residual U-Net technique based on a deep-convolutional neural network for segmenting skin lesions. The proposed Residual U-Net technique uses Residual Block, Group Normalization, and Tversky Loss into a U-Net-based architecture. The use of Residual Block can overcome the problem of high network error due to the vanishing gradient and improve the extraction of image feature representation. The model was trained and evaluated using a dataset from the International Skin Imaging Collaboration (ISIC) 2018. This study succeeded in improving the model's performance in segmenting skin lesions with values ​​of dice similarity coefficient, jaccard index, accuracy, sensitivity, specificity, and precision of 0.86, 0.76 , 0.93, 0.88, 0.96, and 0.85.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nidya Anifa
"Diagnosis COVID-19 dapat dilakukan dengan berbagai metode, salah satunya dengan interpretasi citra medis rongga dada menggunakan machine learning. Namun, metode ini memiliki memerlukan waktu dan biaya yang besar, tidak ada standar dalam pengambilan gambar citra medis, dan pelindungan privasi pada data pasien. Model yang dilatih dengan dataset publik tidak selalu dapat mempertahankan performanya. Diperlukan metode pengklasifikasi berbasis multicenter yang dapat memiliki performa optimal pada dataset yang berbeda-beda. Skenario pertama dengan melatih model menggunakan arsitektur VGG-19 dan ConvNeXt dengan gabungan seluruh data dan masing-masing data. Lalu dilakukan fine tuning terhadap model yang dilatih pada gabungan seluruh data. Skenario kedua dengan Unsupervised Domain Adaptation berbasis maximum mean discrepancy dengan data publik sebagai source domain dan data privat sebagai target domain. Metode transfer learning dengan fine-tuning model pada arsitektur VGG-19 menaikkan train accuracy pada data Github menjadi 95% serta menaikkan test accuracy pada data Github menjadi 93%, pada data Github menjadi 93%, pada data RSCM menjadi 72%, dan pada data RSUI menjadi 75%. Metode transfer learning dengan fine-tuning model pada arsitektur ConvNeXt menaikkan evaluation accuracy pada data RSCM menjadi 73%. Metode unsupervised domain adaptation (UDA) berbasis maximum mean discrepancy (MMD) memiliki akurasi sebesar 89% pada dataset privat sehingga merupakan metode yang paling baik. Berdasarkan GRAD-CAM, model sudah mampu mendeteksi bagian paru-paru dari citra X-Ray dalam memprediksi kelas yang sesuai.

Diagnosis of COVID-19 can be done using various methods, one of which is by interpreting medical images of the chest using machine learning. However, this method requires a lot of time and money, there is no standard in taking medical images, and protecting patient data privacy. Models that are trained with public datasets do not always maintain their performance. A multicenter-based classification method is needed that can have optimal performance on different datasets. The first scenario is to train the model using the VGG-19 and ConvNeXt architecture by combining all data and each data. Then, the model trained using combined data is fine tuned. The second scenario uses Unsupervised Domain Adaptation based on maximum mean discrepancy with public data as the source domain and private data as the target domain. The transfer learning method with the fine-tuning model on the VGG-19 architecture increases train accuracy on Github data to 95% and increases test accuracy on Github data to 93%, on Github data to 93%, on RSCM data to 72%, and on data RSUI to 75%. The transfer learning method with the fine-tuning model on the ConvNeXt architecture increases the evaluation accuracy of RSCM data to 73%. The unsupervised domain adaptation (UDA) method based on maximum mean discrepancy (MMD) has an accuracy of 89% in private dataset making it the best method. Based on GRAD-CAM, the model has been able to detect parts of the lungs from X-Ray images in predicting the appropriate class."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Harahap, Adli Aulia Fattah
"Kanker kulit termasuk salah satu kanker dengan kasus terbanyak di seluruh dunia dan menjadi penyebab kematian terbanyak adalah kanker kulit melanoma. Pendeteksian dan diagnosis dini berhasil meningkatkan angka survival rate untuk melanoma tingkat awal sebesar 95%. Oleh karena itu, analisis gambar medis sangat penting dalam upaya pengobatan penyakit kulit sedini mungkin. Cara pendeteksiaan saat ini yang menggunakan metode manual masih kurang handal dan memakan banyak waktu. Adanya pengembangan teknologi deep learning dan computer vision dapat membantu dokter dalam melakukan segmentasi lesi kulit dengan lebih cepat dan akurat. Penelitian ini mengusulkan penggunaan arsitektur Recurrent Residual U-Net (R2U-Net) dalam melakukan tugas segmentasi lesi kulit. Arsitektur ini menggunakan recurrent residual block yang terinspirasi dari residual connection dan Recurrent Convolutional Layer (RCL) ke dalam arsitektur berbasis U-Net. Unit residual dengan RCL membantu mengembangkan model lebih dalam yang efisien. Dataset yang digunakan pada penelitian ini adalah dataset yang berasal dari International Skin Imaging Collaboration (ISIC) 2018. Penelitian ini berhasil meningkatkan kinerja model dalam memprediksi segmentasi lesi kulit pada nilai Dice Similarity Coefficient (DSC), jaccard index, akurasi, sensitivitas, spesifisitas, dan presisi masing-masing sebesar 88,16%, 79,03%, 94,07%, 87,25%, 96,98%, dan 89,50%, dengan rata-rata kenaikan sebesar 2,4%.

Skin cancer is one of the most common cancers in the world and the leading cause of death is melanoma. Early detection and diagnosis can increase the survival rate for early-stage melanoma by 95%. Therefore, analysis of medical images is very important in efforts to treat skin diseases as early as possible. The current detection method that uses the manual method is still less reliable and takes a lot of time. The development of deep learning technology and computer vision can assist doctors in segmenting skin lesions more quickly and accurately. This study proposes the use of the Recurrent Residual U-Net (R2U-Net) architecture in performing the task of segmenting skin lesions. This architecture uses a recurrent residual block inspired by the residual connection and recurrent convolutional layer (RCL) in a U-Net-based architecture. Residual units with RCL help develop efficient deeper models. The dataset used in this study is a dataset from the International Skin Imaging Collaboration (ISIC) 2018. This research succeeded in improving the model's performance in predicting skin lesion segmentation on the Dice Similarity Coefficient (DSC), jaccard index, accuracy, sensitivity, specificity, and precision values of each respectively 88.16%, 79.03%, 94.07%, 87.25%, 96.98%, and 89.50%, with an average increase of 2.4%."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Sianturi, Julius Hotma Baginda
"COVID-19 merupakan penyakit yang telah menjadi pandemi pada tahun 2020. Penyakit ini dinyatakan sebagai pandemi karena menjadi wabah yang sangat luas hingga seluruh dunia terpapar. Dalam usaha penekanan penyebaran penyakit COVID-19, banyak peneliti yang menerapkan deep learning untuk mendeteksi penyakit ini. Convolutional Neural Network(CNN) merupakan jenis deep learning yang paling banyak digunakan untuk usaha mengklasifikasi citra X-ray paru-paru. Algoritma yang dikembangkan pada penelitian ini menggunakan deep learning dengan model CNN ResNet152v2 dengan Python untuk bahasa pemrogramannya serta Keras Tensorflow sebagai API. penelitian ini melakukan beberapa ekperimen untuk meningkatkan akurasi dan performa dengan memvariasikan dataset serta parameter seperti epoch, batch size, optimizer. Performa terbaik didapatkan dengan pengaturan parameter pada jumlah dataset 3000, epoch 15, batch size 16, dan optimizer Nadam dengan nilai akurasi hingga 96%. Hasil akurasi ini merupakan peningkatan yang didapatkan penelitian terdahulu yang menggunakan model VGG16 dengan akurasi hingga 92%.

COVID-19 is a disease that has become a pandemic in 2020. This disease is declared a pandemic because it is an epidemic that is so widespread that the entire world is exposed. In an effort to suppress the spread of the COVID-19 disease, many researchers have applied deep learning to detect this disease. Convolutional Neural Network (CNN) is a type of deep learning that is most widely used to classify X-ray images of the lungs. The algorithm developed in this study uses deep learning with the CNN ResNet152v2 model with Python for the programming language and Keras Tensorflow as the API. This study conducted several experiments to improve accuracy and performance by varying the dataset and parameters such as epoch, batch size, optimizer. The best performance is obtained by setting parameters on the number of datasets 3000, epoch 15, batch size 16, and optimizer Nadam with an accuracy up to 96%. The result of this accuracy is an improvement obtained from previous studies using the VGG16 model with an accuracy of up to 92%."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Mahdia Aliyya Nuha Kiswanto
"Skripsi ini membahas mengenai penggunaan model segmentasi semantik UNet sebagai alternatif metode segmentasi wajah dan tangan gerakan isyarat SIBI (Sistem Isyarat Bahasa Indonesia) pada latar belakang kompleks. Penelitian dilakukan terhadap dataset gerakan isyarat SIBI milik Lab MLCV Fakultas Ilmu Komputer Universitas Indonesia. Dalam penelitian ini, dilakukan percobaan dengan tiga jenis konfigurasi UNet, yaitu UNet 4- level tanpa Batch Normalization, UNet 5-level tanpa Batch Normalization, dan UNet 4- level dengan Batch Normalization. Hasil segmentasi dari UNet konfigurasi terbaik kemudian dilakukan tahap pengenalan selanjutnya, yaitu ekstraksi fitur dengan MobileNetV2, penghapusan gerakan transisi dengan TCRF, dan gesture recognition dengan 2-layer biLSTM untuk mendapatkan hasil translasi serta evaluasi akhir. Selain itu, performa sistem dengan menggunakan metode segmentasi UNet dibandingkan dengan performa sistem dengan menggunakan metode segmentasi RetinaNet+Skin Color Segmentation. Hasil dari penelitian didapatkan bahwa konfigurasi UNet 4-level dengan Batch Normalization menghasilkan segmentasi yang sedikit lebih baik dibandingkan konfigurasi lainnya, yaitu dengan nilai IOU 0,9178% pada dataset berlatar belakang kompleks. Performa UNet terlihat baik pada saat kedua tangan berada di depan badan, dan menurun ketika tangan berada di posisi yang berdekatan dengan area kulit lainnya (lengan, leher, wajah). Didapatkan juga bahwa sistem pengenalan isyarat SIBI ke teks bahasa Indonesia dengan menggunakan metode segmentasi UNet berhasil memiliki performa yang lebih baik dibandingkan menggunakan metode segmentasi RetinaNet+Skin Color Segmentation, dengan nilai WER 2,703% dan SAcc 82,424% pada latar belakang kompleks. Didapatkan juga waktu komputasi UNet yang lebih cepat dibandingkan RetinaNet dengan waktu segmentasi 0,19643 detik per frame pada CPU NVIDIA DGX A100

This thesis discusses the use of the UNet semantic segmentation model as an alternative to hand and face segmentation methods for SIBI (Indonesian Signing System) on complex backgrounds. This research was conducted on SIBI gesture dataset by MLCV Lab (Faculty of Computer Science, Universitas Indonesia). In this study, experiments were conducted with three types of UNet configurations, namely 4-level UNet without Batch Normalization, 5-level UNet without Batch Normalization, and 4-level UNet with Batch Normalization. Segmentation results from the best UNet configuration is then carried out in the next stage of the system, namely feature extraction with MobileNetV2, epenthesis removal with TCRF, and gesture recognition with 2-layer biLSTM to obtain translation results and the final evaluations. In addition, system performance using the UNet segmentation method is compared to system performance using the RetinaNet+Skin Color Segmentation method. The results of the study showed that the 4-level UNet configuration with Batch Normalization produces slightly better segmentation than the other configurations, with an IOU of 0.9178% on a dataset with a complex background. Based on the sample results, UNet performance is good when both hands are on the front of the body, and it decreases when the hands are in close proximity to other skin areas (arms, neck, face). It was also found that the SIBI gesture recognition system to Indonesian text using the UNet segmentation method managed to have better performance than using the RetinaNet+Skin Color Segmentation, with a WER value of 2.703% and a SAcc of 82.424% on a complex background. It was also found that UNet processing time was faster than RetinaNet with a segmentation rate of 0.19643 seconds per frame on the NVIDIA DGX A100 CPU."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hajar Indah Fitriasari
"Pencitraan 'X-ray' dapat digunakan sebagai alternatif penunjang diagnostik klinis untuk mendeteksi penyakit COVID-19 pada paru-paru pasien. 'Machine learning' atau 'Deep Learning' akan disematkan pada 'computer-aided-diagnosis' (CAD) untuk meningkatkan efisiensi dan akurasi dalam menangani permasalahan membedakan COVID-19 dengan penyakit lain yang memiliki karakteristik yang serupa. Beberapa sistem kecerdasan buatan berbasis 'Convolutional Neural Network' (CNN) pada penelitian sebelumnya, memiliki akurasi yang menjanjikan dalam mendeteksi COVID-19 menggunakan citra 'X-ray' rongga dada. Dalam penelitian ini, dikembangkan 'classifier' berbasis CNN dengan teknik 'transfer learning', yakni memanfaatkan model CNN pra-terlatih dari ImageNet bernama Xception dan ResNet50V2 yang dikombinasikan agar sistem menjadi lebih akurat dalam kemampuan ekstraksi fitur untuk mendeteksi COVID-19 melalui citra 'X-ray' rongga dada. 'Classifier' yang dikembangkan terdiri dari 2 jenis, yakni 'classifier' yang disusun secara serial dan paralel. Pengujian dilakukan dalam 2 skenario berbeda. Pada skenario 1, digunakan 'dataset' dan pengaturan parameter yang mengacu pada penelitian sebelumnya, sedangkan skenario 2 dilakukan dengan menambahkan sejumlah citra kedalam 'dataset' baru serta pengaturan parameter yang berbeda untuk memperoleh peningkatan akurasi. Dari pengujian untuk kelas COVID-19 pada skenario 1, diperoleh 'classifier' paralel berhasil menggungguli 'classifier' lain dengan mencapai akurasi rata-rata 93,412% serta memperoleh 'precision', 'recall,' dan 'f1-score' masing – masing mencapai 96.8%, 99.6% dan 98%. Pada skenario 2, 'classifier' paralel mencapai akurasi rata-rata yang lebih tinggi, yakni mencapai 96,678% serta memperoleh 'precision', 'recall,' dan 'f1-score' yang cukup tinggi pula, yakni masing – masing mencapai 98.8%, 99.8% dan 99.4% untuk kelas COVID-19. Adanya penambahan jumlah 'dataset' pada skenario 2 dapat meningkatkan akurasi dari 'classifier' yang dikembangkan. Secara keseluruhan, 'classifier' paralel yang dikembangkan dapat direkomendasikan menjadi alat yang dapat membantu praktisi klinis dan ahli radiologi untuk membantu mereka dalam diagnosis, kuantifikasi, dan tindak lanjut kasus COVID-19.

X-ray imaging can be used as an alternative support clinical diagnostics to detect COVID-19 in the patient's lungs. Machine learning or Deep Learning will be embedded in computer-aided diagnosis (CAD) to increase efficiency and accuracy in dealing with problems distinguishing COVID-19 from other diseases that have similar characteristics. Several artificial intelligence systems based on the Convolutional Neural Network (CNN) in previous studies have promising accuracy in detecting COVID-19 using Chest X-ray images. In this study, a CNN-based classifier with transfer learning techniques was developed, which utilizes a pre-trained CNN model from ImageNet named Xception and ResNet50V2 combined that makes the system powerful using multiple feature extraction capabilities to detect COVID-19 through Chest X-ray images. There are 2 types of classifiers developed, classifiers arranged in serial and parallel. The testing in this study was carried out in two different scenarios. In the scenario 1, the dataset and parameter settings are used referring to previous studies, while the scenario 2 was carried out by adding several images to the new dataset and setting different parameters to obtain increased accuracy. From testing of the COVID-19 class in the scenario 1, the parallel classifier succeeded in outperforming other classifiers by achieving an average accuracy in 93.412% and also obtains precision, recall and f1-score, which reached 96.8%, 99.6%, and 98% respectively. In the scenario 2, the parallel classifier achieved a higher average accuracy of 96.678%, and also obtained quite high precision, recall and f1-score, which reached 98.8%, 99.8% and 99.4% for the COVID-19 class, respectively. The addition of the number of datasets in scenario 2 can increase the accuracy of the developed classifier. Overall, the developed parallel classifier can be recommended as a tool that can help clinical practitioners and radiologists to aid them in diagnosis, quantification, and follow-up of COVID-19 cases."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Tiara Adinda Putri
"Mata merupakan salah satu bagian tubuh yang penting pada hidup manusia. Menggunakan bantuan mata, kita dapat menjalankan berbagai macam aktivitas dengan mudah. Namun, banyak sekali penyakit yang dapat menyerang mata, salah satunya adalah mata kering. Sebuah studi yang ada telah mengkonfirmasi bahwa sebagian besar pasien dengan penyakit mata kering dilaporkan mengalami disfungsi kelenjar meibom. Oleh karena itu, sangat penting untuk mengevaluasi kinerja kelenjar meibom pada pasien mata kering. Akan tetapi, pada kenyataannya hasil evaluasi kelenjar meibom oleh tenaga profesional masih sangat subjektif. Seorang dokter mata bisa memiliki pendapat mengenai tingkat kerusakan kelenjar meibom yang berbeda dengan dokter lainnya. Sehingga, alat diagnostik yang efektif diperlukan untuk mengevaluasi kelenjar meibom agar terhindar dari hasil penilaian tenaga profesional yang subjektif. Oleh sebab itu, pada penelitian ini dilakukan segmentasi kelenjar meibom dengan bantuan deep learning untuk menghindari penilaian tenaga profesional yang subjektif. Penelitian ini menggunakan arsitektur yang bernama U-Net. Data yang dimiliki berjumlah 139 citra meibography berasal dari pasien penyakit mata kering dari Rumah Rumah Sakit Cipto Mangunkusumo Departemen Kirana yang terdiri dari 35 citra meibography kelopak mata atas pada mata kanan, 34 citra meibography kelopak mata atas pada mata kiri, 35 citra meibography kelopak mata bawah pada mata kanan, dan 35 citra meibography kelopak mata bawah pada mata kiri. Kemudian citra meibography melalui tahapan anotasi untuk mendapatkan ground truth dan di resize menjadi ukuran 256 x 256. Selanjutnya data tersebut mengalami augmentasi dengan teknik rotasi dan teknik horizontal flip. Sehingga total data citra meibography menjadi 417 citra. Pada penelitian ini data citra meibography dibagi menjadi 3 bagian yaitu data training, data validation, dan data testing. Pada kasus pertama, jumlah data training adalah 80% dari citra meibography yang dimiliki, data validation sebanyak 10% citra meibography dari data training, dan data testing sebanyak 20% citra meibography yang dimiliki. Pada kasus kedua, pembagian data training dan data testing masih sama akan tetapi pembagian data validation adalah 20% dari data training. Pada kasus terakhir pembagian data training dan data testing masih sama akan tetapi pembagian data validation adalah 30% dari data training. Dengan melakukan 5 kali percobaan untuk masing-masing kasus pembagian data, didapat bahwa kasus pertama menghasilkan rata-rata akurasi 94,50% dan rata-rata Intersection over Union (IoU) 72,70%, kasus kedua menghasilkan nilai rata-rata akurasi 94,49% dan rata-rata Intersection over Union (IoU) yaitu 73,86%, dan kasus terakhir memiliki rata-rata akurasi 94,14% dan Intersection over Union (IoU) 72,15%.

The eye is one of the essential body parts in human life. With the eye's help, we can carry out various activities easily. However, many diseases can attack the sights, including dry eyes. An existing study has confirmed that most patients with dry eye disease reported meibomian gland dysfunction. Therefore, it is crucial to evaluate the performance of the meibomian glands in dry eye patients. However, the results of the evaluation of the meibomian glands by professionals are still very subjective. An ophthalmologist may have an opinion regarding the level of meibomian gland damage that is different from other doctors. Thus, an effective diagnostic tool is needed to evaluate the meibomian glands to avoid subjective professional assessment results. Therefore, in this study, segmentation of the meibomian glands was carried out with the help of deep learning to prevent subjective professional judgments. This research uses an architecture called U-Net. The data is 139 meibographic images derived from dry eye patients from Cipto Mangunkusumo Hospital Kirana Department consisting of 35 meibographic images of the upper eyelid on the right eye, 34 meibographic images of the upper eyelid on the left eye, 35 meibographic images of the lower eyelid in the right eye, and 35 meibography images of the lower eyelid in the left eye. Then the meibography image goes through the annotation stages to get the ground truth and is resized to a size of 256 x 256. Furthermore, the data is augmented using rotation techniques and horizontal flip techniques. So, the total meibography image data becomes 417 images. In this study, meibography image data is divided into three parts: training data, validation data, and testing data. In the first case, the amount of training data is 80% of the meibography image, validation data is 10% of the meibography image from the training data, and testing data is 20% of the meibography image. In the second case, the distribution of training data and testing data is still the same, but the distribution of validation data is 20% of the training data. In the last case, the training data distribution and testing data are still the same, but the distribution of validation data is 30% of the training data. By conducting five trials for each case of data division, it was found that the first case produced an average accuracy of 94.50% and an average Intersection over Union (IoU) of 72.70%, the second case made an average accuracy value of 94.49% and the average Intersection over Union (IoU) is 73.86%, and the third case has an average accuracy of 94.14% and Intersection over Union (IoU) 72.15%."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>