Ditemukan 52053 dokumen yang sesuai dengan query
Hutahaean, William Yehezkiel
"Soft robotics merupakan bidang penelitian robot yang bertujuan untuk mengembangkan robot dalam aplikasi di berbagai bidang baru karena kemampuannya beradaptasi dan berinteraksi yang aman dengan manusia. Berbeda dengan robot pada umumnya yang merupakan robot kaku digunakan dalam berbagai bidang terutama otomasi manufaktur. Pada penulisan skripsi ini fokus utama ditujukan untuk membahas pengembangan kontrol dari robot berupa sarung tangan untuk rehabilitasi dengan menggunakan mekanisme pendukung. Mekanisme pendukung tersebut adalah sebuah soft robotic yang dikembangkan oleh peneliti di Harvard yang dinamai Fluid Origami-skeleton Artificial Muscles (FOAMs). Berdasarkan fokus tersebut, tujuan utama dari penelitian ini merupakan merancang dan mengimplementasikan sistem kontrol sebagai pendukung pergerakan soft actuator FOAMs sehingga memungkinkan gerakan yang tepat dan terkoordinasi. Sistem kontrol dirancang berdasarkan integrasi komponen-komponen utama sistem kontrol, yaitu feedback sensor, aktuator, dan mikrokontroler.
Desain sistem kontrol mengandalkan algoritma kontrol yang berdasarkan dengan PID, dengan komponen pompa sebagai integral dari sistem, dan valve sebagai derivative atau oposisi dari kegunaan pompa dan merupakan sebuah tujuan utama dari penulisan skripsi ini. Setelah melakukan pengujian, hasil pengujian tersebut menunjukkan keefektifan sistem kontrol dan kemampuan sistem untuk memberikan kesesuaian gerakan yang diinginkan. Dapat ditunjukkan juga bahwa soft actuator yang didukung dengan sistem kontrol mampu mengangkat beban 100 gram atau lebih daripada berat jari tangan pada umumnya dengan membutuhkan waktu hanya 13 detik pada kekuatan maksimum pompa (-60 kPa). Pengembangan sistem kontrol untuk soft robotic berbasis FOAMs merupakan sebuah langkah awal untuk menggapai potensi penuh dari bidang yang semakin berkembang ini. Pengembangan selanjutnya dari FOAM ini juga tidak hanya terhenti pada sebuah aplikasi ini saja, melainkan masih banyak potensi selanjutnya.
Soft robotics is a field of robot research that aims to develop robots in applications in various new fields because of their ability to adapt and interact safely with humans. In contrast to robots in general, which are rigid robots used in various fields, especially manufacturing automation. In this thesis, the main focus is aimed at discussing the development of control of robots in the form of gloves for rehabilitation using a support mechanism. The supporting mechanism is a soft robotic developed by researchers at Harvard called Fluid Origami-skeleton Artificial Muscles (FOAMs). Based on this focus, the main objective of this research is to design and implement a control system to support the movement of the FOAMs soft actuator to enable precise and coordinated movements.The control system is designed based on the integration of the main components of the control system, namely feedback sensors, actuators, and microcontrollers. The design of the control system relies on a PID-based control algorithm, with the pump component as the integral of the system, and the valve as the derivative or opposition of the pump's utility. After conducting the tests, the results showed the effectiveness of the control system and the ability of the system to provide the desired motion compliance. It can also be shown that the soft actuator supported with the control system is able to lift a load of 100 grams or more than the weight of a typical hand finger by taking only 13 seconds at the maximum power of the pump (-60 kPa). The development of a control system for soft robots based on FOAMs is a first step towards realizing the full potential of this growing field. Further development of FOAMs should not stop at this application, but there are many more potentials."
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Alexander Ronaldi
"Seiring dengan berkembangnya zaman, manusia juga semakin membutuhkan alat yang dapat membantu melakukan kegiatan sehari-hari. Robot merupakan alat yang sangat cocok untuk membantu manusia melakukan kegiatannya sehingga pengembangan teknologi robot pun juga semakin maju. Pada umumnya, jenis robot yang mendominasi ialah rigid robot yang merupakan robot yang terbuat dari material yang keras dan kaku. Penggunaan rigid robot berdampingan dengan makhluk hidup (manusia dan/atau hewan) dapat menimbulkan risiko cedera ketika berbenturan dengan robot. Untuk menghadapi kelemahan ini, soft robot berbasis pneumatik yang terbuat dari material yang fleksibel dan elastis dikembangkan. Peneliti dari Harvard University dan Massachusetts Institute of Technology mengembangkan soft actuator yang dinamakan FOAMs yang dapat diaplikasikan di berbagai bidang seperti sarung tangan rehabilitasi. Tujuan dari penelitian ini adalah memodifikasi bentuk geometri dari FOAMs untuk menghasilkan soft actuator yang dapat diaplikasikan pada sarung tangan rehabilitasi. Soft actuator yang diberi nama origami-skeleton soft actuator kemudian dilakukan pengujian tanpa beban, pengujian dengan pembebanan, dan pengujian sarung tangan rehabilitasi. Ditemukan bahwa soft actuator dapat menghasilkan bending angle 122.740 pada tekanan 60 kPa, dapat mengangkat beban 500 gram pada tekanan 60 kPa dengan bending angle 2.380, menghasilkan gaya sebesar 6.54 N, dan sarung tangan rehabilitasi dapat menggenggam dan mengangkat objek seperti botol minum, electrical tape, dan tetikus.
As time progresses, humans increasingly require tools to assist them in their daily activities. Robots are ideal devices for aiding humans in their tasks, leading to the advancement of robot technology. Typically, the dominant type of robot is the rigid robot, which is made of hard and inflexible materials. However, when these rigid robots interact with living beings such as humans or animals, there is a risk of injury upon collision. To address this drawback, researchers have been developing soft robot for example researchers from Harvard University and the Massachusetts Institute of Technology have developed a pneumatic-based soft robot known as FOAMs. FOAMs are designed using flexible and elastic materials, aiming to mitigate the risks associated with rigid robots when working alongside living organisms. The objective of this study was to modified the geometric shape of FOAMs to create a soft actuator suitable for rehabilitation gloves and also to investigate the applicability of the origami-skeleton soft actuator in rehabilitation gloves. The soft actuator underwent various tests, including unloaded testing, load testing, and hand rehabilitation glove testing. The results showed that the soft actuator achieved a bending angle of 122.74 degrees at a pressure of 60 kPa without load. It was capable of lifting a load of 500 grams at the same pressure with a bending angle of 2.38 degrees. Additionally, it produced a blocked force of 6.54 N. The hand rehabilitation glove was able to grasp and lift objects such as a water bottle, an electrical tape, and a computer mouse."
Lengkap +
Depok:
2023
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Ramlan Kusumayadi
"Skripsi ini membahas perancangan sistem aktuator berbasis motor servo untuk memenuhi kinerja yang diharapkan. Aktuator merupakan bagian untuk menggerakan posisi sirip (fin) dari suatu wahana terbang kendali, Diperlukan respon sistem kontrol yang cepat. Sistem aktuator yang dirancang adalah sistem lingkar tertutup dengan komponennya terdiri dari mikrokontroler, motor servo, gear, dan sensor rotasi. Sistem ini dikendalikan dengan pengendali PID untuk mendapatkan sudut pergerakan sirip yang diinginkan. Dari hasil uji coba sistem menunjukkan kinerja yang bagus dengan atau tanpa beban.
In this paper discusses the design of servo motor-based actuation system based to meet the desired performance. Actuator is a part of rocket to derive the fin angle position. It is a requirement to make fin movement in high speed. Actuator system has been designed as closed loop system including microcontroller, servo motor, gear, and a rotation sensor. The system is controlled by PID controllers to obtain the desired angle fin movement. From the test results show a good performance system with or without a load."
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2013
S43953
UI - Skripsi Membership Universitas Indonesia Library
Siregar, Ellan S.
"Prototipe sistem aktuator kendali sirip berbasis LabVIEW telah didesain dan dibuat. Sistem ini terdiri dari brushed DC motor, planetary gear, bevel gear, sensor rotasi dan perangkat lunak LabVIEW yang dipasang di komputer. Sistem ini dipergunakan untuk mengendalikan sudut putaran sirip. Kendali PID dipergunakan dalam sistem ini yang ditanamkan dalam mikrokontroler ATmega8538 dengan nilai Kp = 0.0037, Ki = 0.000022, dan Kd = 0.14985. Sudut referensi diberikan melalui LabVIEW dan diumpankan ke mikrokontroler melalui komunikasi serial. Dari hasil pengujian sistem diperoleh Tr = 0.42, Tp = 0.675, Ts = 0.8125, %OS = 5.375% dan steady state error = 14.75%.
Prototype of fin control actuator system based on LabVIEW has been designed and built. System consist of brushed DC motor, planetary gear, bevel gear, fin, electronic driver circuit, microcontroller, rotary sensor and software LabVIEW that installed in computers. The system is used to regulate fin angular position. PID control has been explored and embedded in microcontroller Atmega8535 with the value of Kp = 0.0037, Ki = 0.000022, and Kd = 0.14985. Angular position reference has been set in LabVIEW and fed to microcontroller via serial communication. From system testing result, it has shown Tr = 0.42, Tp = 0.675, Ts = 0.8125, %OS = 5.375% and steady state error = 14.75%."
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2012
S42643
UI - Skripsi Open Universitas Indonesia Library
Nicholas Gautama Chandra
"Kebutuhan oksigen untuk terapi oksigen meningkat karena terjadinya pandemi yang dimulai pada tahun 2020. Konsentrator oksigen merupakan sebuah opsi untuk melakukan terapi oksigen kepada pasien di rumah, akan tetapi untuk mendapatkan hasil yang terbaik, keluaran konsentrasi oksigen yang dihasilkan harus berada di atas 90%, maka dari itu dibutuhkan sebuah sistem monitoring untuk dapat memastikan keluaran konsentrator oksigen di atas 90% dan dapat melakukan perawatan yang dibutuhkan jika menurun. Pada penelitian ini, berhasil dirancang sebuah konsentrator oksigen yang dapat menghasilkan konsentrasi oksigen 93,1% pada 0,5 LPM yang memiliki fitur monitoring jarak jauh dengan berdasarkan ESP32 soft access point. Pembacaan hasil keluaran konsentrator oksigen dibaca dengan menggunakan sensor OCS-3F 3,1 dengan resolusi konsentrasi oksigen 0,1% dan laju alir 0,1 LPM. Sistem monitoring yang berhasil dirancang dapat menampilkan hasil keluaran konsentrasi oksigen dan laju alir dengan menggunakan layar LCD TFT dan juga pada sebuah laman web lokal yang di host dengan menggunakan ESP32 soft access point.
Concentrated oxygen used for oxygen therapy is increasing due to the pandemic that is happening in early 2020. An oxygen concentrator is an excellent alternative to oxygen tanks for household use. An oxygen concentration output must be greater than 90% for medical use to be most effective. To ensure a greater than 90% concentration of oxygen output, a monitoring system is needed to confirm the concentration level of the output oxygen. In this research, an oxygen concentrator with an output of 93.1% oxygen concentration at 0.5 LPM with wireless monitoring based on ESP32 soft access point has been successfully constructed. The oxygen concentrator’s output is measured using an oxygen sensor OCS-3F 3.1 with a resolution of 0.1% oxygen concentration and 0.1 LPM airflow. A monitoring system that displays oxygen concentration and airflow to an LCD TFT screen and a local web page hosted by ESP32 soft access point has also been successfully constructed."
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Anton Royanto Ahmad
"Fin Control Actuator System pada sebuah roket kendali merupakan hal yang penting karena pada modul ini roket dapat terbang sesuai arah yang kita inginkan dan dapat menyesuaikan diri dari keadaan sekitarnya. Pada penelitian ini, desain mekanik-elektrik pada fin control actuator system merupakan desain yang digunakan pada roket kendali RKX 200. Pada desain sebelumnya yang telah dilakukan masih belum mampu untuk mengendalikan roket dengan baik. Pemilihan motor, enkoder, sistem transmisi perlu dikaji ulang. Penelitian ini mencari kebutuhan torsi yang dilakukan dengan perhitungan numerik serta empiris, kemudian pemilihan motor serta sistem transmisi yang menggunakan roda gigi. Perancangan desain dilakukan dua kali untuk mendapatkan desain sesuai kebutuhan. Pembuatan prototype pada salah satu desain akan membantu dalam menguji performa pergerakkan sirip. Hasil dari pengujian ini memperlihatkan kecepatan respon kendali sangat cepat.
Fin Control Actuator System on guided missile are important thing because on that module the missile can fly in direction that we wanted. Mechanical-electrical design of the fin actuator control system is basic design of RKX 200 guided missile. In fact, that existing design is still not able to properly control the rocket. Selection of the motor, encoder, and transmission system should be reviewed. Started from identifying requirement torque by numerical and empirical calculations, then selecting motor and transmission systems, such as gears, should be done. The design planning should be done twice to get best design as requirement. Prototypes Making will help in testing performance of movement fin. Result of control test show the respone time of system very fast."
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2012
S1745
UI - Skripsi Open Universitas Indonesia Library
Nugroho Nandar Dyto
"Sebuah prototipe sistem pengendali posisi motor dc telah dirancang dan dibangun sebagai pengendali sistem aktuator pergerakan sirip pada roket kendali berbasis mikrokontroler ATmega yang menggunakan metode pengendalian logika fuzzy. Pengaturan posisi gerak motor dilakukan dengan mengatur tegangan motor dan menggunakan metode PWM (Pulse Width Modulation). Mekanisme umpan-balik sistem mengunakan sebuah sensor putaran yang membaca posisi dari motor dc. Metode fuzzy yang dirancang memiliki 2 nilai crisp input (error dan Δerror) dan satu nilai crisp output yaitu perubahan tegangan. Metode defuzzifikasi yang digunakan adalah metode centre of gravity (COG). Respon sistem ditampilkan dalam bentuk sudut posisi aktuator terhadap waktu dan didapatkan nilai Tr = 0,32 detik, Tp = 0,47 detik, Ts = 0,72 detik dengan nilai persentase overshoot sebesar 21,57% dan kesalahan tunak sebesar 20 %.
A prototype of dc motor position control system has been designed and built as a controller of fin control actuator system. This prototype uses fuzzy control method that has been embeded in ATmega microcontroller. Regulation of motor angular position has been inplemented by adjusting motor voltage and used PWM (Pulse Width Modulation). Feedback mechanism has been done using rotation sensor that reads the angular position of dc motor. Fuzzy method is designed to have two crisp input (error and Δerror) and one crisp output i.e voltage change. Defuzzification method used is Center Of Gravity (COG). From system respon, it has been shown that Tr = 0,32 sec, Tp = 0,47 sec, Ts = 0,72 sec, percentage of overshoot 21,57 % and steady-state error of 20 %."
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2012
S43328
UI - Skripsi Open Universitas Indonesia Library
Anwar Shiddiq Abdul Rachman
"Indonesia sedang mengembangkan teknologi roket kendali untuk mendukung sistem pertahanan. Roket dapat dikembangkan untuk alutsista (alat utama sistem senjata) sebagai pertahanan. Arah roket diatur oleh sirip yang mendapatkan masukan dari autopilot lalu diolah ke dalam mikrokontroler dan menjalankan aktuator untuk menggerakkan sirip. Skripsi ini membahas tentang pengendalian sirip menggunakan brushless DC motor dan AVR ATMega8535. Sirip bergerak sebesar +10o sampai -10o dengan pergerakan sudut sebesar 1o. Brushless DC motor yang digunakan sebagai aktuator membutuhkan 6 mosfet untuk menghasilkan 6 urutan sinyal yang dibutuhkan. Metode yang digunakan untuk pengendalian brushless DC motor menggunakan metode six-step. Untuk mengatur kecepatan brushless DC motor, delay diberikan pada tiap step. Semakin kecil delay, maka putaran motor akan semakin cepat. Brushless DC motor akan melambat saat sirip mendekati sudut yang diinginkan. Ketika terjadi simpangan sudut yang cukup besar, maka dibutuhkan delay yang kecil agar putaran cepat. Sebaliknya, saat simpangan sudut kecil, maka dibutuhkan delay yang besar agar putaran melambat dan tidak menyebabkan gerakan yang berlebih.
Indonesia has been developing rocket controlling technology for supporting military needs. Rocket is developed for military equipment. The direction of rocket is controlled by fin which has input command from the autopilot. That input is processed into microcontroller to move the fin. This paper explores rocket fin control using brushless DC motor and AVR ATMega8535. One fin moves from -10o to 10o. One movement of fin is set 1o. Brushless DC motor needs six mosfet to generate six steps signal. Six-step method is used to control brushless DC motor. Six-step?s delay is utilized to control speed of brushless DC motor. The smaller delay makes the rotation motor faster. Brushless DC motor will decrease the rotation speed when error comes to setpoint. When the deviation angle is too high, delay time is reduced to make higher rpm. Conversely, when deviation angle is small, delay time is increased to make lower rpm and then over movement will not occure."
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2012
S1687
UI - Skripsi Open Universitas Indonesia Library
Adrianov Alfa Yonathan Mailoa
"Perubahan requirement merupakan salah satu tantangan utama dalam pengembanganperangkat lunak. Penerapan kerangka kerja yang tepat diharapkan dapat mengurangi dampak dari perubahan tersebut. Penelitian ini mencoba merancang kerangka kerja yang tepat berdasarkan studi literatur dan pengolahan data dengan menggunakan teknik-teknik soft systems methodology (SSM). Kerangka kerja yang dihasilkan berupa model proses yang terdiri dari kegiatan, peran, dan artefak yang diperoleh dari studi literatur dan dikelompokkan berdasarkan tiga sudut pandang hasil analisis SSM. Diskusi kelompok terarah dengan praktisi yang mewakili ketiga sudut pandang tersebut menghasilkan kegiatan-kegiatan dari masing-masing sudut pandang yang efektif mengendalikan dampak perubahan requirement.
Requirement changes is one of the main challenges in software development. Application of an appropriate framework would mitigate the impact caused by the changes. This research is trying to design an appropriate framework based on literature study and data analysis using soft system methodology techniques. The framework is produced as a process model which consists of activities, roles, and artifacts found from literature study and grouped based on three viewpoint from SSM anlaysis. Focus group discussions with practitioners representing the three viewpoints gives as result the activities from each viewpoint that could effectively control the impacts of requirement changes."
Lengkap +
Jakarta: Fakultas Ilmu Kompter Universitas Indonesia, 2022
TA-pdf
UI - Tugas Akhir Universitas Indonesia Library
Sonki Prasetya
"Kendaraan berat seperti truk dan bus menggunakan jenis rem udara untuk mengurangi kecepatan sebagai bagian penting untuk keselamatan. Udara dialirkan ke silinder yang berfungsi sebagai penggerak untuk mendorong poros rem saat terjadi pengereman. Dorongan tersebut berakibat mengembangnya memperluas sepatu rem (brake-shoe) di dalam drum rem (drum-brake) untuk menciptakan aksi pengereman. Namun, kendaraan Listrik (EV) memiliki prioritas utama untuk menghemat energi yang tersimpan dalam baterai. Sistem pengereman memiliki karakteristik waktu reaksi yang terdiri dari reaksi sistem rem dan reaksi pengemudi. Reaksi sistem rem untuk kendaraan besar terutama yang menggunakan pneumatik tergolong lambat sementara reaksi pengemudi, selama dioperasikan oleh manusia akan selalu memiliki waktu yang tetap. Karenanya penelitian ini bertujuan untuk meningkatkan kinerja sistem pengereman terutama Bis listrik secara optimal. Strategi yang dilakukan adalah dengan membuat penyederhanaan sistem menjadi lebih ringkas, lebih ringan, menerapkan kendali yang tepat, menyematkan teknologi cerdas untuk melihat potensi penerapan sistem baru di masa mendatang. Karakteristik sistem pengereman udara (konvensional) dan sistem elektrik yang berbeda memerlukan manipulasi kendali dengan Pulse Width Modulation (PWM) untuk membuat pengereman sesuai standard. Hasilnya mengurangi waktu reaksi sistem rem yang disebabkan oleh hambatan transmisi sistem udara sampai 30%. Penelitian ini menambahkan metode cerdas yang disebut kontrol fuzzy untuk mendapatkan karakteristik sistem baru yang lebih halus dari sisi dinamiknya dibandingkan dengan sistem konvensional. Selanjutnya, metode smart menggunakan kecerdasan buatan (AI) Convolutional Neural Network (CNN) disematkan dengan memanfaatkan sebuah kamera stereo untuk membantu deteksi obyek didepan pengemudi dan memberikan respon yang lebih cepat dalam sinyal pengereman. Penerapan metode tersebut dapat mengurangi waktu reaksi pengemudi saat pengereman sampai dengan 80%. Sebagai tambahan, sistem ini mengurangi tahapan dalam proses pengereman konvensional yang berakibat pada pengurangan berat sistem hingga 90% dari sebelumnya serta penurunan konsumsi energi listriknya mencapai 40%.
Heavy vehicles such as trucks and buses use this type of air brake to reduce speed as an important part of safety. Air is flowed to the cylinder which functions as a driving force to push the brake shaft during braking. This impulse results in expanding the brake-shoe in the drum-brake to create the braking action. However, Electric vehicles (EV) have top priority to save energy stored in batteries. The braking system has a characteristic reaction time consisting of the brake system reaction and the driver's reaction. The reaction of the brake system for large vehicles, especially those using pneumatics, is relatively slow, while the reaction of the driver, as long as it is operated by humans, will always have a fixed time. Therefore, this study aims to improve the performance of the braking system, especially electric buses, optimally. The strategy taken is to make system simplification more concise, lighter, apply precise control, embed smart technology to see the potential for implementing new systems in the future. The different characteristics of the air braking system (conventional) and the electrical system require manipulation of the control with Pulse Width Modulation (PWM) to make braking system fit to the standard. The result is to reduce brake system reaction time caused by air system transmission resistance by up to 30%. This research adds an intelligent method called fuzzy control to obtain the characteristics of the new system which is smoother in terms of dynamics compared to conventional systems. Furthermore, the smart method using artificial intelligence (AI) Convolutional Neural Network (CNN) is embedded by utilizing a stereo camera to help detect objects in front of the driver and provide faster response in braking signals. The application of this method can reduce the driver's reaction time during braking by up to 80%. In addition, this system reduces the steps in the conventional braking process which results in a reduction in system weight by up to 90% from the previous one and a reduction in electrical energy consumption by up to 40%."
Lengkap +
Depok: Fakultas Teknik Universitas Indonesia, 2021
D-pdf
UI - Disertasi Membership Universitas Indonesia Library