Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 184771 dokumen yang sesuai dengan query
cover
Arya Inayatulloh
"Penelitian ini menggunakan sampel bijih nikel laterit yang telah dilindi dengan metode pelindian atmosferik di lab Badan Pengkajian dan Penerapan Teknologi (BPPT). Penelitian ini berfokus untuk mengendapkan pengotor pada PLS, terutama pengotor besi, yang bertujuan untuk menghasilkan mixed hydroxide precipitate pada produk akhirnya. Untuk mengendapkan pengotor tersebut, dilakukan proses yang disebut iron removal sebanyak tiga tahap, yaitu dengan secara berurutan dilakukan titrasi reagen kalsium karbonat (CaCO3) dengan kandungan 25%w/w, 15%w/w, dan 12,5%w/w kedalam PLS hingga mencapai pH 2, 3, dan 3,5. Selanjutnya sampel tersebut dipanaskan dengan temperatur 90oC selama 2, 1,5, dan 1 jam. Pada penelitian diakhiri dengan proses titrasi MHP dengan dilakukan titrasi reagen magnesia (MgO) dengan kandungan 20%w/w kedalam PLS hingga mencapai pH 7. Selanjutnya sampel tersebut dipanaskan dengan temperatur 50oC selama 0,5 jam. Secara keseluruhan hasil penelitian, ditemukan bahwa proses iron removal sebanyak 3 tahap mampu mengurangi kadar pengotor, terutama besi, secara signifikan. Kadar besi mampu berkurang dengan %recovery total mencapai 7,46%. Berbeda dengan kadar nikel dan kobalt yang banyak terbuang pada proses iron removal dengan %recovery nikel sebesar 66,63% dan kobalt sebesar 12,51%. Pada hasil proses titrasi MHP menunjukkan hasil yang belum optimal, hal tersebut diindikasikan oleh kadar nikel dan kobal yang tidak bertambah secara signifikan dan kadar pengotor yang masih ada pada MHP. Kadar nikel pada endapan hanya sebesar 19,3%.

This research used samples of lateritic nickel ore that had been leached using the atmospheric leaching method at Badan Pengkajian dan Penerapan Teknologi (BPPT) lab. This research focuses on precipitating impurities in PLS, especially iron impurities, which aims to produce mixed hydroxide precipitate in the final product. To precipitate these impurities, a process called iron removal was carried out in three stages, iron removal is carried out in series by titrating calcium carbonate reagent (CaCO3) with a content of 25%w/w, 15%w/w, and 12,5%w/w into PLS until it reaches a pH of 2, 3, and 3,5. Furthermore, the sample was heated to a temperature of 90oC for 2, 1,5, and 1 hours. The research ended with the MHP titration process by titrating magnesia reagent (MgO) with a content of 20% w/w into PLS until it reached pH 7. Then the sample was heated to a temperature of 50oC for 0,5 hour. Overall, the results of the study found that the 3-stage iron removal process was able to significantly reduce the levels of impurities, especially iron. Iron content can be reduced with total % recovery reaching 7,46%. In contrast to the nickel and cobalt content, which was mostly precipitate in the iron removal process, with % nickel recovery of 66.63% and cobalt of 12,51%. The results of the MHP titration process showed results that were not optimal, this was indicated by the levels of nickel and cobalt which did not increase significantly and the levels of impurities that were still present in the MHP. The nickel content in the precipitate is only 19,3%."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Erwin Hamijaya
"Rangkaian penelitian yang dilakukan merupakan investigasi yang didasarkan dari literatur yang tersedia. Menganalisa sebuah proses produksi mixed hydroxide precipitate (MHP), yang diawali dengan proses proses pelindian atmosferik yang menghasilkan pregnant leach solution (PLS), dilanjut dengan multi-stage iron removal yang bertujuan untuk mengurangi pengotor besi yang terdiri dari dua tahapan. Pada tahapan pertama, PLS akan dititrasi dengan kalsium karbonat (CaCO3) dengan kadar 25 wt% hingga pH 2 tercapai, setelah itu, sampel dipanaskan hingga 90oC selama 2 jam. Pada tahapan kedua, sampel dititrasi dengan CaCO3 berkadar 12,5 wt% hingga pH 2 tercapai, selanjutnya dipanaskan hingga temperatur 90oC selama 1 jam. Recovery total besi, nikel, kobalt, aluminium dan mangan dengan proses multi-stage iron removal masing-masing mencapai 23,711%, 57,395%, 34,202%, 50,048%, 14,201%, dimana hasil ini cukup baik namun tidak memuaskan karena loss nikel dan kobalt >1%. Hal ini kemungkinan terjadi karena selektivitas pengendapan yang rendah akibat penambahan agen pengendap yang terlau banyak. Terakhir, ditutup dengan proses presipitasi PLS yang telah direduksi kadar besinya, pada fase ini PLS hasil iron removal dititrasi dengan magnesia (MgO) dengan kadar 20 wt% hingga mencapai pH 7. Hasil yang diharapkan ialah terjadinya separasi antara pengotor dengan MHP yang mengandung banyak Ni dan Co. Namun, penelitian ini menemukan beberapa beberapa parameter yang menghalangi terjadinya separasi antara MHP dan pongotornya. Meningkatnya viskositas larutan pasca titrasi, dan tidak terjadinya separasi merupakan tanda dari tingginya derajat kejenuhan larutan. Kurang optimalnya proses pereduksian besi turut mempengaruhi tidak terjadinya separasi pada proses presipitasi yang membuat magnesia tidak bereaksi dengan Ni dan Co.

The series of research carried out is an investigation based on the available literature. Analysing a production process of mixed hydroxide precipitate (MHP), which begins with an atmospheric leaching process that produces a pregnant leach solution (PLS), followed by multi-stage iron removal which aims to reduce iron impurities which consists of two stages. In the first stage, PLS will be titrated with calcium carbonate (CaCO3) at a level of 25 wt% until pH 2 is reached, after that, the sample is heated to 90oC for 2 hours. In the second stage, the sample is titrated with CaCO3 at a level of 12.5 wt% until pH 2 is reached, then heated to a temperature of 90oC for 1 hour. The total recovery of iron, nickel, cobalt, aluminium and manganese with the multi-stage iron removal process reached 23.711%, 57.395%, 34.202%, 50.048%, 14.201%, where these results were quite good but not satisfactory due to loss of nickel and cobalt >1%. This may be due to the low selectivity of precipitation due to the addition of too much precipitating agent. Finally, with the PLS precipitation process where the iron content has been reduced, in this phase the iron removed PLS is titrated with magnesia (MgO) with a concentration of 20 wt% until it reaches pH 7. The expected result is separation between impurities and MHP which contains a lot of Ni. and Co. However, this study found several parameters that prevented the separation between MHP and its impurities. The increase in the viscosity of the solution after the titration, and the absence of separation is a sign of the high degree of saturation of the solution. The less than optimal iron reduction process also affects the absence of separation in the precipitation process which makes magnesia not react with Ni and Co"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Rizky Ananda
"Tingginya temperatur dalam proses peleburan/smelting bijih nikel laterit menyebabkan tingginya biaya/konsumsi energi. Penggunaan sulfur/sulfat mampu mengoptimalkan proses reduksi pada temperatur rendah melalui pembentukan senyawa FeS. Limbah biomass, yaitu arang cangkang sawit (ACS) memiliki potensi sebagai reduktor dalam proses reduksi bijih nikel laterit dikarenakan memiliki nilai fixed carbon dan nilai kalor yang cukup tinggi di bandingkan biomass yang lain, selain itu limbah ACS semakin melimpah seiring dengan makin tumbuh berkembangnya industri perkebunan sawit Indonesia. Oleh karena itu, dalam penelitian ini akan dipelajari proses selektif reduksi bijih nikel laterit menjadi konsentrat logam ferronikel pada temperatur rendah menggunakan reduktor biomass ACS dengan aditif elemental sulfur dan sodium sulfate.
Bijih nikel laterit kadar rendah (laterit jenis limonit), reduktor ACS, dan aditif sulfur-sodium sulfate digerus hingga berukuran kurang dari 100 mesh, kemudian diaduk secara merata dan di-aglomerasi dalam bentuk pellet berukuran 10-15 mm. Variasi penambahan elemental sulfur dilakukan sebanyak 0-5%S. Variasi jumlah ACS dilakukan berdasarkan stoikiometri sebesar 0,5-1,5% dengan penambahan aditif 10% Na2SO4. Proses reduksi terhadap pellet bijih nikel laterit dilakukan dengan menggunakan muffle furnace pada temperatur 950, 1050, 1150ºC selama 60 menit. Selanjutnya dilakukan proses pemisahan magnet (500 gauss) terhadap pellet hasil reduksi untuk memisahkan konsentrat-ferronikel (magnetik) dengan tailing-pengotor (non-magnetik). Bahan baku, pellet hasil reduksi, produk konsentrat dan tailing akan dikarakterisasi/dilakukan pengujian menggunakan XRF, XRD dan SEM-EDS.
Hasil yang diperoleh yaitu semakin tinggi temperatur reduksi maka terjadi kenaikan kadar dan perolehan nikel dalam konsentrat. Pada penelitian kali ini didapatkan kondisi optimum pada proses reduksi yaitu dengan temperatur 1150 ºC serta penggunaan 0,5% stoikiometri reduktor arang cangkang sawit (ACS) dan aditif 10% Na2SO4 tanpa penambahan sulfur (0%S), dimana kadar nikel yang diperoleh didalam konsentrat yaitu 2,852% dengan perolehan 73,51%. Saat penambahan 2,68% sulfur, kadar nikel yang didapatkan lebih tinggi yaitu 3% namun perolehan yang didapat yaitu hanya 64,84%. Maka dari itu, penambahan arang cangkang sawit (ACS) dan sulfur harus dilakukan dalam jumlah yang optimum.
"
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Idecia Amely
"Reduksi selektif merupakan chemical treatment yang mereduksi nikel secara selektif dan mencegah konversi material penganggu. Banyak indikator yang mempengaruhi efektivitas reduksi, salah satunya adalah basisitas. Penelitian ini bertujuan untuk mengetahui dosis reduktor yang tepat berdasarkan stoikiometri dan pengaruh basisitas dengan penambahan CaO berdasarkan basisitas ternary. Bijih nikel laterit jenis limonit, aditif Na2SO4, dan reduktor batu bara bituminous 0,71%S dengan variasi stoikiometri 0,1-0,5 digerus dan dibentuk menjadi pellet berukuran 10-15mm. Proses reduksi dilakukan pada suhu 1150℃ dengan waktu tahan 60 menit di muffle furnace. Selanjutnya dilakukan pemisahan magnetik dan karakterisasi dengan XRF, XRD, OM. Dilakukan pencampuran bahan baku dengan CaO berdasarkan basisitas ternary B 0,1-1,0. Metode dan karakterisasi yang diterapkan sama dengan uji stoikiometri reduktor. Hasil pengujian menunjukkan stoikiometri 0,1 merupakan stoikiometri optimal. Reduktor stoikiometri 0,1 menghasilkan nikel dengan kadar 5,88% dan recovery 88,71% sedangkan besi memiliki kadar 77,06% dan recovery 33,45%. Recovery besi yang rendah mengindikasikan selektifitas reduksi terhadap nikel. Seiring meningkatnya stoikiometri reduktor kadar nikel cenderung mengalami penurunan dan terbentuk senyawa fayalit. Basisitas 0,1 adalah basisitas optimal yang menghasilkan kadar nikel 6,082% dan recovery 88,83%, besi kadar 83,779% dan recovery 40,76%. Penambahan CaO yang berlebih mengakibatkan terbentuknya senyawa kalsium silikat.

Selective reduction is a chemical treatment that reduces nickel selectively and prevents transformation of confounding material. Many indicators affect the effectiveness of reduction, one of which is basicity. This study aims to decide the correct reducing agent dosage based on stoichiometry and the effect of basicity with the addition of CaO based on ternary basicity. Limonite nickel laterite ore, Na2SO4, and 0.71% S bituminous coal with stoichiometric variations of 0.1-0.5 are crushed and formed into 10-15mm pellets. The reduction process is carried out at a temperature of 1150 ℃ with a holding time of 60 minutes in the muffle furnace. Then the magnetic separation and characterization with XRF, XRD, OM were carried out. The raw material is mixed with CaO based on ternary basicity B 0.1-1.0. The method and characterization applied are the same as the reductor stoichiometry test. The results show that stoichiometry 0.1 is optimal stoichiometry and produces nickel with a grade of 5.88% and recovery of 88.71% while iron grade is 77.06% and recovery of 33.45% . Low iron recovery indicates nickel selective reduction, as stoichiometry increases the nickel grade tends to decrease and fayalite compounds are formed. Basicity 0.1 is the optimal basicity produces 6.082% nickel grade and 88.83% recovery, 83.777% iron grade and 40.76% recovery. Excessive addition of CaO results in the formation of calcium silicate compounds."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fikri Alfalah
"Indonesia merupakan salah satu dari 3 negara yang memiliki deposit bijih nikel laterit terbesar di dunia. Dengan meningkatnya kepentingan nikel pada trend dunia saat ini, Indonesia saat ini direncanakan akan membangun 30 smelter nikel baru hingga tahun 2024. Rencana ini memiliki potensial ekonomi yang tinggi tetapi terdapat satu faktor yang harus diantisipasi, yaitu terak yang akan dihasilkan oleh smelter-smelter nikel yang baru dibuat. Berdasarkan kementerian ESDM pada tahun 2019, tercatat sudah ada 17 juta ton terak yang dapat ditemukan pada kegiatan pengolahan dan pemurnian komoditas nikel. Penelitian ini menjelaskan tentang utilisasi kembali terak feronikel dengan mengekstraksi Fe dan Mg dari terak feronikel menggunakan pelindian asam klorida (HCl) dengan variasi konsentrasi zat pelindi 0,75, 1,125, 1,5, 1,875, dan 2,5 M, variasi temperatur pelindian 32 (temperature ruang), 50, dan 90 oC, serta variasi waktu pelindian 10, 20, 30, 60, dan 90 menit untuk mendapatkan hasil ekstraksi paling efisien. Karakterisasi yang digunakan pada penelitian kali ini adalah ICP-OES untuk sampel filtrat, XRD dan XRF untuk sampel terak feronikel awal dan residu hasil pelindian. Hasil Karakterisasi ICP-OES menunjukkan bahwa hasil ekstraksi Fe dan Mg terbesar berada pada variabel konsentrasi HCl 2,5 M, temperatur pelindian 90 oC, dan waktu pelindian 90 menit dengan hasil sebesar 92,61% untuk Mg dan 89,41% untuk Fe.

Indonesia is one of three countries that has the largest lateritic nickel ore deposits in the world. With the increasing importance of nickel in today’s world trends. Indonesia currently planning to build 30 new nickel smelters till 2024. This plan has a vast economic potential but there are one factor that need to be anticipated, namely the slag that will be produced by the new nickel smelter. According to ministry of ESDM in 2019, there are already 17 million tons of slag that can be found in the processing and refining of nickel commodities. This study describes the utilisation of ferronickel slag by extracting Fe and Mg from ferronickel slag using hydrochloric acid (HCl) leaching with variations in the concentration of leachate 0,75, 1,125, 1,5, 1,875, and 2,5 M, variation of leaching temperature 32 (ambient temperature), 50, and 90 oC, as well as variations in leaching time of 10, 20, 30, 60, 90 minutes to get the most efficient extraction results. The characterizations used in this study were ICP-OES for the filtrat sample, XRD and XRF for the initial ferronickel slag sample and leaching residue. The results of the ICP-OES Characterization showed that the largest extraction yields of Fe and Mg were in the variable leachate concentration of 2,5 M, leaching temperature of 90 oC, and leaching time of 90 minutes with yields of 92,61% for Mg and 89,41% for Fe.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Andrew
"Kegiatan penelitian yang disajikan dalam karya ilmiah ini menentukan kondisi terbaik dari serangkaian proses pengurangan besi dari larutan hasil lindi bijih nikel laterit. Larutan hasil lindi nikel laterit berasal dari bijih yang ada di wilayah Sulawesi di Indonesia dengan hidrometalurgi. Larutan hasil lindi awalnya dinetralkan dan dimurnikan dari pengotor besi dengan dua tahapan proses yang memanfaatkan kalsium karbonat 25 % w/w dan 12% w/w. Pemanasan juga dilakukan setelah proses penetralan hingga temperatur 90°C dan 70°C dalam waktu 2 jam dan 1 jam. Hasil penelitian menemukan bahwa kombinasi pH 2 dan 2,5 pada proses pengurangan besi tahap I dan II sebagai kondisi paling baik diantara percobaan-percobaan lain yang dilakukan pada penelitian ini. Pengurangan besi pada proses tersebut dapat mencapai 84,242% dari konsentrasi besi semula larutan hasil lindi. Penelitian ini juga menemukan beberapa parameter yang menghalangi optimalisasi proses pengurangan besi. Pengurangan konsentrasi nikel dan kobalt yang tinggi, pengentalan larutan pasca titrasi, endapan yang tidak kristalin menjadi ciri dari tingginya derajat kejenuhan larutan. Adapun pengaruh waktu retensi sewaktu penyimpanan larutan pasca titrasi juga turut mereduksi jumlah nikel dalam larutan.

The research work presented in this paper determined the best conditions at which the two-stages iron removal process was executed from the leach liquor of lateritic nickel ore. The leach solution was obtained from lateritic nickel ores from the Sulawesi region in Indonesia by performing hydrometallurgical methods. The leach solution was initially neutralized and purified from its iron impurities by a two-step process utilizing 25% w/w and 12,5% w/w calcium carbonate. Heating is also carried out after the neutralization process to a temperature of 90°C and 70°C within 2 hours and 1 hour. The study results found that the combination of pH 2 and 2.5 in the iron removal process stages I and II was the best condition among other experiments conducted in this study. The iron reduction in this process can reach 84.242% of the initial iron concentration from the leach solution. This study also found several parameters that held back the optimization of the iron removal process. High nickel and cobalt losses, post-titration thickening of the solution, and non-crystalline precipitates characterize the high degree of saturation of the solution. The effect of retention time during post-titration solution storage also increases the nickel loss."
Depok: Fakultas Teknik Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Robby Samuel S.
"ABSTRAK
Proses reduksi selektif bijih nikel laterit dengan penambahan aditif NaCl dan gas pereduksi CO, diikuti dengan proses separasi magnetik telah dipelajari dalam penelitian ini. Karakterisasi bijih menunjukan kandungan nikel sebesar 1,4% dan besi sebesar 50,5% dengan fasa-fasa dalam bijih yaitu gutit (FeOOH), lizardit (Mg3(Si2O5)(OH)4), olivin ((Fe,Mg)2SiO4), dan kuarsa (SiO2). Proses reduksi dilakukan dengan variasi temperatur 900, 1000, dan 1100 °C, waktu tahan 30-180 menit, dan dengan penambahan 10% aditif NaCl. Proses separasi magnetik yang dilakukan menggunakan metode basah dan kekuatan magnet sebesar 500 gauss untuk memisahkan produk konsentrat dan tailing. Bijih hasil reduksi dikarakterisasi dengan menggunakan pengujian metalisasi, X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) yang dilengkapi dengan Energy Dispersive X-Ray Spectroscopy (EDS) serta konsentrat dan tailing diidentifikasi dengan alat uji X-Ray Flourescence (XRF). Fasa yang terdapat dalam bijih hasil reduksi yaitu kamasit (FeNi), magnetit (Fe3O4), wustit (FeO), natrium klorida (NaCl) dan fayalit (Fe2SiO4). Hasil percobaan menunjukkan derajat metalisasi nikel dan besi meningkat seiring dengan meningkatnya temperatur dari 900-1100 °C dan waktu tahan reduksi dari 30-180 menit oleh karena semakin intensnya proses kloridasi, segregasi, dan reduksi pada bijih. Hal ini berdampak pada meningkatnya kadar nikel dan besi pada konsentrat hasil proses separasi magnetik. Perolehan nikel meningkat seiring dengan meningkatnya temperatur dan waktu tahan reduksi oleh karena semakin banyaknya nikel yang terbebas dari fasa pengandungnya, sementara fayalit semakin banyak terbentuk sehingga perolehan besi menurun. Kadar dan perolehan optimum yang didapat yaitu berturut-turut 2,8% dan 59,2% untuk nikel, dan 58,16% dan 34,27% untuk besi. Derajat metalisasi digunakan sebagai parameter kinetika reduksi dan didapatkan model Avrami-Erofeyev sebagai model yang merepresentasikan mekanisme nukleasi pada proses reduksi. Energi aktivasi yang didapat yaitu sebesar 38,1622 kJ/mol atau 9,12 kkal/mol dengan tahapan pengendali laju reaksi yaitu gabungan antara difusi gas dan reaksi kimia antarmuka.

ABSTRACTK
Selective reduction process of lateritic nickel ore using CO and NaCl additive were studied in this work. Ore characterization result shows the nickel grade of 1.4% and iron grade of 50,5% with phases contained in the ores were goethite (FeOOH), lizardite (Mg3(Si2O5)(OH)4), olivine ((Fe,Mg)2SiO4) and quartz (SiO2). The temperature of reduction process varied from 900, 1000, and 1100 °C with reduction time of 30-180 min and 10% NaCl additives. Magnetic separation process were done using wet methode and magnetic intensity of 500 gauss to separate concentrate and tailing. The reduced ore were characterisized using metallization test, X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) with Energy Dispersive X-Ray Spectroscopy (EDS) while the concentrate and tailing were identified using X-Ray Flourescence (XRF). Kamacite (FeNi), magnetite (Fe3O4), wustite (FeO), natrium chloride (NaCl) dan fayalite (Fe2SiO4) were the phases present in the reduced ore. The result shows that the degree of metallization of nickel and iron increases with the increasing temperature from 900 to 1100 °C and holding time from 30 to 180 minutes because of the increasing intensity of the chloridization, segregation and reduction process. This has an impact on increasing the grade of nickel and iron on the concentrate. The recovery of nickel was increased along with the increasing temperature and holding time because of the increasing amount of nickel liberated from its bearing phase, while fayalite were increasingly formed so that the recovery of iron was decreased. The optimum grade and recovery resulted from the experiment was 2.8% and 59.2% for nickel respcetively, and 58.16% and 34.27% for iron. The degree of metallization was used as reduction kinetics paramter and the model representing the reduction proces was Avrami-Erofeyef with its nucleation mechanism. The resulting activation energy of 38.1622 kJ/mol or 9,12 kkal/mol with combined gas diffusion and interfacial chemical reaction as the rate-controlling step."
2019
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Miftahurrahman
"Pengolahan bijih nikel laterit dengan metode pirometalurgi memerlukan suhu dan energi tinggi yang menyebabkan biaya proses mahal. Salah satu metode pengoptimalan temperatur reduksi bijih nikel adalah reduksi selektif dengan penambahan aditif sulfur atau sulfat dan reduktor batu bara antrasit dengan kandungan sulfur alami untuk mendorong pembentukan besi sulfida yang dapat memperbaiki pemisahan nikel dari bijih. Antrasit dipilih sebagai reduktor karena punya nilai karbon tetap dan energi pembakaran tinggi sehingga proses reduksi dapat berlangsung lebih baik. Pada penelitian ini, pengaruh kandungan sulfur dan suhu reduksi terhadap kadar dan perolehan dari nikel akan dipelajari. Bahan baku pada penelitian ini berupa bijih nikel laterit jenis limonit dan batu bara dengan ukuran kurang dari 100 mesh setelah penggerusan. Semua bahan baku dan aditif Na2SO4 sebesar 10% berat dicampurkan dan dipeletisasi hingga 10–15 mm. Variasi kandungan sulfur pada batu bara sebesar 2,68% dan 5%. Variasi penambahan batu bara sebesar 0,0625, 0,125, dan 0,25 stoikiometri. Proses reduksi pelet dilakukan dengan muffle furnace dengan temperatur 950, 1050, 1150ºC selama 60 menit. Pelet yang telah tereduksi kemudian digerus. Kemudian, proses pemisahan dilakukan dengan metode separasi magnetik basah untuk memisahkan konsentrat feronikel dan pengotor. Karakterisasi dengan XRD, XRF, dan mikroskop optik dilakukan pada bahan baku, pelet tereduksi, konsentrat feronikel, dan pengotor. Hubungan antara suhu reduksi berbanding lurus dengan feronikel yang didapatkan. Secara umum, pertambahan kandungan sulfur dapat meningkatkan ukuran butir feronikel sehingga kadar dan perolehan nikel naik. Kondisi reduksi optimal pada penelitian ini berada pada 1150ºC dengan kadar sulfur 5% dan penambahan reduktor 0.25 stoikiometri. Persentase kadar dan perolehan nikel pada keadaan ini secara berturut-turut sebesar 3,564% dan 95,97%.

Processing of laterite nickel ore by pyometallurgical method requires high temperature and energy so that the processing costs are costive. One method of optimizing the reduction temperature of nickel ore is the selective reduction with addition of a sulfur or sulfate additive and anthracite coal reducing agent with natural sulfur content which promote the formation of iron sulfide which can improve the separation of nickel from the ore. Anthracite is selected as a reducing agent because it has high fixed carbon value and combustion energy so that the reduction process can take place better. In this research, the effect of sulfur content and reduction temperature on the content and recovery of nickel will be studied. The raw materials in this study are limonititc laterite ore and coal with a size smaller than 100 mesh after grinding. All raw materials and 10%wt of Na2SO4 additive are mixed and pelletized up to 10–15 mm. The variations in sulfur content in coal are 2.68% and 5%. The variations in the addition of coal are 0.0625, 0.125, and 0.25 stoichiometry. Pellet reduction processes are done by using a muffle furnace with temperature 950, 1050, 1150ºC for 60 minutes. The reduced pellets are crushed to make them finer. The separation process using the wet magnetic separation method is carried out to separate the ferronickel concentrates and tailings. Characterizations with XRD, XRF, and optical microsope are carried out on raw materials, reduced pellets, ferronickel concentrates, and tailings. The relationship between the reduction temperature is proportional to the ferronickel obtained. In general, the increase in sulfur content can increase the grain size of the ferronickel so that nickel content and recovery increase. The optimal reduction state in this study was at 1150ºC with a sulfur content of 5% and the addition of a stoichiometric 0.25 reducing agent. The percentage of nickel content and recovery was 3.564% and 95.97%, respectively."
Depok: Fakultas Teknik Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Achmad Shofi
"Proses reduksi selektif dan pemisahan magnetik bijih nikel kadar rendah dengan kandungan Ni, Fe, Mg, dan Si masing-masing sebesar 1,4 , 50,5 , 1,81 , dan 16,5 telah dilakukan melalui mekanisme dua tahap peningkatan panas dengan penambahan aditif Na2SO4 dan NaCl. Na2SO4 dan NaCl diketahui mampu membebaskan nikel dan besi dari fasa olivin dan juga menekan metalisasi besi dengan proses sulfidasi, kloridasi, dan segregasi. NaCl yang ditambahkan bertujuan untuk menggantikan sebagian Na2SO4 untuk mengurangi kandungan sulfur sisa pada konsentrat yang dihasilkan. Penahanan pada temperatur awal pre-heating dilakukan untuk memaksimalkan reaksi reduksi nikel dalam fasa goethit sekaligus menekan reduksi besi oksida, sedangkan penahanan pada temperatur lanjut reduksi bertujuan untuk proses pembebasan nikel pada fasa lizardit dan mendukung pertumbuhan partikel feronikel dengan mekanisme aglomerasi partikel pada fasa leleh sistem Fe-FeS eutektik yang terbentuk. Oleh karena itu, kedua perlakuan pemanasan tersebut dapat meningkatkan kadar, perolehan dan derajat metalisasi dari nikel. Hasil optimal didapatkan pada bijih hasil reduksi dengan penambahan 11 satu stoikiometri arang cangkang sawit, 10 Na2SO4, dan 10 NaCl pada temperatur pemanasan awal 500 C selama 90 menit, diikuti dengan pemanasan lanjut selama 90 menit pada temperatur 1150 C, yang menghasilkan konsentrat feronikel dengan kadar dan perolehan nikel masing-masing sebesar 5,53 dan 85,89 , serta derajat metalisasi nikel sebesar 93,69 . Ukuran partikel feronikel yang dihasilkan pada sampel tersebut berukuran 61,75 m, jauh lebih besar dibandingkan ukuran butir sampel tanpa penambahan aditif atau temperatur reduksi yang lebih rendah 1050 C yaitu berturut-turut sebesar 5 m dan 28,5 m. Fasa-fasa yang terbentuk dengan penambahan aditif Na2SO4 dan NaCl yaitu kamasit FeNi , wustit FeS , fayalit, dan nepheline, yang merupakan indikasi berjalannya proses optimasi reduksi selektif dengan memaksimalkan pembebasan nikel dari fasa olivin dan menekan pembentukan logam besi sehingga perolehan, kadar, dan derajat metalisasi nikel meningkat.

Selective reduction and magnetic separation process of low grade nickel ore with Ni, Fe, Mg and Si contents of 1.4 , 50.5 , 1.81 and 16.5 has been conducted with two stage thermal upgrading mechanism with addition of Na2SO4 and NaCl. These two additives is known to be capable of liberating nickel and iron from olivine phase, as well as suppressing iron metallization with sulphidation, chloridization and segregation process. The addition of NaCl was aimed to substitute some part of Na2SO4 to reduce residual sulphur content of the produced ferronickel concentrate. The retention of roasting at initial temperature pre heating was done to maximize reductive reaction of nickel within goethite phase and to suppress the reduction of iron oxide, while the retention of roasting at final temperature reduction was done to focus the nickel liberation from lizardite phase and to promote ferronickel particle growth using agglomeration mechanism within the formed molten phase of Fe FeS eutectic system. Therefore, these two thermal treatment could improve the grade, recovery and metallization of nickel. The optimal result obtained was the reduced ore with 11 palm kernel shell reductor, 10 Na2SO4, and 10 NaCl at initial roasting temperature of 500 C for 90 minutes, followed by final roasting temperature of 1150 C for 90 minutes which resulted ferronickel concentrat with 5.53 grade, 85.9 recovery and 93.86 metallization. The resulting particle size of the aformentioned sample is 61.75 m, far bigger compared to sample without additives or lower reducing temperature 1050 C which is 5 m and 28.5 m, respectively. The formed phase of the reduced ore with the addition of Na2SO4 and NaCl was kamacite FeNi , wustite FeS , fayalite and nepheline, which indicates the optimization process of selective reduction through maximalizing nickel liberation from olivine and suppresing the formation of metallic iron resulting in improved nickel grade, recovery and metallization."
Depok: Fakultas Teknik Universitas Indonesia, 2018
T49604
UI - Tesis Membership  Universitas Indonesia Library
cover
Abdul Hatta Gunawan Wibowo
"Nikel sebagai salah satu logam strategis dan sangat berguna memiliki banyak manfaat untuk bidang industri berupa pembuatan baja (stainless steel), superalloy, otomotif, baterai, dan electroplating. Indonesia menjadi salah satu negara di dunia untuk dengan cadangan maupun sumber daya nikel laterit terbanyak. Pengolahan bijih laterit dapat menggunakan dua metode, yaitu pirometalurgi dan hidrometalurgi. Sebagian besar pengolahan bijih laterit di Indonesia menggunakan metode pirometalurgi.
Tujuan penelitian ini adalah mempelajari perilaku elektrokimia pelindian bijih nikel laterit dengan metode OCP, EIS, dan LP menggunakan asam klorida dengan konsentrasi 1M, 2M, 4M dan 6M, dan menghubungkan hasil metode OCP, EIS, dan LP terhadap perilaku nikel laterit yang dilakukan pelindian. Metodologi yang digunakan, yaitu preparasi asam klorida, preparasi sampel dengan pemotongan, metalografi, dan preparasi sampel studi elektrokimia. Karakterisasi sampel dengan SEM, EDAX, dan petrografi. Studi elektrokimia dari pelindian bijih nikel laterit dengan OCP, EIS, dan LP.
Hasil pengujian karakteristik elektrokimia OCP, EIS dan LP menunjukan pelarutan konsentrasi HCl 6M menghasilkan perilaku pelarutan yang paling baik. Peningkatan konsentrasi meningkatkan nilai OCP. Nilai R2 ata Rct pada konsentrasi HCl 6M paling rendah dengan nilai 523,07 Ω.
Hasil LP menunjukan peristiwa pasivasi pada setiap konsentrasi pelarutan. Laju pelarutan semakin besar dengan peningkatan konsentrasi. Laju pelarutan tertinggi pada konsentrasi HCl 6M sebesar 9,55 mm/year. Peningkatan konsentrasi HCl menyebabkan pemecahan lapisan pasif pada permukaan yang dapat dilihat dari kurva Nyquist, nilai R2 semakin rendah, nilai Q1 semakin tinggi dan nilai N semakin rendah. Ketiga pengujian elektrokimia menunjukan semakin tinggi konsentrasi maka semakin besar laju pelarutan dan pemecahan lapisan pasif pada permukaan.

Nickel as one of the strategic metals has many benefits for the industrial sector in the form of steel (stainless steel), superalloy, automotive, battery, and electroplating. Indonesia is one of the countries in the world with the largest reserves and resources of nickel laterite. Lateritic nickel ore processing can use two methods, that is pirometallurgical and hydrometallurgical. Most of the processing of lateritic nickel ore in Indonesia uses the pirometallurgical.
The purpose of this study was to study the electrochemical behavior of leaching of lateritic nickel ore with the OCP, EIS, and LP methods with 1M, 2M, 4M and 6M concentrations of chloric acid. The methodology used in this research is preparation of chloric acid solution, preparation samples by cutting, metallography, and preparation of electrochemical study samples. Characterization of laterite ore samples with SEM, EDAX, and petrography. Electrochemical study of dissolution lateritic nickel ore with OCP, EIS, and LP.
The test results of the electrochemical characteristics of OCP, EIS and LP showed that dissolution at the 6M HCl concentration produced the best dissolution behavior. The increasing concentration increased the value of OCP. The value of R2 or Rct at the lowest concentration of 6M HCl was 523.07 Ω.
The LP results showed passivation at each dissolution concentration. The dissolution rate was greater with increasing concentration. The highest dissolution rate occurred at 6M HCl concentration of 9.55 mm/year. Increased concentration of HCl causes the breakdown of passive layer on the surface of sample which can be seen from the Nyquist curve. Electrochemical tests show that increasing concentration linear to dissolution rate and passive layer more destructive on the surface.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>