Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 95004 dokumen yang sesuai dengan query
cover
Muhammad Daffa Ajiputra
"Indonesia merupakan salah satu negara pengekspor ikan terbesar di dunia yang membuat sektor perikanan Indonesia memiliki banyak ancaman. Illegal, unreported, unregulated (IUU) fishing adalah salah satu permasalahan yang memiliki dampak yang cukup signifikan karena membuat kerugian yang cukup besar di sektor perikanan Indonesia. Untuk mencegah permasalahan tersebut, sudah banyak solusi yang diajukan, salah satunya adalah penerapan teknologi seperti kamera pengawas, tetapi solusi tersebut belum memiliki dampak yang signifikan dalam mengurangi dan menghilangkan IUU fishing. Oleh karena itu, penelitian ini dilakukan untuk mengembangkan sistem deteksi multi objek untuk pendeteksian jenis ikan berbasis YOLOv7, sebuah model kecerdasan buatan yang dapat melakukan pendeteksian jenis ikan untuk melakukan pengawasan terhadap jumlah ikan yang ditangkap oleh nelayan sehingga IUU fishing dapat berkurang secara signifikan. Dari pengujian yang dilakukan, model YOLOv7 menjadi varian model YOLOv7 terbaik yang dapat digunakan untuk melakukan pendeteksian jenis ikan dengan nilai mAP yang dapat mencapai 86,1% dan inference time hingga 14,5 ms sehingga menghasilkan jumlah FPS yang dapat mencapai 69 FPS. Nilai tersebut berhasil didapatkan dengan menggunakan bentuk data polygon annotation, metode object detection, ukuran citra 800 piksel, dan jumlah epochs sebesar 1000 dengan patience 50. Namun, model YOLOv7 memiliki inference time yang sangat lambat hingga 797.6 ms ketika dipasang pada Jetson Nano meskipun akurasi pendeteksian memiliki hasil yang sama.

Indonesia is one of the world's largest exporters of fish, which exposes Indonesia's fishing sector to many threats. Illegal, unreported, unregulated (IUU) fishing is one of the problems that resulted in a significant impact in a form of a big loss that is created for the Indonesian fisheries sector. To prevent that problem, there are a lot of solutions that have been proposed, one of which is the application of technology such as surveillance cameras, but it still doesn't have a big impact to reduce and eliminate IUU fishing. Therefore, this research is conducted to develop a multi-object detection system for the detection of fish species based on YOLOv7, an artificial intelligence model that can detect a fish to supervise the number of fish that is caught by the fisherman so IUU fishing can reduce significantly. From the testing, the YOLOv7 model becomes the best YOLOv7 model variant that can be used to detect a fish with the value of mAP that can reach up to 86.1% and the value of inference time up to 14.5 ms that can produce an FPS total up to 69 FPS. The value can be achieved by doing some modifications in data annotation, the training model method, image size, and iteration on training. However, the YOLOv7 model has a very slow inference time up to 797.6 ms when it’s installed in Jetson Nano even though the detection accuracy has the same value."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ronald Grant
"Dengan memperhatikan serta menyusun pola makan, kesehatan tubuh dapat meningkat dikarenakan nutrisi yang didapatkan oleh tubuh. Pemanfaatan machine learning, melalui model deteksi multiobjek, dapat membantu pendeteksian berbagai jenis makanan hanya dengan input sebuah gambar. Dengan terdeteksinya jenis makanan digabungkan dengan output berupa nutrisi yang terkandung dalam makanan dapat membantu dalam mengatur pola makan. Pengaturan pola makan dengan memanfaatkan deteksi objek dapat dilakukan dengan pelatihan sebuah dataset dengan menggunakan algoritma YOLO. Pendeteksian makanan yang dilakukan dengan menggunakan algoritma YOLO memerlukan acuan evaluasi dengan tujuan meningkatkan akurasi dari deteksi yang dilakukan, yang mana merupakan alasan dari pengukuran mAP. Penggunaan arsitektur YOLOv7 terlihat dapat menghasilkan model yang lebih baik dibandingkan YOLOv5 dengan mAP 0,947. Penggabungan YOLOv7 dengan dataset yang berisikan multiclass single image juga berhasil dalam melakukan deteksi multi-object makanan sesuai dengan kategori yang telah ditentukan. Dengan tujuan penggunaan model oleh masyarakat luas, model deteksi jenis makanan diimplementasikan dalam bentuk aplikasi mobile dengan basis Java. Implementasi dalam bentuk aplikasi membuat masyarakat luas dapat memanfaatkan model deteksi objek sebagai salah satu acuan pemilihan pola makan yang lebih sehat.

By paying attention to and compiling a diet, body health can improve due to the nutrients the body gets. Utilization of machine learning, through a multi-object detection model, can help detect various types of food only by inputting an image. Diet adjustment using object detection can be done by training a dataset using the YOLO algorithm. Food detection carried out using the YOLO algorithm requires an evaluation reference with the aim of increasing the accuracy of the detection carried out, which is the reason for using mAP.. The use of the YOLOv7 architecture seems to produce a better model than YOLOv5 with a mAP of 0.947. Merging YOLOv7 with a dataset containing multiclass single images was also successful in detecting multi-object food according to predetermined categories. With the aim of using the model by the wider community, a food type detection model is implemented in the form of a mobile application based on Java. Implementation in the form of an application allows the general public to utilize the object detection model as a reference for choosing a healthier diet."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Ilham Maulana Sidik
"Live streaming merupakan salah satu metode transmisi data yang digunakan untuk menonton sebuah video. Transmisi live streaming akan mengirimkan file video secara sedikit demi sedikit kepada penonton secara langsung sehingga penonton dapat menyaksikan video yang ditransmisikan secara langsung atau disebut dengan real-time tanpa perlu mengunduh video sehingga video dapat disiarkan secara langsung. Pada saat ini live streaming merupakan salah satu bentuk konten video yang banyak diminati pada semua kalangan dan bentuk seperti siaran TV, streaming video game, video media sosial, hingga pengiklanan produk penjualan. Pada penelitian ini sistem pendeteksi komponen komputer sebagai produk penjualan video live streaming dilakukan dengan metode Object Detection dengan menggunakan model YOLOv7 yang merupakan model dari computer vision untuk dapat melakukan object detection secara real-time. Penelitian akan membandingkan variasi model dari YOLOv7 untuk menemukan varian yang paling sesuai untuk digunakan sebagai model pendeteksian pada video live streaming. Penelitian ini juga akan mencaritahu pengaruh dari resolusi dan juga jarak perekaman video terhadap tingkat akurasi model dengan melakukan ujicoba model terhadap video simulasi live streaming. Hasil percobaan membuktikan bahwa varian YOLOv7-Tiny menjadi yang paling sesuai untuk diimplementasikan kedalam video live streaming dikarenakan kecepatan pendeteksian yang lebih cepat dengan kecepatan 4.5 kali lebih cepat dari varian YOLOv7 dan sekitar 21.7 kali lebih cepat dari varian YOLOv7-X. Pengaruh jarak juga terbukti dengan menurunnya nilai mAP 0.5 yang dihasilkan model ketika jarak yang digunakan semakin besar dan perubahan resolusi juga terbukti berpengaruh terhadap viii kemampuan deteksi model dengan jumlah objek dan juga beban yang dihasilkan semakin besar seiring dengan meningkatnya resolusi yang digunakan.

Live Streaming is one of the data transmission methods used to watch a video. Live Streaming transmission will send video files bit by bit to the viewer directly so that the viewer can watch videos that are transmitted directly or referred to as real time without the need to download the video so that the video can be broadcast live. At this time Live Streaming is a form of video content transmission method that is in great demand among all groups and forms such as TV broadcasts, video game streaming, social media videos, and also product advertising. In this study, the detection system for computer component as selling product on video live streaming was carried out with Object Detection method using YOLOv7 model, which is an computer vision model capable for object detection on real-time video. This study will also find out the effect of resolution and video recording distance on the accuracy of the model by testing the model on live streaming video simulations. The experimental results prove that the YOLOv7-Tiny variant is the most suitable to be implemented into live streaming video due to faster detection speed with a speed 4.5 times faster than the YOLOv7 variant and around 21.7 times faster than the YOLOv7-X variant. The effect of distance is also evident by the decreasing of mAP 0.5 value which is produced by the model when the distance used is greater and changes in resolution are also proven to affect the detection ability of the model with the number of objects and also the resulting load is greater as the resolution used increases."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Karenina Kamila
"Sektor perikanan Indonesia merupakan salah satu sektor penting bagi kemajuan perekonomian Indonesia dikarenakan Indonesia yang memiliki luas laut yang sangat besar dan SDA ikan yang berlimpah. Namun, sampai saat ini perdagangan ikan ilegal masih sering terjadi di kalangan nelayan yang biasanya dilakukan di atas kapal walaupun sudah ada petugas pengawas. Untuk mengatasi masalah ini perlu adanya sistem pengawasan dengan menggunakan kamera CCTV dan artificial intelligence di atas kapal dengan harapan dapat mengurangi resiko kecurangan petugas setempat dan meningkatkan efektivitas pengawasan penangkapan ikan. Penelitian ini berfokus untuk mencari model dengan menyesuaikan beberapa hyperparameter untuk mendapatkan hasil yang terbaik dengan menggunakan algoritma YOLOv6 untuk object detection dan YOLOv8 untuk segmentation. Penelitian ini mendapatkan model terbaik untuk object detection menggunakan YOLOv6 dengan nilai mAP @0,5 sebesar 0,833, mAP @0,5-0,95 sebesar 0,63, F1-score sebesar 0,861 dan FPS 92 dan segmentation menggunakan YOLOv8 menghasilkan nilai mAP mask @0,5 sebesar 0,804, mAP mask @0,5-0,95 sebesar 0,426, mAP box @0,5 sebesar 0,843, dan mAP box @0,5-0,95 sebesar 0,561. Kedua versi YOLO tersebut dapat mengklasifikasi jenis ikan yang ditangkap oleh nelayan dengan harapan dapat mempermudah proses pencatatan dan penyimpanan data hasil penangkapan ikan.

The Indonesian fisheries sector is one of the important sectors for the progress of the Indonesian economy because Indonesia has a very large sea area and abundant fish resources. However, until now illegal fish trade is still common among fishermen, which is usually carried out on boats even though there are supervisors. To overcome this problem, it is necessary to have a surveillance system using CCTV cameras and artificial intelligence on board so that it will reduce the risk of fraud by local officers and increase the effectiveness of fishing supervision. This research focuses on finding a model by adjusting several hyperparameters to get the best results using the YOLOv6 algorithm for object detection and YOLOv8 for segmentation. This study found the best model for object detection using YOLOv6 with a mAP @0.5 value of 0.833, mAP @0.5-0.95 of 0.63, F1-score of 0.861 and FPS 92 and segmentation using YOLOv8 produces a mAP mask value @0.5 is 0.804, mAP mask @0.5-0.95 is 0.426, mAP box @0.5 is 0.843, and mAP box @0.5-0.95 is 0.561. The two YOLO versions can classify the types of fish caught by fishermen in the hope of facilitating the process of recording and storing data on fishing results.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Yusuf Abraham Bismo Kristanto
"

Seiring dengan perkembangan bidang computer vision terdapat lebih banyak solusi yang dapat diimplementasikan untuk bidang sehari-hari. Salah satu bidang yang paling erat dengan kegiatan sehari-hari adalah kegiatan mengkonsumsi makanan. Dalam memperhatikan pola makan, penting dilakukan proses mengidentifikasi jenis makanan yang dikonsumsi. Dengan memanfaatkan perkembangan model machine learning deteksi objek yang bekerja secara waktu langsung, YOLOv5 dapat digunakan untuk melakukan deteksi objek untuk dapat mengidentifikasi berbagai jenis makanan dalam suatu gambar. Dengan menggunakan YOLOv5, deteksi terhadap makanan yang kerap kali dikonsumsi oleh masyarakat Indonesia dapat dilakukan dan ditingkatkan akurasinya dengan pemrosesan gambar hingga mencapai nilai mAP 94,3%. 

Penggunaan implementasi model ini dalam aktivitas sehari-hari dapat memberikan nilai tambah kepada orang-orang yang ingin lebih memahami jenis makanan yang dikonsumsinya. Dari hasil pengujian user experience yang dilakukan terhadap aplikasi, hasil perbandingan terhadap benchmark mengindikasikan bahwa aplikasi memiliki kualitas penggunaan di atas rata-rata dengan nilai 1,37 untuk daya tarik, 1,58 untuk kejelasan, 1,23 untuk efisiensi, 1,38 untuk ketepatan, 1,13 untuk stimulasi, dan 1,01 untuk kebaruan.

With the advent of computer vision there are more solutions that can be implemented in everyday life. One of the areas most closely related to daily activities is the activity of consuming food. In paying attention to diet, it is important to identify the type of food consumed. By leveraging the development of object detection machine learning models that work in real time, YOLOv5 can be used to perform object detection to identify different foods within a single image. By using YOLOv5, detection of foods that are often consumed by Indonesian people can be carried out and the accuracy is increased by image processing up to a value of mAP 94.3%.
The use of this model's implementation in daily activities can provide added value to people who want to better understand the types of food they consume. From the results of user experience testing carried out on the object detection application, the results of comparisons against benchmarks indicate that the application has above average usage quality with a value of 1.37 for attractiveness, 1.58 for clarity, 1.23 for efficiency, 1.38 for accuracy, 1.13 for stimulation, and 1.01 for novelty.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-Pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Aldy Raja
"Klasifikasi aksi multi-objek berdasarkan video RGB aerial merupakan tantangan kompleks yang dapat berguna untuk pengembangan sistem keamanan. Terdapat dua pendekatan jaringan saraf tiruan yang umum digunakan dalam sistem pengenal berbasis kerangka, Convolutional Neural Network (CNN) dan Graph Convolutional Network (GCN). Pendekatan CNN lebih efektif dalam mempelajari fitur spatio-temporal, lebih kuat terhadap noise dalam estimasi pose, dan dapat menangani skenario multi-objek dengan komputasi yang lebih ringan. Penelitian ini meliputi pengembangan pengenal aksi manusia dengan pendeteksi spatio-temporal berbasis kerangka menggunakan pendekatan 3D Convolutional Neural Network (3D-CNN). Pendeteksi spatio-temporal memungkinkan sistem untuk mengenali tiap-tiap aksi yang simultan dilakukan oleh multi-objek dalam satu rekaman video. Percobaan dilakukan menggunakan sejumlah pre-trained dataset dan menggunakan dataset video RGB aerial primer yang dilatih terhadap model pengenal aksi berbasis video frontal, dengan menerapkan metode transfer learning. Proses tranfer learning dilakukan dengan dataset khusus untuk menghasilkan model pelatihan yang memiliki akurasi tinggi. Pelatihan memberi keluaran berupa model jaringan saraf tiruan dengan nilai akurasinya. Pengujian dilakukan menggunakan data video untuk mengetahui ketepatan model. Dari model yang diperoleh, akan dilakukan analisis terhadap keberhasilan dan keakuratan metode dalam mengenali aksi manusia.

Multi-object action recognition based on aerial RGB video is a complex challenge that can be useful for security system development. There are two commonly used artificial neural network approaches in skeleton-based recognition systems, Convolutional Neural Network (CNN) and Graph Convolutional Network (GCN). CNN approach is more effective in learning spatio-temporal features, more robust to noise in pose estimation, and can handle multi-object scenarios with lighter computation. This research involves developing a human action recognition with skeleton-based spatio-temporal detection using a 3D Convolutional Neural Network (3D-CNN) approach. Spatio-temporal detection allows the system to recognize each simultaneous action performed by multiple objects in a single video footage. Experiments were conducted using a number of pre-trained datasets and using a primary aerial RGB video dataset trained on a frontal video-based action recognition model, by applying the transfer learning method. The transfer learning process is performed with a specific dataset to produce a high-accuracy training model. The training outputs an artificial neural network model with its accuracy value. Testing is done using video data to determine the accuracy of the model. From the model obtained, the success and accuracy of the method in recognizing human actions will be analyzed."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Panggabean, Timothy Christian
"

Salah satu permasalahan utama yang sedang dihadapi oleh Kementrian Kelautan dan Perikanan Republik Indonesia (KKP) adalah maraknya kejadian Illegal, Unreported, and Unregulated (IUU) fishing yang terjadi pada perairan Indonesia. Kejadian ini menimbulkan banyak kerugian bagi Indonesia, terutama dalam aspek sosial, ekologi, dan ekonomi. Untuk mengatasi masalah ini, terutama unreported fishing, dirancanglah sebuah sistem yang dapat digunakan untuk memonitor penangkapan ikan, sekaligus melakukan deteksi dan klasifikasi terhadap jenis ikan hasil tangkapan di atas kapal. Sistem dirancang menggunakan konsep object detection dan instance segmentation, dua bidang dari machine learning, menggunakan model YOLOv5 dan varian-variannya yang merupakan salah satu model dari keluarga YOLO (You Only Look Once) yang paling baik dari segi kecepatan dan akurasi. Dengan adanya sistem tersebut, diharapkan bahwa hasil tangkapan kapal di perairan Indonesia dapat bersifat lebih legal, teratur, dan sesuai dengan yang dilaporkan kepada KKP. Sistem terbaik dari penelitian ini dihasilkan menggunakan model instance segmentation yang mendapatkan nilai mAP50 0,834, mAP50-95 0,544, F1-score 0,848, dan kecepatan inferensi 232,6 fps untuk partisi validation, dan mAP50 0,797, mAP50-95 0,531, F1-score 0,802, dan kecepatan inferensi 250,0 fps untuk partisi testing pada hasil bounding box, serta nilai mAP50 0,739, mAP50-95 0,36, F1-score 0,789, dan kecepatan inferensi 232,6 fps untuk partisi validation, dan mAP50 0,711, mAP50-95 0,335, F1-score 0,746, dan kecepatan inferensi 250,0 fps untuk partisi testing pada hasil segmentation mask. Selain itu, model tersebut juga mendapatkan akurasi 60% pada tahapan perbandingan dengan model object detection.


One of the main problems the Indonesian Ministry of Marine Affairs and Fisheries (KKP) is currently facing is the abundance of Illegal, Unreported, and Unregulated (IUU) fishing instances happening in Indonesian waters. This phenomenon creates a lot of problems for Indonesia, mainly in the social, ecological, and economical aspects. To overcome these problems, mainly unreported fishing, a system that can be used to not only monitor the fishing process, but also to detect and classify the types of fish that are caught by that boat was created. This system is based on object detection and instance segmentation, both fields of machine learning, using the YOLOv5 model and its variants, which are some of the fastest and most accurate models from the YOLO (You Only Look Once) family. With this system, it is hoped that fish caught in Indonesian waters can be more legitimate, regulated, and reported correctly to the KKP. The best system from this research is created using an instance segmentation model with mAP50 0.834, mAP50-95 0.544, F1-score 0.848, and inference speed 232.6 fps for validation scores, and mAP50 0.797, mAP50- 95 0.531, F1-score 0.802, and inference speed 250.0 fps for testing scores on the bounding box results, as well as mAP50 0.739, mAP50-95 0.36, F1-score 0.789, and inference speed 232.6 fps for validation scores, and mAP50 0.711, mAP50-95 0.335, F1-score 0.746, and inference speed 250.0 fps on the segmentation mask results. The model also achieved an accuracy of 60% in the comparison phase against the object detection model.

"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Hansen Jonathan
"Electronic traffic law enforcement (ETLE) merupakan solusi yang diharapkan membantu mengurangi pelanggaran lalu lintas. Dengan ETLE, kemacetan akibat tindakan polisi untuk memberhentikan kendaraan langsung di tempat serta terjadinya tindakan suap dapat dihilangkan. Salah satu hal penting pada ETLE adalah identifikasi kendaraan pada citra atau video seperti pelat kendaraan, kondisi pengemudi dan lain sebagainya. Sebelum identifikasi, model harus mendeteksi terlebih dahulu mana bagian yang ingin diidentifikasi. Deteksi pelat mobil pada citra mobil merupakan salah satu tantangan yang berat. Penelitian ini dilakukan dengan data yang tergolong kecil, sehingga terlihat apakah model dapat berjalan dengan baik atau tidak. Analisis kinerja model dapat dilihat dari kurva yang dihasilkan model YOLOv7 beserta hasil uji yang dilakukan. Adanya penelitian ini diharapkan dapat memberi wawasan yang lebih baik dalam pengembangan dan peningkatan model deteksi objek yang efisien dan akurat di masa depan.

Electronic Traffic Law Enforcement (ETLE) is a solution that is expected to help reduce traffic violations. With ETLE, traffic jams due to police action stop vehicles right where they occur and acts of bribery can be eliminated. One of the important things in ETLE is vehicle identification on images or videos, such as vehicle plates, driver conditions, and so on. Before identification, the model must first detect which part it wants to identify. The detection of car plates on car images is a formidable challenge. This research was conducted with relatively small data, so it showed whether the model works well or not. An analysis of the performance of the model can be seen from the curves that are produced by the YOLOv7 model, along with the results of the tests that were carried out. The existence of this research is expected to provide better insight into the development and improvement of efficient and accurate object detection models in the future."
Depok: Fakultas Matematika Dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Zufar Ashshiddiqqi
"Indonesia merupakan negara maritim terbesar di dunia dengan banyak sekali ikan yang hidup di perairan Indonesia Hal ini membuat sektor perikanan Indonesia memiliki banyak ancaman. Illegal, unreported, unregulated (IUU) fishing adalah salah satu permasalahan yang memiliki dampak yang cukup signifikan karena membuat kerugian yang cukup besar di sektor perikanan Indonesia. Untuk mencegah permasalahan tersebut, sudah banyak solusi yang diajukan, salah satunya adalah penerapan kuota untuk operasi penangkapan ikan serta pemasangan kamera pengawas, namun solusi tersebut belum memiliki dampak yang signifikan dalam mengurangi dan mencegah terjadinya IUU fishing. Oleh karena itu, penelitian ini dilakukan untuk mengembangkan sistem deteksi jenis ikan hasil tangkapan. Sistem dirancang menggunakan konsep object detection dan instance segmentation yang merupakan sebuah bidang dari machine learning, menggunakan toolbox MMDetection dengan algoritma Faster R-CNN dan GFL untuk metode object detection dan algoritma Mask R-CNN untuk metode instance segmentation. Dimana sistem tersebut merupakan model kecerdasan buatan yang dapat melakukan pendeteksian ikan untuk melakukan pengawasan terhadap jumlah ikan yang ditangkap oleh nelayan sehingga IUU fishing dapat berkurang secara signifikan. Sistem terbaik dari penelitian ini dihasilkan menggunakan model instance segmentation yang mendapatkan nilai mAP @50 0,758, besar F1-Score 0,761, dan membutuhkan waktu untuk pelatihan selama 7 jam 32 menit. Selain itu, model tersebut juga mendapatkan akurasi yang lebih baik sebanyak 20% dari perbandingan dengan model object detection.

Indonesia, as the world's largest maritime country, is home to a vast variety of fish species in its waters. This reality poses numerous threats to Indonesia's fisheries sector. One significant challenge is illegal, unreported, and unregulated (IUU) fishing, which has considerable detrimental effects and causes substantial losses to the Indonesian fisheries industry. Several solutions have been proposed to address this problem, including the implementation of fishing quotas and the installation of surveillance cameras. However, these solutions have not yielded significant impacts in reducing and preventing IUU fishing. Hence, this research aims to develop a fish species detection system. The system is designed based on the concepts of object detection and instance segmentation, which are subfields of machine learning. The research utilizes the MMDetection toolbox with the Faster R-CNN and GFL algorithms for object detection, as well as the Mask R-CNN algorithm for instance segmentation. This artificial intelligence-based system enables the detection of captured fish to monitor the quantity of fish caught by fishermen, thereby significantly reducing IUU fishing. The research's best-performing system employs the instance segmentation model, achieving an mAP@50 score of 0.758, an F1-Score of 0.761, and requires a training time of 7 hours and 32 minutes. Moreover, this model also demonstrates a 20% improvement in accuracy compared to the object detection model."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Bisyron Wahyudi
"ABSTRAK
Salah satu komponen penting dalam Sistem Monitoring Keamanan Jaringan adalah Intrusion Detection System IDS yang berfungsi untuk mendeteksi setiap potensi serangan yang mengancam keamanan jaringan. Keunggulan sebuah IDS ditentukan oleh kemampuannya untuk mendeteksi serangan siber secara akurat dan mudah beradaptasi terhadap perubahan lingkungan sistem yang terus berkembang. Sebuah IDS yang akurat mampu mendeteksi berbagai jenis serangan secara tepat dengan sedikit kesalahan deteksi false alarm .Penelitian ini merancang dan mengimplementasikan metode machine learning ke dalam IDS yang digunakan untuk mendeteksi serangan dalam jaringan sebenarnya secara akurat dan cepat. Dalam pengembangan model machine learning untuk IDS ini digunakan dataset KDDCUP rsquo;99 dan NSL-KDD. Dengan melakukan analisis pemilihan fitur diperoleh subset 28 fitur dari total 41 fitur dataset KDD yang paling relevan dan dapat diimplementasikan dalam jaringan sebenarnya. Dalam pengembangan model machine learning diperoleh hasil bahwa metode terbaik adalah menggunakan SVM.Pada tahap implementasi digunakan metode multi-stage detection yang memberikan hasil deteksi serangan yang lebih cepat dan akurat. Hasil ujicoba model IDS yang telah dikembangkan menggunakan metode machine learning dengan implementasi multi-stage detection mampu mendeteksi serangan dengan tingkat akurasi sampai 99,37 . Lebih jauh lagi, kecepatan proses deteksi meningkat dengan rata-rata 24 pada data testing dan rata-rata 10 pada lingkungan jaringan sebenarnya.

ABSTRACT
An important component in Network Security Monitoring System is Intrusion Detection System IDS . IDS serves to detect any potential attacks that threaten network security. The reliability of an IDS is determined by its ability to detect cyber attacks accurately, and to dynamically adapt to ever-evolving system environment changes. An accurate IDS is able to detect different types of attacks appropriately with minimum false alarm.This research designs and implements machine learning method into IDS to detect actual network attacks accurately and quickly. In the development of machine learning model for IDS, KDDCUP 39;99 and NSL-KDD dataset are used. By performing feature selection analysis, a subset of 28 most relevant features of a total of 41 features of KDD dataset is obtained and can be implemented in the actual network. In the development of machine learning model it is found that the best method for our approach is by using SVM.In the implementation phase the proposed multi-stage detection method provides faster and more accurate attack detection. The experiments also show that combining machine learning method with multi-stage detection implementation improves detection accuracy up to 99.37 . Further, the proposed method increases the average speed of detection process up to 24 in data testing and up to 10 average in the real network environment.
"
Depok: Fakultas Teknik Universitas Indonesia, 2018
D2498
UI - Disertasi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>