Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 73308 dokumen yang sesuai dengan query
cover
Muhammad Shaleh
"Penyakit Parkinson disebabkan oleh kerusakan neuron penghasil dopamin di batang otak, yang menyebabkan gejala khas seperti tremor, kekakuan otot, dan gangguan keseimbangan. Pembuatan biosensor untuk mendeteksi kadar dopamin menjadi upaya penting dalam deteksi dini dan pengobatan Parkinson. Pada penelitian ini amperometrik biosensor screen printed carbon electrode (SPCE) dimodifikasi dengan reduced graphene oxide (rGO), polypyrrole (PPy), dan zinc oxide nanoparticle (ZnO-NP). Hasil modifikasi dibandingkan dengan SPCE yang belum dimodifikasi dalam pendeteksian dopamin. Karakterisasi material dilakukan dengan menggunakan scanning electron microscope (SEM), fourier transform infrared (FTIR), dan x-ray diffraction (XRD). Pengukuran elektrokimia dilakukan dengan metode cyclic voltammetry (CV). Hasil penelitian menunjukkan bahwa rGO/PPy/ZnO-NP/SPCE memiliki limit deteksi 0,0464 mM, sensitivitas sebesar 62,37 µA mM-1 cm-2 untuk jangkauan linear 0,01 – 1 mM

Parkinson's disease is caused by damage to dopamine-producing neurons in the brainstem, which causes characteristic symptoms such as tremors, muscle rigidity and balance disturbances. Making a biosensor to detect dopamine levels is an important effort in the early detection and treatment of Parkinson's. In this study the amperometric biosensor screen printed carbon electrode (SPCE) was modified with reduced graphene oxide (rGO), polypyrrole (PPy), and zinc oxide nanoparticle (ZnO-NP). Modified results were compared with unmodified SPCE in the detection of dopamine. Material characterization was carried out using a scanning electron microscope (SEM), fourier transform infrared (FTIR), and x-ray diffraction. Electrochemical measurements were carried out using the cyclic voltammetry (CV) method. The results showed that rGO/PPy/ZnO-NP/SPCE had a detection limit of 0.0464 mM, a sensitivity of 62.37 µA mM-1 cm-2 for a linear range of 0.01 – 1 mM.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nurul Dwi Syafitri
"Dopamin memiliki peran penting dalam fungsi sistem saraf pusat manusia. Pelepasan abnormal dopamin berhubungan dengan penyakit neurologis dan depresi. Oleh karena itu, perlu memantau kadar dopamin untuk memahami peran fisiologisnya. Pembahasan deteksi dopamin berfokus pada metode elektrokimia berbasis screen-printed carbon electrode (SPCE) yang dimodifikasi bahan ZnO/MnO2/MWCNT. Penelitian dilakukan dengan empat tahapan yang terdiri dari preparasi material, karakterisasi material dengan menggunakan Fourier Transform Infrared (FTIR) dan Raman spektroskopi, modifikasi SPCE dengan ZnO/MnO2/MWCNT, dan pengujian aktivitas elektrokimia menggunakan cyclic voltametry (CV). Modifikasi sensor dilakukan untuk mengetahui perbedaan kinerja analitik biosensor SPCE. Tujuan dari penelitian ini adalah untuk mengetahui performa SPCE dengan pendopingan nanopartikel logam ZnO, MnO2, serta material karbon MWCNT berdasarkan linearitas, sensitivitas dan limit deteksi. Hasil pembacaan elektrokimia menggunakan CV dilakukan pada rentang deteksi 0,6 – 1,4 mM, sehingga diperoleh deteksi limit (LOD) 0,4946 mM dan sensitivitas 0,282 µA.µM.cm-2. Sensor ini menunjukkan selektivitas yang kurang baik terhadap analit dopamin ketika dideteksi bersama senyawa asam askorbat.
The human central nervous system relies on dopamine to function properly. Neurological disorders and depression are linked to abnormal dopamine release. Monitoring dopamine levels is therefore crucial to comprehend its physiological function. The electrochemical approach of dopamine detection that utilises a screen-printed carbon electrode (SPCE) modified with ZnO/MnO2/MWCNT material is the main topic of discussion. The study was conducted in four stages, including material preparation, Fourier Transform Infrared (FTIR) and Raman spectroscopy material characterisation, SPCE modification using ZnO/MnO2/MWCNT, and cyclic voltametry (CV) electrochemical activity testing. To identify variations in SPCE biosensor analytical performance, sensor modifications were made. This study's goal was to evaluate the performance of SPCE doped with ZnO, MnO2, and MWCNT metal nanoparticles. The goal of this study was to evaluate the linearity, sensitivity, and limit of detection of SPCE doped with metal nanoparticles such as ZnO, MnO2, and MWCNT carbon materials. In order to achieve a detection limit (LOD) of 0,4946 mM and a sensitivity of 0,282 µA.µM.cm-2, electrochemical readings using CV were performed in the detection range of 0,6 - 1,4 mM. When this sensor is measured with interference-causing substances in the body such ascorbic acid, it exhibits poor selectivity for dopamine analytes."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Filza Camellia Hafsyari
"Kadar dopamin yang tidak seimbang dalam tubuh mengindikasikan berbagai macam kelainan neurologis seperti Parkinson disease (PD), skizofrenia, alzheimer, dan depresi. Salah satu metode pendeteksian dopamin adalah dengan sensor elektrokimia. Sensor elektrokimia merupakan metode pendeteksian yang murah dan dapat digunakan secara on-site. Contoh sensor elektrokimia adalah Screen-printed Carbon Electrode (SPCE). Modifikasi Screen-printed Carbon Electrode (SPCE) dengan nanopartikel merupakan pengembangan yang menarik dan terbukti meningkatkan selektivitas dan sensitivitas.Nanopartikel emas memilikikonduktivitas yang baik, area permukaan yang besar, dan biokompatibilitas yang tinggi. Penelitian ini dilakukan dengan memodifikasi SPCE dengan nanopartikel emas secara elektrokimia. Hasil yang didapatkan adalah pendeteksian dopamin secara optimum terjadi pada SPCE yang dideposisi (AuNPs-SPCE) selama 200 detik dan pada pH 6,5. Kemudian AuNPs-SPCE diujikarakterisasi melalui SEM dan UV-DRS. Uji analisis pada deteksi dopamin pada AuNPs-SPCE meliputi Limit of Detection (LOD), Limit of Quantification (LOQ), uji keberulangan, dan uji interferensi. Hasil uji linearitas adalah persamaan y = 0,420x + 0,2260 dengan R2= 0,9829 untuk SPCE dan sedangkan AuNPs-SPCE memiliki persamaan garis y = 2,817x + 1,456 dengan R2 =0,991 dengan slope yang mengindikasikan sensitivitas sensor. Hasil LOD dan LOQ untuk SPCE adalah 3,13 ?M dan 10,45 ?M. Sedangkan untuk AuNPs -SPCE LOD & LOQ-nya adalah 2,26 ?M dan 7,561 ?M.

Unbalanced dopamine levels in the body indicate various kinds of neurological disorders such as Parkinson's disease (PD), schizophrenia, Alzheimer's, and depression. One method of detecting dopamine is by electrochemical sensors. Electrochemical sensors are inexpensive detection methods and can be used on-site. An example of an electrochemical sensor is the Screen-printed Carbon Electrode (SPCE). Modification of Screen-printed Carbon Electrode (SPCE) with nanoparticles is an interesting development and is proven to increase selectivity and sensitivity. Gold nanoparticles have good conductivity, large surface area, and high biocompatibility. This research was carried out by electrochemically modifying SPCE with gold nanoparticles. The results obtained were that the optimal detection of dopamine occurred in deposited SPCE (AuNPs-SPCE) for 200 seconds and at a pH of 6.5. Then the characterization of AuNPs-SPCE was tested by SEM and UV-DRS. Dopamine detection analysis tests on AuNPs-SPCE include Limit of Detection (LOD), Limit of Quantification (LOQ), repeatability test, and interference test. The results of the linearity test are the equation y = 0.420x + 0.2260 with R2 = 0.9829 for SPCE and while AuNPs-SPCE has the equation of the line y = 2.817x + 1.456 with R2 = 0.991 with the slope indicating the sensitivity of the sensor. The LOD and LOQ results for SPCE were 3.13 ?M and 10.45 ?M, respectively. Whereas for AuNPs -SPCE the LOD & LOQ were 2.26 ?M and 7,561 ?M."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Gilar Wisnu Hardi
"

Dopamin (3,4-dihydroxyphenethylamine) (DA) adalah salah satu neurotransmiter yang memiliki fungsi penting dalam metabolisme tubuh manusia. Jumlah dopamin yang tidak memadai dapat menyebabkan banyak penyakit/gangguan neurologis seperti skizofrenia, attention deficit hyperactivity disorder (ADHD) dan penyakit Parkinson (PD). Dengan demikian, penentuan molekul dopamin dalam cairan biologis menjadi sangat penting pada diagnosa penyakit neurodegeneratif. Biosensor adalah alat untuk mengukur reaksi biologis atau kimia dengan menghasilkan sinyal yang proporsional sesuai dengan konsentrasi analit dalam suatu reaksi sehingga pemeriksaan kadar dopamin dapat dilakukan secara in Vitro. Modifikasi material biosensor diperlukan untuk memfasilitasi proses transfer elektron, sehingga akan meningkatkan sensitivitas dan selektivitas dari biosensor.

Tiga sistem elektroda terdiri dari Glassy Carbon Electrode (GCE) sebagai working electrode, elektroda platinum dan Ag/AgCl sebagai counter dan reference electrodedigunakan untuk pendeteksian arus oksidasi dari DA dan perilaku elektrokimia biosensor DA diperiksa dengan voltametri siklik (CV).GCE telah dimodifikasi menggunakan Graphite Powder (GP), Graphene Oxide (GO) yang disintesis dengan metode Hummer, Tour dan modifikasi, reduksi Graphene Oxide (rGO) yang direduksi menggunakan asam askorbat, Poly(3,4-ethylenedioxythiophene)-(Poly(4-styrenesulfonate)) (PEDOT:PSS), TiO2, dan Al2O3.

Permukaan GCE telah berhasil dimodifikasi dengan PEDOT:PSS menghasilkan puncak oksidasi dengan sensitivitas yang tinggi pada larutan buffer fosfat (PBS, pH 6.0). Aktivitas elektrokatalitik dari modifikasi elektrodadengan metode elektropolimerisasi memiliki aktivitas oksidasi elektrokatalitik yang jauh lebih tinggi daripada metode lainnya sehingga metode ini dipilih untuk modifikasi elektroda selanjutnya. Untuk LoD dari biosensor dengan modifikasi PEDOT:PSS didapat sebesar 0.05 mM (50μM) dalam rentang linier (0.05 – 1 mM) konsentrasi DA.

Selain itu, telah dilakukan juga sintesis secara kimia graphene oksida (GO) dan reduce graphene oksida (rGO) dari bahan graphite powder. Graphite powder dioksidasi dengan senyawa oksidator untuk memperoleh GO dengan menggunakan metode Hummer, Tour, dan modifikasi. Sintesis rGO dari GO dilakukan dengan menggunakan Asam Askorbat. Pengujian SEM dilakukan untuk mengamati morfologi permukaan dan bentuk partikel dari sampel graphite dan GO. Untuk membuktikan bahwa GO yang disintesis dengan ketiga metode dapat digunakan untuk meningkatkan sensitivitas pendeteksian dopamin, respon elektro-oksidasi dopamin telah diamati dengan CV dalam 0,1 M PBS pada pH 7. Aktivitas elektrokatalitik dari GO HM/PEDOT:PSS/GCE memiliki aktivitas oksidasi elektrokatalitik yang paling tinggi daripada modifikasi GO TM/PEDOT:PSS dan GO Modified/PEDOT:PSS/GCE. Untuk LoD dari biosensor dengan modifikasi GO HM/PEDOT:PSS/GCE didapat sebesar 0.05 mM (50μM) dalam rentang linier (0.05 – 1 mM) konsentrasi DA.

Sensor elektrokimia non-enzimatikuntuk mendeteksi dopamin menggunakan CVjuga dibuat menggunakan material Al2O3, TiO2 pada glassy carbon electrode (GCE). Respon elektro-oksidasi dopamin telah diamati dengan CV dalam 0,1 M PBS pada pH 7. Voltammogram yang diperoleh selama studi oksidasi telah menunjukkan bahwa TiO2/Al2O3/PEDOT:PSS menunjukkan fungsi katalitik yangbaik terhadap oksidasi dopamindan memiliki LoD sebesar0.05 mM (50μM). Karena biayanya yang murah, proses pembuatan yang mudah, dan memiliki kinerja tinggi, modifkasi elektroda dengan TiO2/Al2O3/PEDOT:PSS  dapat  menjadi kandidat yang baik untuk pengembangan sensor dopamin non-enzimatik.

 


Dopamine (3,4-dihydroxyphenethylamine) (DA) is a neurotransmitter that plays an important role in the metabolism of the human body. Inadequate amounts of dopamine may cause many diseases/neurologic disorders such as schizophrenia, attention deficit hyperactivity disorder (ADHD), and Parkinson's disease (PD). Therefore,determining dopamine molecules in biological fluids is very important while diagnosing neurodegenerative diseases. Biosensor is an instrument for assessing biological or chemical reactions by generating proportional signals in a reaction based on the analyte concentration so that that dopamine levels can be studied in vitro.Modification of the biosensor material is required to promote the process of electron transfer, so that will increase the sensitivity and selectivity of the biosensor.

Three electrode systems used to detect DA oxidation currents consisted of Glassy Carbon Electrode (GCE) as a working electrode, platinum and Ag/AgCl as counter and reference electrode, respectively. The electrochemical activity of the DA biosensor was analyzed by cyclic voltammetry (CV).GCE has been modified using Graphite Powder (GP), Graphene Oxide (GO) synthesized with Hummer 's Method, Tour's Method and Modified Method, reduced Graphene Oxide (rGO) with ascorbic acid, Poly (3,4-ethylenedioxythiophene) - (Poly (4-styrenesulfonate)) (PEDOT: PSS), TiO2, and Al2O3.

The surface of the GCE has been successfully modified with PEDOT: PSS produces an oxidation peak with high sensitivity in a phosphate buffer solution (PBS, pH 6.0). The activity of PEDOT:PSS/GCE electrodes with electropolymerization method deposition had much higheractivity than other methods, so this method was chosen for subsequent electrode modifications. LoD of PEDOT:PSS/GCE obtained at 0.05 mM (50μM) in a linear range (0.05-1 mM) of DA concentration. Also, chemical synthesis of graphene oxide (GO) and reduced graphene oxide (rGO) from graphite powder has been produced. Graphite powder was oxidized with oxidizing compounds to obtain GO using the Hummer’s method, the Tour’s method, and the modified method.The rGO synthesis from GO is produced using ascorbic acid. SEM analysis is conducted to observe the surface morphology and particle shape of graphite and GO samples. To prove that GO synthesized by all three methods can be used to increase the sensitivity of dopamine detection, an electro-oxidation response of dopamine was observed with CV in 0.1 M PBS at pH 7. The activity of GO HM/PEDOT:PSS/GCE has the highest electrocatalytic oxidation activity than modification of GO TM/PEDOT:PSS/GCE and GO Modified/PEDOT:PSS/GCE. LoD of GOHM/PEDOT:PSS/GCE biosensor was obtained at 0.05 mM (50μM) in a linear range (0.05 - 1 mM) DA concentration. Novel non-enzymatic electrochemical sensors for the detection of dopamine using CV werealso fabricated using Al2O3, TiO2, and PEDOT:PSS on the surface of the glassy carbon electrode (GCE). Voltammograms obtained during oxidation studies have shown that TiO2/Al2O3/PEDOT:PSS exhibits better catalytic function towards the oxidation of dopamine. Linear dopamine calibration curves are obtained over a concentration range of 50 – 1000 μM 0.1 M phosphate buffer solution at pH 7 with a correlation coefficient of 0.9047 and a detection limit of 50 μM. Due to its low cost,easy process, and high performance, TiO2/Al2O3/PEDOT:PSSelectrode can be a good candidate for the development of a non-enzymatic dopamine sensor.

 

"
Depok: Fakultas Teknik Universitas Indonesia, 2020
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Sulis Triani
"Pestisida merupakan zat kimia yang digunakan untuk mengendalikan hama di pertanian dan dapat menyebabkan kontaminasi pada tanah, udara, serta bahan makanan sehingga berbahaya bagi makhluk hidup. Biosensor asetilkolinesterase dapat digunakan untuk deteksi pestisida berdasarkan inhibisi pestisida terhadap enzim asetilkolinesterase (AChE) pada reaksi hidrolisis asetiltiokolin. Pada penelitian ini, dikembangkan sistem biosensor untuk deteksi pestisida karbofuran berdasarkan inhibisinya terhadap aktivitas katalitik enzim AChE dalam reaksi hidrolisis agen neurotransmiter asetilkolin (ACh) membentuk suatu spesi elektroaktif, yaitu kolin (Ch). Elektroda yang digunakan dalam penelitian ini adalah komposit nanostruktur carbon foam termodifikasi graphene dan nanopartikel emas (AuNP/Graphene/CF). Elektoda yang disintesis dikarakterisasi dengan menggunakan Scanning Electron Microscope-Energy Dispersive X-Ray (SEM-EDX), spektroskopi raman, X-Ray Diffraction (XRD), dan secara elektrokimia dengan metode voltametri siklik. Hasil karakterisasi menunjukkan bahwa carbon foam berhasil dimodifikasi dengan graphene, dimana graphene yang menempel pada permukaan carbon foam sebagian berbentuk lembaran dan sebagian lainnya mengalami penataan ulang (restacking) di permukaan carbon foam. Sedangkan keberhasilan modifikasi dengan menggunakan AuNP ditunjukkan pada hasil analisa menggunakan SEM-EDX, dimana nanopartikel emas terlihat menyerupai bintik-bintik putih pada permukaan Graphene/CF. Analisa secara elektrokimia dengan metode siklik voltametri menunjukkan bahwa keberadaan nanopartikel emas pada elektroda dapat meningkatkan sensitivitas biosensor. Sifat elektrokimia tiokolin pada elektroda AuNP/Graphene/CF dan kondisi optimum pengukuran adalah menggunakan enzim AChE dan ACTI dengan konsentrasi masing-masing adalah 50 mU dan 1.0 mM. Pengukuran pestisida karbofuran dilakukan dengan metode siklik voltametri pada rentang potensial -0.5 – 1 V dan laju pindai 50 mV/. Pengukuran standar karbofuran menunjukkan linearitas yang baik (r2 = 0.99038) pada rentang konsentrasi 0 – 125 μM, dengan batas deteksi sebesar 27.80 μM. Sistem biosensor menunjukkan keberulangan yang cukup baik dengan nilai %RSD sebesar 6.77% untuk 10 kali pengulangan.

Pesticides are chemical substances used to control pests in agriculture. It cause contamination of soil, air, and food, so that they are harmful to living things. Acetylcholinesterase biosensor for pesticide detection is based on its inhibition of the acetylcholinesterase (AChE) enzyme in the hydrolysis reaction of acetylthiocholine. In this study, a biosensor system was developed for the detection of carbofuran pesticides based on its inhibition of the catalytic activity of the AChE enzyme in the hydrolysis reaction of the neurotransmitter acetylcholine (ACh) to form an electroactive species, namely choline (Ch). The electrode used in this study were a nanostructure composite of graphene-modified carbon foam and gold nanoparticles (AuNP/Graphene/CF). The synthesized electrodes were characterized using Scanning Electron Microscope-Energy Dispersive X-Ray (SEM-EDX), Raman spectroscopy, X-Ray Diffraction (XRD), and electrochemically by cyclic voltammetry method. The characterization results show that carbon foam has been successfully modified with graphene, where some of the graphene attached to the surface of the carbon foam is in the form of a sheet and the other part is restacked on the surface of the carbon foam. While the success of the modification using AuNP is shown in the results of the analysis using SEM-EDX, where the gold nanoparticles look like white spots on the surface of Graphene/CF. Electrochemical analysis using the cyclic voltammetric method showed that the presence of gold nanoparticles on the electrodes could increase the sensitivity of the biosensor. The electrochemical behavior of thiocholine on AuNP/Graphene/CF electrode was studied and the optimum conditions were using AChE and ACTI enzymes with concentrations of 50 mU and 1.0 mM, respectively. The measurement of carbofuran pesticide was carried out by cyclic voltammetry method at a potential range of -0.5 – 1 V and a scan rate of 50 mV/. The measurement of carbofuran standard showed good linearity (r2 = 0.99038) in the range of concentration 0 – 125 M, with a limit of detection of 27.80 M. The biosensor system shows a fairly good repeatability with a %RSD value of 6.77% for ten times repetitions."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Siti Nurkhasanah
"Nitrogen Monoksida memiliki peranan penting dalam proses fisiologis. Pengukuran NO secara akurat penting dilakukan untuk memahami fungsi esensial NO namun NO memiliki waktu paruh yang sangat singkat sehingga dibutuhkan metode penentuan kadar NO yang memiliki respon cepat, sensitivitas tinggi, peralatan yang sederhana, dan praktis. Pada penelitian ini, digunakan logam emas dan platina yang terdeposit pada permukaan SPE yang telah dimodifikasi grafena untuk mendeteksi NO. Logam emas dan platina dideposisi menggunakan larutan HAuCl4 dalam 0,05 M H2SO4 dan K2PtCl6 dalam H2SO4 0,05 M. Variasi konsentrasi deposisi Au/Pt pada G/SPE dilakukan untuk mendapatkan perbandingan konsentrasi deposit AuPt/G/SPE yang optimum. Uji deteksi NO dilakukan pada potensial 0.878 V vs Ag/AgCl. Deposit AuPt/G/SPE dengan variasi konsentrasi 1mM:1mM merupakan sensor yang memiliki performa terbaik karena mempunyai sensitivitas tertinggi sebesar 23029,92 A mM-1 cm-2, batas deteksi terendah sebesar 2,2 x 10-3 mM dan linearitas paling baik sebesar R2 0.9943. Metode Griess Saltzman digunakan sebagai metode pembanding dalam mendeteksi NO. Dari hasil yang diperoleh deteksi NO dengan metode elektrokimia lebih baik dibandingkan dengan metode Griess Saltzman dilihat dari linearitasnya.

Nitric oxide has an important role in physiological processes. NO measurements accurately is important to understand the essential function of NO but it has a very short half life so it needed a method of determining the levels of NO which has a fast response, high sensitivity, simple, and practical. In this study, used gold and platinum metals are deposited on the surface of SPE has been modified Graphene to detect NO. Gold and platinum metals deposited using a solution of HAuCl4 in 0.05 M H2SO4 and K2PtCl6 in 0.05 M H2SO4. Variation of concentration of the deposition of Au Pt on G SPE carried out to obtain optimum a deposit concentration ratio AuPt G SPE. NO detection test conducted at a potential of 0.878 V vs Ag AgCl. Deposit AuPt G SPE with various concentrations of 1 mM 1 mM is a sensor that has best performance because it has the highest sensitivity at 23029.92 A mM 1 cm 2, the lowest detection limit of 2.2 x 10 3 mM and most excellent linearity to R2 0.9943. The Griess Saltzman method is used as a comparison method in detecting NO. From the results obtained by electrochemical method to detection of NO is better than Griess Saltzman method seen from linearity.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2017
S69516
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fera Ayu Dianovita
"Kolesterol sebagai elemen struktural utama dalam membran sel, memainkan peran penting dalam fungsi biologis. Tingkat kolesterol dalam tubuh harus dipertahankan pada level normal <5,2 mmol/L untuk mencegah hiperkolesterolemia, yang dapat menyebabkan penyakit kardiovaskular. Tujuan dari penelitian ini adalah merancang dan mengembangkan sensor MIP menggunakan elektroda grafit pensil yang difungsionalisasi dengan grafena oksida untuk mendeteksi kolesterol yang efisien, sensitif, selektif, presisi, dan stabil. Metode deteksi kolesterol telah banyak dipelajari, namun seringkali memerlukan peralatan mahal dan persiapan sampel yang rumit. Metode enzimatik saat ini efektif tetapi memiliki kelemahan berupa biaya tinggi dan degradasi enzim selama penyimpanan. Penelitian ini mengusulkan sensor elektrokimia non-enzimatik berbasis Molecularly Imprinted Polymer (MIP) dengan monomer DMAEMA pada elektroda grafit pensil (PGE) yang dimodifikasi dengan grafena oksida. Melalui optimasi parameter seperti rasio konsentrasi molekul templat terhadap monomer, jumlah siklus polimerisasi dan penghilangan molekul templat, laju polimerisasi dan deteksi, durasi rebinding, serta pH pelarut, sensor menunjukkan kinerja yang memuaskan. LOD sebesar 0,83 mM, LOQ sebesar 2,76 mM, sensitivitas 40,52 μA.μM⁻¹.cm⁻², dan rentang linear 1 - 7 mM, sensor ini menawarkan presisi dan selektivitas yang baik terhadap kolesterol. Hasil penelitian juga menunjukkan stabilitas sensor yang baik selama periode pengujian.

Cholesterol, as a principal structural element in cell membranes, plays a vital role in biological functions. The cholesterol levels in the body must be maintained at a normal level of <5.2 mmol/L to prevent hypercholesterolemia, which can lead to cardiovascular diseases. The aim of this research is to design and develop an MIP sensor using a pencil graphite electrode functionalized with graphene oxide for the efficient, sensitive, selective, precise, and stable detection of cholesterol. Cholesterol detection methods have been widely studied, yet they often require expensive equipment and complicated sample preparation. Current enzymatic methods are effective but have the disadvantages of high cost and enzyme degradation during storage. This study proposes a non-enzymatic electrochemical sensor based on Molecularly Imprinted Polymer (MIP) with DMAEMA monomer on a pencil graphite electrode (PGE) modified with graphene oxide. Through the optimization of parameters such as the ratio of template molecule concentration to monomer, the number of polymerization cycles and template molecule removal, the polymerization and detection rate, rebinding duration, and solvent pH, the sensor demonstrated satisfactory performance. LOD of 0.83 mM, LOQ of 2.76 mM, sensitivity of 40,52 μA.μM⁻¹.cm⁻², and a linear range of 1-7 mM, the sensor offers good precision and selectivity towards cholesterol. The research findings also indicate the sensor’s good stability over the testing period."
Depok: Fakultas Teknik Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Tri Yuliani
"Penelitian ini mengembangkan pembuatan biosensor elektrokimia menggunakan nanopartikel core-shell Fe3O4@Au yang dimodifikasi hemoglobin pada Screen Printed Carbon Electrode (SPCE) untuk mendeteksi akrilamida. Fe3O4NP (~4,9 nm) dan core-shell Fe3O4@Au (~5-6,4 nm) berhasil disintesis melalui metode dekomposisi termal. Hasil ini dikonfirmasi oleh analisis UV-Visible Spectrometer (UV-Vis), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) dan Transmission Electron Microscopy (TEM). Studi awal elektrokimia hemoglobin optimum didapatkan pada ABS 0,1 MpH 6 dengan konsentrasi optimal hemoglobin sebesar 2 mg/mL. Fe3O4@Au yang termodifikasi Hb memiliki ukuran yang lebih besar, dikarakterisasi dengan Scanning Electron Microscopy (SEM), FTIR, dan Zeta Potensial. Kinerja Fe3O4@Au/Hb dievaluasi untuk mendeteksi akrilamida dilakukan dengan metode Cyclic Voltammetry (CV) pada rentang potensial -0,8-0,8 V, scanrate 50 mV/s didapatkan koefisien regresi linear R2 = 0,98 pada rentang konsentrasi 0-1 μM dengan Limit of Detection (LOD) sebesar 0,136 μM dan sensitivitas sebesar 0,4411 μA/μM. Selain itu, studi interferensi dilakukan untuk beberapa senyawa sederhana lainnya seperti asam askorbat, melamin, glukosa, kafein dan natrium asetat. Pengukuran akrilamida pada real sampel berupa kopi bubuk dilakukan secara elektrokimia dengan biosensor ini dan divalidasi dengan metode standar High Performance Liquid Performance (HPLC).

This work reports an investigation on the fabrication of electrochemical biosensor based on hemoglobin-modified core-shell Fe3O4@Au nanostructures on screen printed carbon electrode for the detection of acrylamide. Here, both Fe3O4NP (~4.9 nm) and core-shell Fe3O4@Au (~5-6.4 nm) nanostructures were successfully synthesized via thermal decomposition method. These results are discussed by analysis of UV-Visible Spectrometers (UV-Vis), X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) and Transmission Electron Microscopy (TEM). Preliminary electrochemical investigation at ABS pH 6 also revealed that the optimum amount of hemoglobin immobilization were obtained at ABS 0.1 M pH 6 with an optimal hemoglobin concentration of 2 mg/mL. Hb modified Fe3O4@AuNP has a larger size, characterized by Scanning Electron Microscopy (SEM), FTIR, and Zeta Potential. The performance of Fe3O4@Au/Hb was evaluated to detect acrylamide using the Cyclic Voltammetry (CV) method in the potential range of -0.8-0.8 V, a scanrate of 50 mV/s obtained a linear regression coefficient R2=0.98 in the concentration range 0-1 μM with a Limit Detection (LOD) 0.136 μM and sensitivity 0.4411 μA/μM. In addition, studi interference is made for a number of simple compounds such as ascorbic acid, melamine, caffeine and sodium acetate. The measurement of acrylamide in real samples consisting of ground coffee was carried out by electrochemistry with this biosensor and validated by the standard High Performance Liquid Performance (HPLC) method."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
T54553
UI - Tesis Membership  Universitas Indonesia Library
cover
Mufiid Fatkhurrahman
"Penggunaan grafena berpotensi besar dalam berbagai aplikasi salah satunya sebagai pembersih tumpahan senyawa hidrokarbon. Penelitian ini bertujuan untuk mensintesis grafena oksida tereduksi (rGO) dari grafit komersial. rGO akan digunakan sebagai pelapis dari poliuretan yang akan menghasilkan nanokomposit PU/rGO sebagai adsorben tumpahan senyawa hidrokarbon. Grafena oksida (GO) disintesis menggunakan metode Hummers termodifikasi. GO yang dibentuk akan direduksi menggunakan asam askorbat sebagai agen pereduksinya. Poliuretan (PU) yang digunakan berasal dari limbah Cold Storage yang divariasikan ukurannya menjadi 400 micron, 250 micron, dan 177 micron. Konsentrasi rGO juga divariasikan dalam konsentrasi 13 mg/ml, 15 mg/ml, dan 17 mg/ml. Kemudian untuk meningkatkan efisiensi adsorpsi penambahan sifat magnetik oleh Fe3O4 dilakukan dengan variasi perbandingan massa (b/b) rGO:Fe3O4. Variasi waktu kontak untuk sistem simple sorption test juga divariasikan dengan waktu kontak 1, 3, 5, dan 10 detik. Hasil terbaik nanokomposit PU/rGO ditunjukan dengan konsentrasi rGO sebesar 17 mg/ml dengan menggunakan poliuretan berukuran 40 Mesh yaitu 98,12% (diesel oil) dan 96,15% (Gasoline). Konsentrasi rGO sangat mempengaruhi nilai efisiensi adsorpsi yang dihasilkan. Hasil terbaik ditunjukan oleh penambahan nanopartikel Fe3O4 40% dengan nilai efisiensi adsorpsi sebesar 99,08% (diesel oil) ; 97,23% (Gasoline) ; 5 detik.

The use of graphene is most likely in various applications, one of which is cleaning spills of hazardous compounds. In this study, reduced graphene oxide (rGO) was synthesized from commercial graphite. rGO will be used as a coating of polyurethane which will produce a PU/rGO nanocomposite as an adsorbent for spilled hazardous compounds. Graphene oxide (GO) was synthesized using the modified Hummers method. The formed GO will be reduced using ascorbic acid as a reducing agent. The polyurethane (PU) used from Cold Storage waste was varied in size to 400 microns, 250 microns, and 177 microns. The concentration of rGO was also varied in concentrations of 13 mg/ml, 15 mg/ml, and 17 mg/ml. Then, to increase the adsorption efficiency, the addition of Fe3O4 properties was carried out by varying the mass ratio (w/w) of rGO:Fe3O4. The variation of contact time for the simple sorption test system was also varied with contact times of 1, 3, 5, and 10 seconds. The best results of the PU/rGO nanocomposite were shown by the rGO concentration of 17 mg/ml using a 40 Mesh polyurethane, namely 98.12% (diesel oil) and 96.15% (Gasoline). The concentration of rGO greatly affects the value of the resulting adsorption efficiency. The best results were indicated by the addition of 40% Fe3O4 nanoparticles with an adsorption efficiency value of 99.08% (diesel oil); 97.23% (Gasoline); 5 seconds."
Depok: Fakultas Teknik Universitas Indonesia, 2022
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Fenika Annisa
"Prototipe sistem portabel dan berbiaya rendah untuk mendeteksi glukosa berbasis potensiostat LMP91000EVM telah dibuat. Karakterisasi elektroda karbon cetak layar tanpa modifikasi (110) dan termodifikasi nikel oksida (110NI) dengan potensiostat komersial untuk melihat pengaruh nikel oksida dalam mendeteksi glukosa. Melalui metode spektroskopi impedansi elektrokimia, diperoleh nilai Rct sebesar 1276,79 Ω untuk sensor 110NI dan 429,06 Ω untuk sensor 110, sehingga sensor 110NI memiliki laju transfer elektron yang lebih lambat. Sementara itu, melalui metode voltametri siklik, diperoleh luas permukaan elektroda aktif sebesar 7,1×10-2 cm2 untuk sensor 110NI dan 6,9×10-2 cm2 untuk sensor 110, sehingga sensor 110NI lebih sensitif dalam mendeteksi glukosa. Saat konsentrasi glukosa divariasikan, nilai LOD dan LOQ sensor 110NI lebih kecil yaitu 1,807 mM dan 6,024 mM daripada sensor 110 yaitu 2,629 mM dan 8,762 mM, sehingga sensor 110NI lebih sensitif. Saat laju pemindaian divariasikan, nilai gradien sensor 110NI lebih kecil yaitu -8,14×10-4 mA s/mV daripada sensor 110 yaitu -9,62×10-4 mA s/mV, sehingga sensor 110NI tidak lebih sensitif. Selanjutnya, membandingkan prototipe sistem yang penguatan TIA divariasikan dan potensiostat komersial. Hasilnya, voltammogram siklik setiap siklus pada potensiostat komersial lebih stabil. Semakin kecil penguatan TIA pada prototipe sistem, semakin stabil, hal ini karena noise yang ikut dikuatkan semakin kecil.

A portable and low-cost system prototype for glucose detector based on LMP91000EVM potentiostat has been created. Characterization of screen-printed carbon electrodes without modification (110) and modified nickel oxide (110NI) was carried out with a commercial potentiostat to see the effect of nickel oxide in detecting glucose. Through the electrochemical impedance spectroscopy method, the Rct value of 1276,79 Ω is obtained for the 110NI sensor and 429,06 Ω for the 110 sensor, so that the 110NI sensor has a slower electron transfer rate. Meanwhile, through the cyclic voltammetry method, the surface active electrode area is 7,1×10-2 cm2 for the 110NI sensor and 6,9×10-2 cm2 for the 110 sensor, so that the 110NI sensor is more sensitive in detecting glucose. When the glucose concentration is varied, the LOD and LOQ values of the 110NI sensor are smaller, specifically 1,807 mM and 6,024 mM than the 110 sensor, specifically 2,629 mM and 8,762 mM, so the 110NI sensor is more sensitive. When the scan rate is varied, the gradient value of the 110NI sensor is smaller, specifically -8,14×10-4 mA s/mV than the 110 sensor, specifically -9,62×10-4 mA s/mV, so the 110NI sensor is not more sensitive. Next, comparing a prototype system that TIA gain is varied and a commercial potentiostat. As a result, the cyclic voltammogram per cycle on commercial potentiostat is more stable. The smaller the TIA gain on the system prototype, the more stable it is, this is because the noise that is amplified is getting smaller."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>