Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 145339 dokumen yang sesuai dengan query
cover
Doni Pradana
"Customer churn merupakan masalah serius di banyak sektor, termasuk sektor telekomunikasi. Pengertian costumer churn adalah berhentinya penggunaan suatu layanan dan beralih ke penyedia lain atau tidak memperbarui kontrak. Untuk mengatasi risiko churn, perusahaan telekomunikasi perlu menggunakan model prediksi dengan bantuan metode machine learning. Terdapat beberapa model prediksi churn yang telah diajukan oleh para peneliti, termasuk pemilihan algoritma yang sesuai dan dataset untuk studi kasus. Pada tesis ini menggunakan dataset IBM Telco Customer Churn sebagai data pelatihan dan pengujian. Tantangan umum dalam klasifikasi adalah ketidakseimbangan data, yang dapat menyebabkan kegagalan dalam memprediksi kelas minoritas. Oleh karena itu, tesis ini menggunakan beberapa teknik augmentasi data seperti SMOTE, HAT, dan CVAE, sebagai teknik dalam menyeimbangkan data. Pembelajaran ensembel khususnya metode CART (Classification and Regression Tree) sering digunakan untuk menyelesaikan permasalahan klasifikasi dan regresi. Model Adaboost adalah algoritma pembelajaran ensemble yang menggunakan pohon keputusan sebagai dasar pembelajaran. Dalam pelatihan model Adaboost, Bayesian Optimization (BO) digunakan sebagai metode pencarian hyperparameter terbaik. Dari hasil percobaan dan pengujian yang diajukan, model Adaboost dapat memberikan nilai testing f1-score dan recall sebesar 0,661 dan 0,653 pada pelatihan dengan dataset tidak seimbang. Model Adaboost-SMOTE mempunyai nilai testing f1-score dan recall sebesar 0,646 dan 0,826. Penggunaan optimasi Bayesian Optimization pada model Adaboost-SMOTE dapat menaikkan testing f1-score dan recall menjadi 0,649 dan 0,849. Tes ANOVA dan Tukey HSD mengungkapkan variasi yang signifikan dalam hasil pelatihan dari model machine learning, dan menyoroti dampak penggunaan data seimbang dalam pelatihan model yang signifikan.

Customer churn is a severe problem in various sectors, including telecommunications. Customer churn refers to discontinuing the service, switching to another provider, or not renewing the contract. To deal with churn risk, telecommunication companies need to use predictive models with the help of machine learning methods. Several churn prediction models have been proposed by researchers, including the selection of suitable algorithms and data sets for case studies. In this thesis, research is conducted using the IBM Telco Customer Churn dataset. A common challenge in classification is data imbalance, which can lead to failure in predicting minority classes. Therefore, this thesis using several data augmentation techniques, such as SMOTE, HAT, and CVAE, for balancing data technique. Ensemble learning, especially the CART (Classification and Regression Tree) method, is often used to solve classification and regression problems. Adaboost is an ensemble learning algorithm that uses decision trees as the basis for learning. In the Adaboost model training, Bayesian Optimization (BO) is used to find the best hyperparameters. From the trials and tests carried out, Adaboost achieved an f1-score and recall test of 0.661 and 0.653, respectively, in training with an unbalanced dataset. The Adaboost SMOTE model achieved f1 and memory test scores of 0.646 and 0.826, respectively. Using Bayesian Optimization in the Adaboost SMOTE model increased the testing f1-score and recall scores to 0.649 and 0.849, respectively. ANOVA and Tukey HSD tests reveal significant variation in machine learning model training results and highlight the considerable impact of using balanced data in model training."
Depok: Fakultas Teknik Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Ruth Intan Davina
"Ketidakseimbangan data merupakan tantangan umum dalam klasifikasi, di mana salah satu kelas memiliki ukuran sampel yang jauh lebih sedikit dibandingkan kelas lainnya dalam suatu dataset. Kondisi ini dapat menghasilkan klasifikasi yang memiliki akurasi prediksi yang tinggi untuk kelas mayoritas, tetapi cenderung rendah untuk kelas minoritas yang memiliki kontribusi kecil terhadap kesalahan total. Dalam aplikasi dunia nyata, kesalahan klasifikasi pada kelas minoritas sering kali memiliki konsekuensi yang lebih serius, seperti pada kasus deteksi serangan siber pada sistem keamanan jaringan. Kegagalan dalam mendeteksi serangan siber (false negative) dapat membuka celah keamanan yang berakibat fatal. Untuk menangani masalah ketidakseimbangan data, berbagai metode telah dikembangkan, termasuk pendekatan ensemble seperti SMOTEBoost (Synthetic Minority Oversampling Technique and Boosting) dan RUSBoost (Random Undersampling and Boosting). Pada penelitian skripsi ini dilakukan studi empiris pada data serangan malware dari dataset AWID3 menggunakan metode SMOTEBoost dan RUSBoost dan dibandingkan performanya dengan algoritma dasarnya, AdaBoost. Simulasi dilakukan dengan berbagai kombinasi hyperparameter dan variasi proporsi data training dan testing untuk mengevaluasi kinerja model secara komprehensif. Hasil penelitian menunjukkan bahwa metode SMOTEBoost dan RUSBoost memiliki kinerja yang sebanding dalam mendeteksi kelas minoritas, di mana nilai recall mencapai 0,99, dan lebih unggul dari metode AdaBoost dengan nilai recall 0,87-0,88. Penelitian tambahan yang dilakukan untuk mengevaluasi kinerja masing-masing metode pada berbagai jenis ketidakseimbangan menunjukkan bahwa kinerja metode AdaBoost menurun seiring dengan meningkatnya ketidakseimbangan relatif, sedangkan metode SMOTEBoost dan RUSBoost tetap stabil dengan kinerja yang baik. Namun, ukuran sampel minoritas yang terbatas atau absolute rarity memiliki dampak pada penurunan kinerja metode SMOTEBoost dan RUSBoost.

Imbalanced data is a common challenge in classification tasks, where one class has significantly fewer instances compared to others within a dataset. This condition can result in classification models with high predictive accuracy for the majority class but tend to perform poorly on the minority class, which contributes little to the overall error rate. In real-world applications, misclassifications errors on the minority class often bear more severe consequences, such as in the case of detecting cyber attacks in network security systems. Failure to detect cyber attacks (false negatives) can lead to security breaches with fatal consequences. To address the imbalanced data problem, various methods have been developed, including ensemble approaches such as SMOTEBoost (Synthetic Minority Oversampling Technique and Boosting) and RUSBoost (Random Undersampling and Boosting). In this thesis research, an empirical study was conducted on malware attack data from the AWID3 dataset using the SMOTEBoost and RUSBoost, and their performance was compared with their base algorithm, AdaBoost. Simulations were carried out with various combinations of hyperparameter and different train-test split to comprehensively evaluate the model’s performance. The research results showed that SMOTEBoost and RUSBoost methods had comparable performance in detecting the minority class, achieving remarkable recall values of 0.99, outperformed the AdaBoost method, which had recall values ranging from 0.87 to 0.88. Additional research conducted to evaluate the performance of each method on various types of imbalance showed that the performance of the AdaBoost method decreased as the relative imbalance increased, while the SMOTEBoost and RUSBoost methods maintained a stable and robust performance. However, a limited number of minority instances or absolute rarity had a negative effect on the performance of the SMOTEBoost and RUSBoost methods."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kevin Harijanto
"Sebagai salah satu cara untuk memindahkan risiko, banyak orang menginginkan produk asuransi sebagai jaminan proteksi atas dirinya. Pada masa digital ini dimana internet, media sosial dan media komunikasi digital lainnya sudah menjadi bagian dari kehidupan sehari-hari. Perusahaan asuransi juga perlu untuk mengetahui preferensi pelanggannya untuk menjangkau pelanggan potensial dan mengoptimalkan model bisnisnya. Terlebih di masa pandemi COVID-19 yang dialami oleh seluruh dunia, perusahaan jasa transportasi sedang dilanda kesulitan. Namun hal ini merupakan potensi yang sangat besar untuk penjualan asuransi perjalanan ketika pandemi sudah berakhir dan perjalanan dimulai kembali. Salah satu cara untuk mendapatkan preferensi pelanggan adalah dengan studi historikal terkait data-data pelanggan sebelumnya. Masalah preferensi ini dapat disederhanakan menjadi klasifikasi biner, dan sudah banyak metode yang umum digunakan untuk masalah ini seperti Logistic Regression, Gradient Boosting Machine dan Random forest. Namun, belum banyak yang menyelesaikan masalah tersebut menggunakan metode Convolutional Neural Network (CNN). Metode ini memanfaatkan algoritma tabular convolution untuk mengubah data tabular menjadi bentuk citra yang kemudian diklasifikasikan menggunakan CNN. Dari hasil simulasi diperoleh bahwa penggunaan metode ini dapat menyaingi akurasi metode Logistic Regression, Gradient Boosting Machine dan Random Forest dengan iterasi yang cukup rendah.

Many people seek insurance products as a guarantee of protection for themselves, as a way to transfer the risk that they are facing. In this digital era where the internet, social media and other digital communication media have become a part of everyday life, insurance companies also need to know their customers’ preferences to reach potential customers and optimize their business models. Especially during the COVID- 19 pandemic experienced by the whole world, transportation service companies are experiencing many difficulties. But due to this pandemic, there lies a huge potential of travel insurance when the pandemic ends and demands surge for travel business. One way to get customer preferences is by historical studies related to previous customer data. This preference problem can be reduced to binary classification with many methods commonly used to address this problem, such as Logistic Regression, Gradient Boosting Machines and Random Forest. However, not many has solved this problem using the Convolutional Neural Network (CNN) method. This method utilizes the tabular convolution algorithm to convert tabular data into image form which will then be classified using CNN. The results obtained that the use of this method can compete with Logistic Regression, Gradient Boosting Machine and Random Forest with a fairly low iteration.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nofa Aulia
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2019
T51811
UI - Tesis Membership  Universitas Indonesia Library
cover
Jauzak Hussaini Windiatmaja
"Sumber informasi di jejaring berita daring adalah instrumen yang memungkinkan individu membaca berita, menerbitkan berita, dan berkomunikasi. Hal ini sudah menjadi tren dalam masyarakat yang sangat mobile. Oleh karena itu, proses verifikasi fakta suatu pemberitaan menjadi sangat penting. Dengan pertimbangan tersebut, sebuah tools berbasis web service untuk verifikasi fakta menggunakan metode deep learning dengan teknik ensemble dibangun. Penggunaan teknik ensemble pada model deep learning adalah proses beberapa model pembelajaran mesin digabungkan secara strategis untuk menyelesaikan masalah menggunakan lebih dari satu model. Untuk melatih model, dibangun sebuah dataset. Dataset berisi pasangan klaim dan label. Klaim dibangun dengan data crawling di kanal berita berbahasa Indonesia. Tiga model deep learning dibangun dan dilatih menggunakan dataset yang dibuat, dengan arsitektur jaringan dan hyperparameter yang berbeda. Setelah model dilatih menggunakan dataset, ketiga model diagregasikan untuk membentuk sebuah model baru. Untuk memastikan bahwa model agregat berfungsi lebih baik daripada model tunggal, performa model deep learning ensemble dibandingkan dengan model deep learning dasar. Hasil penelitian menunjukkan bahwa model ensemble memiliki akurasi 85,18% sedangkan model tunggal memiliki akurasi 83,9%, 83,19%, dan 81,94%. Hasil ini menunjukkan bahwa model ensemble yang dibangun meningkatkan kinerja verifikasi fakta dari tiga model tunggal. Hasil penelitian juga menunjukkan bahwa metode deep learning mengungguli performa metode machine learning lain seperti naive bayes dan random forest. Untuk memvalidasi kinerja tools yang dibangun, response time dari web service diukur. Hasil pengukuran menunjukkan rata-rata response time 6.447,9 milidetik.

Information sources on social networks are instruments that allow individuals to read news, publish news, and communicate. This is a trend in a highly mobile society. Therefore, the process of verifying facts is very important. With these considerations, we built a web service-based tool for fact verification using deep learning methods with ensemble technique. The use of ensemble techniques in deep learning models is a process in which several machine learning models are combined to solve problems. To train the model, we created a dataset. Our dataset of Indonesian news contains pairs of claims along with labels. Claims are built by crawling data on Indonesian news channels. Three deep learning models have been built and trained using the previously created dataset with different network architectures and hyperparameters. After the model is trained, three models are aggregated to form a new model. To ensure that the aggregated model performs better than the single model, the deep learning ensemble model is compared to the single models. The results showed that the ensemble model has an accuracy of 85.18% while the single models have an accuracy of 83.9%, 83.19%, and 81.94% consecutively. These results indicate that the ensemble model built improves the fact-verification performance of the three single models. The results also show that by using the same dataset, deep learning methods outperform other machine learning methods such as naive bayes and random forest. To validate the performance of the tools we created, the response time of the web service is measured. The measurement result shows an average response time of 6447.9 milliseconds."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-Pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Richie Ghifari
"Rancang campur beton merupakan proses bertahap dan kompleks untuk mencoba menemukan komposisi bahan terbaik guna menghasilkan beton dengan performa terbaik. Kuat tekan beton merupakan sifat terpenting dalam kualitas beton dibandingkan sifat-sifat lain. Dalam proses pembuatannya, banyak variabel terutama jumlah komposisi material penyusun yang dapat memengaruhi kuat tekan beton. Terdapat beberapa metode konvensional dalam memprediksi beton yang terkadang memberikan hasil prediksi lebih atau kurang dari kuat tekan yang ditargetkan. Diperlukan metode yang akurat dalam memprediksi kuat tekan beton agar dapat memberikan keuntungan secara signifikan terhadap penggunaan bahan. Oleh karena itu, penelitian ini menggunakan Deep Neural Network (DNN) sebagai subbidang dari Machine Learning (ML) dan Artificial Intelligence (AI), untuk memprediksi kuat tekan beton berdasarkan komposisi campuran dan properti materialnya. Penelitian ini menghasilkan formula matematika berupa persamaan yang dihasilkan dari model DNN terbaik dengan melihat aspek error model dan grafik model loss. Terdapat total 2048 model yang dianalisis dengan variasi jumlah variabel input (feature) yang berbeda-beda. Model 280 pada kasus 1 dan model 23 pada kasus 5 merupakan model terbaik yang dihasilkan penelitian ini, dengan masing-masing nilai error model 43,8028 dan 5778,5850 untuk Mean Squared Error (MSE) serta 5,0073 dan 59,8225 Maen Absolute Error (MAE).

Concrete mix design is a gradual and complex process of trying to find the best ingredient composition to produce the best performing concrete. The compressive strength of concrete is the most important property in concrete quality compared to other properties. In the manufacturing process, many variables, especially the amount of material composition, can affect the compressive strength of concrete. There are several conventional methods of predicting concrete that sometimes give predictive results more or less than the targeted compressive strength. An accurate method of predicting the compressive strength of concrete is needed in order to significantly benefit the use of materials. Therefore, this research utilizes Deep Neural Network (DNN), a subfield of Machine Learning (ML) and Artificial Intelligence (AI), to predict the compressive strength of concrete based on its mix composition and material properties. This research produces mathematical formulas in the form of equations generated from the best DNN model by looking at the aspects of model error and model loss graphs. There are a total of 2048 models analyzed with different variations in the number of input variables (features). Model 280 in case 1 and model 23 in case 5 are the best models produced by this study, with model error values of 43.8028 and 5778.5850 for Mean Squared Error (MSE) and 5.0073 and 59.8225 Maen Absolute Error (MAE), respectively.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Iryanti Djaja
"Budidaya udang vaname (Litopenaeus vannamei) sangat diminati sehingga permintaan udang ini meningkat setiap tahunnya. Masalah terberat para petambak adalah kegagalan panen yang berakibat kepada keberlangsungan usaha mereka. Perlu adanya usaha perbaikan untuk meningkatkan keberhasilan panen. Penelitian ini bertujuan untuk lebih menggali mengenai penggunaan machine learning dalam prediksi hasil panen dari data kualitas air. Hasil prediksi ini selanjutnya dipakai dan digunakan dalam proses bisnis sehingga dapat meningkatkan produktivitas. Analisis yang digunakan pada penelitian ini adalah analisis kuantitatif dan kualitatif serta perbaikan proses bisnis. Analisis kuantitatif dengan metode big data dan machine learning. Model yang dipakai adalah k-Nearest Neighbor (kNN), Decision Tree (DT) dan Logistic Regression (LR). Analisis kualitatif dilakukan dengan observasi dan interview untuk memperbaiki proses bisnis. Proses bisnis diperbaiki mengikuti BPM Lifecycle dengan memasukan hasil analisis kuantitatif. Dari penelitian ini didapatkan bahwa prediksi machine learning dengan model Decision Tree dari variabel rasio bakteri merugikan dan NH4+ memberikan akurasi tertinggi mencapai 96%. Setelah didapatkan model dan variabel dengan akurasi tertinggi, penelitian ini juga melakukan penerapan ke dalam proses bisnis dengan pendekatan BPM Lifecycle sehingga hasil tersebut dapat diimplementasi dan memberikan hasil yang lebih produktif.

Interest in Vaname shrimp (Litopenaeus vannamei) farming is growing every year. The biggest problem for shrimp farming was the unsuccessful harvest that affected their business sustainability. So, there should be an improvement made to increase the chance of a successful harvest and its productivity. Past research mentioned that vaname shrimp harvest result can be predicted by machine learning approach from water quality data. It gave good accuracy and can be used to have faster decision making. The objective of this research is to deep dive into the utilization of machine learning to predict the successful harvest from water quality data. The predicted result will be utilized in the business process to improve productivity. Analysis that used at this research are quantitative and qualitative with business process improvement. Quantitative analysis used big data methode and machine learning. Models that have been applied are k-Nearest Neighbor (kNN), Decision Tree (DT) dan Logistic Regression (LR). Data that is used for analysis are pH, salinity, NOx, NH4+, and harmful bacteria index. Qualitative analysis was applied by observation and interview with the focus to improve business process. Business processes will be improved using BPM Lifecycle with the utilization of quantitative result. This research showed that prediction machine learning with Decision Tree model from harmful bacteria index and NH4+ giving the best accuracy until 96%. The next step was utilizing the quantitative result at the business process with BPM Lifecycle approach so the result can be implemented and gave more productive result."
Jakarta: Fakultas Ekonomi dan Bisnis Universitas Indonesia, 2023
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Kinanthy Dwi Pangesty
"Manajemen rumah sakit yang baik dapat meningkatkan kualitas pelayanan medis. Rumah sakit merupakan institusi pelayanan kesehatan yang menyelenggarakan pelayanan kesehatan perorangan secara paripurna yang menyediakan pelayanan rawat inap, rawat jalan, dan gawat darurat. Rumah sakit diharuskan untuk mengelola berbagai jenis sumber daya untuk meningkatkan efisiensi manajemen secara keseluruhan, seperti mengelola jadwal tim dan staf medis, manajemen tempat tidur, dan jalur perawatan. Penyakit jantung merupakan penyakit penyebab kematian tertinggi di dunia yang sangat membutuhkan penanganan medis dengan segera. Penyakit jantung membutuhkan salah satu pelayanan pada rumah sakit yaitu pelayanan rawat inap. Pelayanan rawat inap melibatkan sumber daya yang berkaitan dengan biaya dan waktu. Dengan adanya prediksi durasi rawat inap pada pasien penyakit jantung akan membantu pihak pasien dalam menyiapkan kebutuhan yang diperlukan serta pihak rumah sakit dalam manajemen tempat tidur rawat inap pasien penyakit jantung. Pada penelitian ini, dilakukan prediksi durasi rawat inap pasien penyakit jantung dengan menggunakan pendekatan ensemble machine learning dengan tujuan untuk mendapatkan metode terbaik dalam memprediksi dengan membandingkan dua metode ensemble machine learning yaitu random forest dan extreme gradient boosting, serta metode logistic regression sebagai baseline. Kemudian tujuan lainnya yaitu untuk mengetahui faktor yang paling berpengaruh terhadap durasi rawat inap. Ketiga metode yang digunakan merupakan bagian dari supervised machine learning. Selain itu, dilakukan optimasi hyperparameter untuk meningkatkan performa dari hasil model prediksi. Setelah membuat model prediksi dan melakukan evaluasi terhadap model, didapatkan metode terbaik yaitu random forest dengan optimasi hyperparameter yang mendapat hasil akurasi sebesar 83,9% dan nilai AUROC sebesar 92,86% serta faktor-faktor yang paling berpengaruh terhadap durasi rawat inap antara lain jumlah limfosit total, urea, trombosit, hemoglobin, glukosa, usia, kreatinin, peptida natriuretik otak, fraksi ejeksi dan hipertensi.

Good hospital management can improve the quality of medical services. The hospital is a health service institution that provides complete individual health services in inpatient, outpatient, and emergency services. Hospitals are required to manage various types of resources to improve overall management efficiency, such as managing medical team and staff schedules, bed management, and clinical pathways. Heart disease is the leading cause of death in the world and requires immediate medical treatment. Heart disease requires one of the services at the hospital, namely inpatient services. Inpatient services involve resources related to cost and time. Predicting the duration of hospitalization in heart disease patients will help the patient prepare for the necessary needs and the hospital in managing inpatient beds for heart disease patients. In this study, the prediction of the duration of hospitalization for heart disease patients using an ensemble machine learning approach was carried out with the aim of getting the best method of predicting by comparing two ensemble machine learning methods, namely random forest and extreme gradient boosting, as well as the logistic regression method as a baseline. Then another goal is to find out the most influential factors on the duration of hospitalization. The three methods used are part of supervised machine learning. In addition, hyperparameter optimization is carried out to improve the performance of the prediction model results. After making a predictive model and evaluating the model, the best method was obtained, namely random forest with hyperparameter optimization which obtained an accuracy of 83.9% and an AUROC value of 92.86% and the factors that most influence the duration of hospitalization include the number of total lymphocytes, urea, platelets, hemoglobin, glucose, age, creatinine, brain natriuretic peptide, ejection fraction and hypertension.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Ahmad Fauzi
"Adanya peristiwa selama tahapan penyelenggaraan pemilu 2024, menimbulkan berbedaan pandangan diantara para Ahli, akan potensi terciptanya persepsi buruktentang Pemilu 2024. Sehingga dibutuhkan pengukuran perbandingan sentimen untuk menindaklanjuti dan membuktikan pandangan tersebut. Di sisi lain media sosial hadir sebagai tempat yang memungkinkan penggunanya untuk mengeskpresikan opini yang dimiliki, termasuk opini tentang penyelenggaraan Pemilu. Besarnya adopsi media sosial di Indonesia, memungkinkannya digunakan sebagai sumber data dalam pengukuran perbandingan sentimen masyarakat terkait dengan Pemilu 2024. Namun dalam menganalisa data yang berasal dari media sosial membutuhkan sumber daya dan waktu yang tidak sedikit jika dilakukan secara manual, dikarenakan adanya karakterstik high velocity, high volume dan high variety yang dimiliki oleh data yang berasal dari media sosial. Text analytics dengan pendekatan machine learning telah banyak digunakan dan menjadi state-of-the-art cara yang mengatasi permasalahan tersebut. Penelitian ini mengkomparasikan algoritma deep learning dengan algoritma machine learning tradisional seperti SVM, random forest dan logistic regression, dalam upaya membangun model analisis sentimen yang dapat digunakan untuk mengukur perbandingan sentimen masyarakat terhadap Pemilu 2024. Teknik pemodelan topik Latent Dirichlet Allocation juga digunakan untuk mengidentifikasi topik pembicaraan yang tersembunyi di dalamnya. Hasil dari penelitian menunjukkan algoritma SVM dengan teknik vektorisasi TF-IDF unigram muncul sebagai algoritma dengan hasil kinerja prediksi terbaik dengan nilai f1-score 0.7890. Selain itu terdapat dinamika pergeseran dominasi sentimen mulai dari masa kampanye, masa tenang dan masa pemungutan sampai dengan masa rekapitulasi suara. Hasil penelitian ini diharapkan dapat memberikan informasi yang bernilai bagi para pemangku kepentingan seperti: Pengamat politik, Praktisi politik, Pemerintah dan Penyelenggara Pemilu.

The events occurring during the stages of the 2024 General Election have sparked differing opinions among experts regarding the potential for negative perceptions of the election. Consequently, there is a need to measure sentiment patterns to follow up on and substantiate these views. Meanwhile, social media serves as a platform that allows users to express their opinions, including those about the election. The widespread adoption of social media in Indonesia enables it to be used as a data source for measuring public sentiment patterns related to the 2024 General Election. Analyzing data from social media requires significant resources and time if done manually, due to the high velocity, high volume, and high variety characteristics of social media data. Text analytics with a machine learning approach has been extensively used and has become the state-of-the-art method for addressing these challenges. This study compares deep learning algorithms with traditional machine learning algorithms such as Support Vector Machine (SVM), Random Forest, and Logistic Regression in an effort to build a sentiment analysis model that can be used to measure public sentiment patterns toward the 2024 General Election. The Latent Dirichlet Allocation (LDA) topic modeling technique is also used to identify hidden discussion topics within the data. The results of the study indicate that the SVM algorithm with TF-IDF unigram vectorization technique emerged as the algorithm with the best predictive performance, achieving an f1-score of 0.7890. Meanwhile, the measurement of sentiment patterns showed dynamic shifts in sentiment from the campaign period, the quiet period, and the voting period up to the recapitulation period. The findings of this study are expected to provide valuable information for stakeholders such as political observers, political practitioners, the government, and election organizers.
"
Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2024
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Muhammad Risaldi Faizzudin R.
"Machine Learning (ML) telah menjadi salah satu teknologi yang sangat populer. Hal ini memungkinkan ML untuk diaplikasikan dalam sistem industri otomasi, seperti pengendalian ketinggian air pada coupled tank. Penelitian ini bertujuan untuk mengevaluasi kinerja metode reinforcement learning, khususnya proximal policy optimization (PPO), dalam mengendalikan ketinggian air pada sistem coupled tank, serta membandingkannya dengan metode pengendalian konvensional, yaitu proporsional derivative integral (PID) controller. Pemilihan PPO didasari oleh kemampuannya dalam menyelesaikan permasalahan kontinu dengan komputasi yang sederhana. Penelitian dilakukan dengan membuat sistem pengendalian ketinggian air pada coupled tank menggunakan perangkat-perangkat seperti control valve, programmable logic controller (PLC), DAQ card, dan water level transmitter. Perangkat-perangkat tersebut dihubungkan dengan MATLAB/Simulink menggunakan OPC server melalui PLC sebagai interface. Hasil penelitian menunjukkan bahwa respon pengendalian menggunakan metode PPO memiliki overshoot sebesar 49.26%, rise time sebesar 104 detik, settling time sebesar 306 detik, dan steady state error sebesar 5.4%. Sementara itu, metode PID memiliki nilai overshoot yang lebih rendah (38.52%), tetapi nilai rise time, settling time, dan steady state error yang lebih tinggi (masing-masing sebesar 118 detik, 502.4 detik, dan 24.62%). Dengan demikian, performa PPO secara relatif lebih baik daripada PID dalam mengendalikan ketinggian air pada coupled tank.

Machine Learning (ML) has become one of the most popular technologies. It enables ML to be applied in automation industry systems, such as controlling water levels in coupled tanks. This study aims to evaluate the performance of reinforcement learning methods, specifically proximal policy optimization (PPO), in controlling water levels in coupled tank systems, and compare it with conventional control methods, namely proportional derivative integral (PID) controller. The selection of PPO is based on its ability to solve continuous problems with simple computations. The research was conducted by creating a water level control system in coupled tanks using devices such as control valves, programmable logic controllers (PLC), DAQ card, and water level transmitters. These devices were connected to MATLAB/Simulink using an OPC server through PLC as an interface. The research results show that the control response using the PPO method has an overshoot of 49.26%, a rise time of 104 seconds, a settling time of 306 seconds, and a steady state error of 5.4%. Meanwhile, the PID method has a lower overshoot value (38.52%), but higher rise time, settling time, and steady state error values (118 seconds, 502.4 seconds, and 24.62%, respectively). Thus, the performance of PPO is relatively better than PID in controlling water levels in coupled tanks.
"
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>