Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 160486 dokumen yang sesuai dengan query
cover
Mochamad Ferdy Fauzan
"Keamanan siber menjadi hal yang sangat penting di era digitalisasi yang berkembang dengan sangat cepat. Berbagai teknologi telah dikembangkan untuk menjadi solusi keamanan siber, salah satunya adalah teknologi IDS atau Intrusion Detection System. Teknologi ini sudah cukup lama ada namun masih terus dikembangkan oleh berbagai pihak. Salah satunya adalah proyek Mata Elang yang dikembangkan oleh Politeknik Elektro Negeri Surabaya bekerja sama dengan Universitas Indonesia dan JICA untuk meningkatkan keamanan siber di Indonesia. Penelitian ini membahas tentang analisis modifikasi arsitektur dan sistem orkestrasi kontainer yang ada pada proyek Mata Elang. Perubahan dilakukan pada defense center dengan merancang dan mengimplementasikan arsitektur microservices, yang kemudian diorkestrasi menggunakan Kubernetes dan diterapkan pada platform cloud. Arsitektur microserverices dimaksudkan untuk memberikan fleksibilitas dalam opsi deployment dengan memisahkan komponen defense center menjadi aplikasi independen yang dapat dimuat ke dalam container secara terdistribusi. Container terdistribusi tersebut kemudian diorkestrasi menggunakan Kubernetes agar aplikasi dapat berjalan dengan andal di berbagai lingkungan, termasuk cloud. Penerapan dilakukan pada dua platform cloud: Google Cloud Platform dan Microsoft Azure. Pengujian yang dilakukan berfokus pada dua hal, yaitu performa defense center dan biaya yang dikeluarkan untuk deployment di cloud. Arsitektur microservices berhasil diimplementasikan dan diorkestrasi pada kedua pengujian tersebut dengan menggunakan layanan KaaS pada masing-masing platform cloud. Hasil pengujian menunjukkan bahwa kinerja defense center di GCP lebih unggul dibandingkan dengan di Azure, dan biaya yang dikeluarkan untuk deployment di GCP 30% lebih murah dibandingkan dengan di Azure.

Cybersecurity is critical in the era of digitalization that is developing very
quickly. Various technologies have been developed to be a cybersecurity solution,
including IDS or Intrusion Detection System technology. This technology has been
around for quite some time but is still being developed by various parties. One of
them is the Mata Elang project developed by Politeknik Elektro Negeri Surabaya
in collaboration with the University of Indonesia and JICA to improve cybersecurity in Indonesia. This research discusses the analysis of the modification of the existing architecture and container orchestration system in the Mata Elang
project. Changes were made to the defense center by designing and implementing a microservices architecture, which was then orchestrated using Kubernetes and deployed on cloud platforms. Microservices architecture is intended to provide
flexibility in deployment options by separating defense center components into independent applications that can be loaded into containers in a distributed manner. The distributed containers are then orchestrated using Kubernetes to enable the application to run reliably in various environments, including the cloud. Deployment is done on two cloud platforms: Google Cloud Platform and Microsoft Azure. The tests conducted focused on two things, namely, defense center performance and costs incurred for deployment in the cloud. The microservices architecture was successfully implemented and orchestrated in both tests using
KaaS services on the cloud platform. The test results show that the performance of the defense center in GCP is superior to that in Azure, and the costs incurred for deployment in GCP are 30% cheaper than in Azure.
"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kevin Darmawan
"Pesatnya perkembangan teknologi informasi di era revolusi industri 4.0 memicu berkembangnya paradigma Internet of Things (IoT) yang memudahkan otomasi dan monitoring rumah. Artinya bertambah pula kerentanan pada jaringan rumah yang menyebabkan resiko penurunan performa jaringan, hingga kebocoran data. Penelitian ini mengusulkan sistem keamanan jaringan IoT berbasis Raspberry Pi sebagai solusi IDS beserta tambahan secure access point yang terjangkau. Sistem keamanan yang dikembangkan dipercaya dapat mengisolasi jaringan IoT dengan lebih baik agar serangan tidak mempengaruhi kinerja perangkat IoT, dan memberikan alerting mengenai intrusion kepada pengguna untuk mengambil langkah terhadap resiko yang dapat terjadi. Intrusion Detection System berhasil mendeteksi serangan yang ada pada skenario dengan hasil maksimum: tingkat false alarm dibawah 15%, tingkat keberhasilan deteksi diatas 50% dan akurasi deteksi diatas 75% untuk skenario serangan Evil Twin, Reconnaissance, Distributed Denial of Service (DDoS), dan Man In The Middle (MITM) dan dapat mencegah serangan Evil Twin dan MITM.

The rapid development of information technology in the industrial revolution 4.0 era triggers the development of the Internet of Things (IoT) paradigm in everyday life, facilitating automation and monitoring for home. This phenomenon introduces vulnerabilities in the home network and may lead to the risk of decreased network performance, and privacy leak. This study proposes an IoT network security system implementing Network Intrusion Detection System (NIDS) and secure access point based on Raspberry Pi as an affordable IDS solution. The proposed security system is believed to better isolate the IoT network and not affect the performance of IoT devices in case of attacks, also providing  intrusion alerts to encourage users to take steps against risks that may occur. The system is able to detect a maximum of: false alarm rate under 15%, successful detection rate above 50% and detection accuracy of 75% for Evil Twin, Reconnaissance, Distributed Denial of Service (DDoS), and Man In The Middle (MITM) attack scenarios with increased robustness in case of Evil Twin deauthentication and MITM attacks.
"
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Wisnu Broto
"Pada dasarnya Intrusion Detection System (IDS) memonitor aktivitas lalu lintas jaringan yang mencurigakan, IDS merespon kejanggalan / anomaly lalu lintas jaringan yang dianggap berbahaya dengan melakukan tindakan seperti memblokir alamat Internet Protokol sumber intrusi. IDS mempunyai berbagai metode mendeteksi paket lalu lintas data yang mencurigakan, ada yang berbasis jaringan disebut Network Based Intrusion Detection System (NBIDS) dan yang lainnya berbasis host disebut Host Based Intrusion Detection System (HBIDS). HBIDS berbasis anomaly memonitor besarnya bandwidth, port dan protokol apa yang digunakan, pada paket lalu lintas data inbound dan outbound kemudian membandingkan pola paket lalu lintas data terhadap baseline HBIDS, bila terdeteksi terjadi anomaly dari perangkat jaringan akan mengirim alert kepada pengguna atau administrator untuk melakukan tindakan pencegahan terhadap intrusi jaringan. Simulasi ini mendapatkan data analisa kinerja HBIDS sebesar 18,56% lebih baik dari kondisi Snort.

Basically Intrusion Detection System (IDS) monitors network activity for suspicious traffic, the IDS responds to irregularities / anomalies of network traffic that is considered dangerous to perform actions such as blocking Internet Protocol address of the source intrusion. IDS has a variety of methods to detect packet data traffic is suspicious, there is a network-based so-called Network Based Intrusion Detection System (NBIDS) and the other so-called host-based Host Based Intrusion Detection System (HBIDS). HBIDS based anomaly monitors the amount of bandwidth, what ports and protocols used, the packet data traffic inbound and outbound packets then comparing traffic patterns against baseline data HBIDS, when the detected anomaly occurs from the network device will send alerts to the user or administrator to perform actions prevention against network intrusion. This simulation analysis of performance data HBIDS get for 18.56% better than the condition of Snort."
Depok: Fakultas Teknik Universitas Indonesia, 2014
T43332
UI - Tesis Membership  Universitas Indonesia Library
cover
Faldy Syofra Martinus
"Skripsi ini akan membahas mengenai aplikasi berbasis web yang akan menghasilkan sebuah Vagrantfile yang dapat digunakan dalam proses instalasi Intrusion Detection System Mata Elang. Mata Elang merupakan Intrusion Detection System yang dikembangkan oleh Politeknik Elektronika Negeri Surabaya (PENS) dengan berkolaborasi bersama dengan Universitas Indonesia dan Japan International Cooperation Agency (JICA). Vagrantfile yang dihasilkan akan dapat digunakan dalam melakukan instalasi keseluruhan sistem Mata Elang berdasarkan skenario instalasi yang dipilih oleh user dimulai dari provisioning virtual machine, hingga konfigurasi dari virtual machine tersebut sehingga keseluruhan sistem Mata Elang terinstal dengan baik. Hal ini akan mempercepat proses intalasi Mata Elang dan mengeliminasi terjadinya kesalahan dibanding ketika user harus menginstal setiap komponen dari sistem Mata Elang satu-persatu. Parameter pengujian yang akan dilakukan adalah dengan membandingkan hasil deteksi serangan dari Intrusion Detection System Mata Elang yang diinstal secara manual dan yang diinstal menggunakan script. Penelitian akan menghasilkan dua buah produk yaitu sebuah aplikasi website yang dapat digunakan untuk menghasilkan sebuah Vagrantfile untuk instalasi Intrusion Detection System Mata Elang sesuai dengan berbagai skenario topologi, dan sebuah Vagrantfile yang dapat digunakan untuk instalasi Intrusion Detection System Mata Elang sesuai dengan topologi yang dikonfigurasikan pada aplikasi website yang disebutkan sebelumnya.

This skripsi will discuss a web-based application that will generate a Vagrantfile that can be used in the installation process of the Mata Elang Intrusion Detection System. Mata Elang is an Intrusion Detection System developed by the Politeknik Elektronika Negeri Surabaya (PENS) in collaboration with Universitas Indonesia and the Japan International Cooperation Agency (JICA). The resulting Vagrantfile can be used to install the entire Mata Elang system based on the installation scenario selected by the user, starting from the virtual machine provisioning to the configuration of the virtual machine, so that the entire Mata Elang system can be installed properly. This will speed up the Mata Elang installation process and eliminate errors compared to when users must install each component of the Mata Elang system one by one. The evaluation parameter that will be conducted is by comparing the results of attack detection from the manually installed Intrusion Detection System Mata Elang versus the one installed using a script. There will be two product from this skripsi, one is a web based application that can be used to generate a Vagrantfile for the purpose of installing Intrusion Detection System Mata Elang based on the various configuration and topology, and the other product is a Vagrantfile that can be used to install Intrusion Detection System Mata Elang based on the configuration from the mentioned web based application"
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Diwandaru Rousstia
"Risiko serangan siber berbanding lurus dengan pertumbuhan aplikasi dan jaringan komputer. Intrusion Detection System (IDS) diimplementasikan agar dapat mendeteksi serangan siber dalam lalu lintas jaringan. Akan tetapi terdapat permasalahan pada pendeteksian serangan yang belum diketahui atau jenis serangan baru. Selain itu juga terdapat masalah kinerja tentang waktu deteksi, akurasi deteksi, dan false alarm. Dibutuhkan deteksi anomali dalam lalu lintas jaringan untuk mengurangi permasalahan tersebut dengan pendekatan machine learning. Pengembangan dan pemanfaatan IDS dengan machine learning telah diterapkan dalam beberapa penelitian sebagai solusi untuk meningkatkan kinerja dan evaluasi prediksi deteksi serangan. Memilih pendekatan machine learning yang tepat diperlukan untuk meningkatkan akurasi deteksi serangan siber. Penelitian ini menggunakan metode homogeneous ensemble learning yang mengoptimalkan algoritma tree khususnya gradient boosting tree - LightGBM. Dataset Communications Security Establishment dan Canadian Institute of Cybersecurity 2018 (CSE-CIC-IDS 2018) digunakan untuk mengevaluasi pendekatan yang diusulkan. Metode Polynom-fit SMOTE (Synthetic Minority Oversampling Technique) digunakan untuk menyelesaikan masalah ketidakseimbangan dataset. Penerapan metode spearman’s rank correlation coefficient pada dataset menghasilkan 24 fitur subset dari 80 fitur dataset yang digunakan untuk mengevaluasi model. Model yang diusulkan mencapai akurasi 99%; presisi 99,2%, recall 97,1%; F1-score 98,1%; ROC-AUC 99,1%; dan average-PR 98,1% serta meningkatkan waktu pelatihan model dari 3 menit 25,10 detik menjadi 2 menit 39,68 detik.

The risk of cyberattacks is directly proportional to the growth of applications and computer networks. An Intrusion Detection System (IDS) is implemented to detect cyber attacks in network traffic. However, there are problems detecting unknown attacks or new types of attacks. In addition, there are performance issues regarding detection time, detection accuracy, and false alarms. A machine learning approach takes anomaly detection in network traffic to reduce these problems. The development and utilization of IDS with machine learning have been applied in several studies to improve performance and evaluate attack detection predictions. Choosing the right machine learning approach is necessary to improve the accuracy of cyberattack detection. This research uses a homogeneous ensemble learning method that optimizes tree algorithms, especially gradient boosting tree - LightGBM. The Communications Security Establishment and Canadian Institute of Cybersecurity 2018 (CSE-CIC-IDS 2018) dataset evaluated the proposed approach. The Polynom-fit SMOTE (Synthetic Minority Oversampling Technique) method solved the dataset imbalance problem. The application of spearman's rank correlation coefficient method to the dataset resulted in 24 subset features of the 80 dataset features used to evaluate the model. The proposed model achieves 99% accuracy; precision 99.2%, recall 97.1%; F1-score 98.1%; ROC-AUC 99.1%; and an average-PR of 98.1% and increased the training time of the model from 3 minutes 25.10 seconds to 2 minutes 39.68 seconds."
Depok: Fakultas Teknik Universitas Indonesia, 2021
T-pdf
UI - Tesis Membership  Universitas Indonesia Library
cover
Hada Melino Muhammad
"Anomaly-Based Network Intrusion Detection System (ANIDS) memegang peranan yang sangat penting dengan berkembangnya teknologi internet. ANIDS digunakan untuk mendeteksi trafik jaringan yang membahayakan pengguna internet. Metode tradisional yang digunakan untuk membuat ANIDS masih sulit untuk mengekstrak fitur dari trafik yang banyak dan berdimensi tinggi. Selain itu, jumlah sampel yang sedikit pada beberapa jenis trafik menyebabkan ketidakseimbangan dataset dan mempengaruhi performa deteksi ANIDS. Ketidakseimbangan dataset dapat diatasi dengan oversampling dan atau undersampling. Penulis mengusulkan metode oversampling menggunakan modifikasi dari Deep Convolutional Generative Adversarial Network (DCGAN) yang dapat mengekstrak fitur trafik data secara langsung dan menghasilkan sampel baru untuk menyeimbangkan dataset. Modifikasi DCGAN bertujuan untuk menghindari adanya pemetaan data tabular menjadi data gambar sebelum masuk ke DCGAN. Selain itu, modifikasi DCGAN bertujuan untuk menstabilkan pelatihan model untuk data tabular sehingga data yang dihasilkan lebih berkualitas. Pengujian efek modifikasi DCGAN dilakukan dengan melatih model ANIDS yang terdiri dari model Deep Neural Network (DNN) dan Convolutional Neural Network (CNN). Evaluasi performa deteksi dilakukan dengan confusion matrix serta metrik accuracy, precision, recall, dan F1-Score. Hasil yang didapatkan adalah oversampling menggunakan modifikasi DCGAN meningkatkan validation accuracy dari 75.77% menjadi 81.41% pada model DNN dan 73.94% menjadi 80.76% pada model CNN. Peningkatan metrik lain juga terjadi akibat dari peningkatan validation accuracy.

Anomaly-Based Network Intrusion Detection System (ANIDS) plays a very important role with the development of internet technology. ANIDS is used for detecting network traffic that endangers internet users. The traditional methods used to create ANIDS are still difficult to extract features from high-dimensional traffic. In addition, the small number of samples in some types of traffic causes imbalanced dataset and affects ANIDS detection performance. Imbalanced dataset can be overcome by oversampling and or undersampling. The author proposes an oversampling method using a modification of the Deep Convolutional Generative Adversarial Network (DCGAN) which can extract data traffic features directly and generate new samples to balance the dataset. DCGAN modification aims to avoid mapping tabular data into image data before entering DCGAN. In addition, the DCGAN modification aims to stabilize the training model for tabular data so that the resulting data is of higher quality. Testing the effects of the DCGAN modification was carried out by training the ANIDS model consisting of the Deep Neural Network (DNN) and Convolutional Neural Network (CNN) models. Evaluation of detection performance is carried out using a confusion matrix and the metrics of accuracy, precision, recall, and F1-Score. The results obtained are oversampling using the DCGAN modification increases the validation accuracy from 75.77% to 81.41% in the DNN model and 73.94% to 80.76% in the CNN model. Improvements in other metrics also occurred as a result of the increase in validation accuracy."
Depok: Fakultas Teknik Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Dahlan Yasadiputra
"Indonesia merupakan negara rawan gempa karena secara geografis indonesia terletak pada pertemuan empat lempeng tektonik. Karena ini, pengembangan sebuah sistem prediksi real-time gempa bumi yang mencakup wilayah yang luas dengan gempa bumi besar sangat dibutuhkan untuk mengurangi korban jiwa. Penelitian ini mengusulkan pembuatan sistem pendeteksi cepat kedatangan gelombang-p dan penentuan hiposenter dan magnitudo gempa menggunakan deep-learning. Pengembangan sistem berbasis web ini bertujuan untuk memperingati masyarakat agar dapat lebih dini untuk melindungi diri sebelum gempa terjadi. Menggunakan data dari BMKG, data yang kami gunakan mencakupi 1892 set data gempa pada tahun 2009–2017 dan 26 set data gempa dari Katalog BMKG Januari 2019, penelitian ini menggunakan algoritma STA/LTA dalam menemukan P-Arrival dan membandingkan tiga model pembelajaran mesin untuk memprediksi hiposenter gempa dimana model Conv1d digabung dengan LSTM dengan interval waktu 20 detik merupakan skenario model terbaik dengan memiliki mean absolute error sebesar 0.470. Selain itu, penelitian ini berhasil mengimplementasi sistem berbasis web yang dapat menampilkan visualisasi data dengan menggunakan websocket berdasarkan data seismik yang dikumpulkan oleh BMKG. Visualisasi data seismik ini ditampilkan menggunakan dynamic line chart dan peta web interaktif.

Indonesia is an earthquake-prone country because geographically Indonesia is located at the confluence of four tectonic plates. Therefore, the development of a real-time earthquake prediction system that covers large areas with large earthquakes is urgently needed to reduce fatalities. This study proposes the creation of a rapid detection system for the arrival of p-waves, hypocenters and earthquake magnitudes using deep-learning. The development of this web-based system is aimed at warning people so that they can protect themselves before an earthquake occurs. Using data from BMKG, we used 1892 earthquake data sets in 2009–2017 and 26 earthquake data sets from January 2019 BMKG Catalog, this research uses the STA/LTA algorithm to find P-Arrival and compares three machine learning models to predict the earthquake hypocenter where Conv1d model is combined with LSTM with a time interval of 20 seconds is the best model scenario with a mean absolute error of 0.470. In addition, this research succeeded in implementing a web-based system that can display data visualization using websocket based on seismic data collected by BMKG. This seismic data visualization is displayed using dynamic line charts and an interactive web map."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Muhammad Farhan Haniftyaji
"Arsitektur 5G Core (5GC) menjawab permintaan akan koneksi berkecepatan tinggi dan aman dengan janji konektivitas yang lebih cepat dan keandalan jaringan yang lebih baik. Namun, tantangan keamanan siber terhadap serangan pada Session Management Function (SMF) melalui Packet Forwarding Control Protocol (PFCP) mendorong pengembangan Intrusion Detection System (IDS) menggunakan Machine Learning. Dataset yang digunakan dalam penelitian adalah 5G Core PFCP Intrusion Dataset milik George Amponis, dkk. Penelitian dilakukan dengan menggunakan metode fitur seleksi seperti filter dengan korelasi Pearson, embedded, dan wrapper dengan Recursive Feature Elimination (RFE). Model Machine Learning yang diujikan adalah Random Forest, Gradient Boost Machine (GBM), Light Gradient Boost Machine (LGBM), Extreme Gradient Boost (XGB), dan AdaBoost. Skenario penelitian dibuat menjadi dua berdasarkan data awal dari 5G Core PFCP Intrusion Dataset dengan lima kelas target dan skenario setelah dilakukan penggabungan pada serangan PFCP Session Modification Flood Attack menjadi empat kelas target. Penelitian mendapatkan bahwa kombinasi model GBM dengan metode seleksi fitur embedded pada skenario empat kelas target memiliki kinerja terbaik dalam mendeteksi serangan PFCP pada jaringan 5G Core dengan nilai akurasi sebesar 97,366%, presisi 97,383%, recall 97,366%, dan f1-score sebesar 97,375%.

The 5G Core (5GC) architecture addresses the demand for high-speed and secure connections with the promise of faster connectivity and better network reliability. However, cybersecurity challenges against attacks on the Session Management Function (SMF) through the Packet Forwarding Control Protocol (PFCP) drive the development of an Intrusion Detection System (IDS) using Machine Learning. The dataset used in the research is the 5G Core PFCP Intrusion Dataset by George Amponis, et al. Research was conducted using feature selection methods such as filters with Pearson correlation, embedded, and wrapper with Recursive Feature Elimination (RFE). The Machine Learning models tested were Random Forest, Gradient Boost Machine (GBM), Light Gradient Boost Machine (LGBM), Extreme Gradient Boost (XGB), and AdaBoost. The research scenarios were made into two based on the initial data from the 5G Core PFCP Intrusion Dataset with five target classes and the scenario after combining the PFCP Session Modification Flood Attack into four target classes. The research found that the combination of the GBM model with the embedded feature selection method in the four target classes scenario has the best performance in detecting PFCP attacks on the 5G Core network with an accuracy value of 97.366%, precision of 97.383%, recall of 97.366%, and f1-score of 97.375%."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Nabil Mafaza
"Penggunaan internet telah mengubah hidup dan perilaku manusia. Internet yang awalnya hanya dimanfaatkan segilintir orang, berubah menjadi sebuah hal yang banyak orang manfaatkan. Perubahan perilaku manusia terlihat dalam cara manusia berkomunikasi, belajar, sampai menikmati konten hiburan. Namun, di balik manfaatnya, internet membawa bahaya yang merugikan banyak pihak. Bahaya tersebut timbul dalam bentuk serangan siber. Untuk mengatasi serangan siber, banyak perangkat keras dan lunak yang digunakan, salah satunya adalah intrusion detection system (IDS). Akan tetapi, IDS tidak dapat mendeteksi serangan baru akibat sifat pendeteksiannya yang rule-based. Penelitian ini bertujuan untuk menambah kemampuan IDS dalam mendeteksi serangan siber dengan menggunakan model machine learning (ML), khususnya autoencoder, untuk mendeteksi serangan siber dalam lalu lintas jaringan. Autoencoder digunakan untuk meng-encode lalu lintas jaringan, kemudian men-decode/merekonstruksi hasil encode. Lalu lintas jaringan akan dideteksi sebagai serangan siber apabila perbedaan hasil rekonstruksi dengan lalu lintas jaringan asli melebihi ambang tertentu. Berdasarkan testing yang dilakukan, model autoencoder paling optimal adalah model yang di-train dengan dataset yang dipisah menjadi dense dan sparse berdasarkan nilai quantile 70% fitur tot_l_fwd_pkt dan tot_l_bwd­_pkt, dilakukan feature selection menggunakan random forest dengan nilai importance 0,2, menggunakan activation function ReLU, dan menggunakan empat layer encoder dan decoder serta jumlah neuron 16, 8, 4, 2, 1, 2, 4, dan 16. Model autoencoder untuk dataset dense terbaik memiliki F1-score 84% (lalu lintas benign) dan 83% (lalu lintas malicious), trainable parameter berjumlah 830, dan ukuran model sebesar 71 KB. Sementara, model autoencoder untuk dataset sparse terbaik memiliki F1-score 71% untuk lalu lintas benign dan malicious, trainable parameter berjumlah 890, dan ukuran model sebesar 72 KB.

The use of the internet has transformed human lives and behavior. Initially utilized by a few, the internet has become an essential tool for many. This transformation is evident in how people communicate, learn, and enjoy entertainment content. However, alongside its benefits, the internet also poses significant risks in the form of cyber attacks. To combat these threats, various hardware and software solutions, including intrusion detection systems (IDS), are employed. Traditional IDS, however, struggle to detect new attacks due to their rule-based nature. This research aims to enhance IDS capabilities in detecting cyber attacks by using machine learning (ML) models, specifically autoencoders, to detect cyber attacks in network traffic. Autoencoders encode network traffic and then decode/reconstruct the encoded data. Network traffic is identified as a cyber attack if the reconstruction error exceeds a certain threshold. Based on the testing conducted, the most optimal autoencoder model was trained on a dataset split into dense and sparse categories based on the 70% quantile values of the tot_l_fwd_pkt and tot_l_bwd_pkt features. Feature selection was performed using random forest with an importance threshold of 0.2, employing the ReLU activation function, and using four encoder and decoder layers with neuron counts of 16, 8, 4, 2, 1, 2, 4, and 16. The best autoencoder model for dense dataset achieved an F1-score of 84% for benign traffic and 83% for malicious traffic, with 830 trainable parameters and a model size of 71 KB. Meanwhile, the best autoencoder model for sparse dataset achieved an F1-score of 71% for both benign and malicious traffic, with 890 trainable parameters and a model size of 72 KB."
Depok: Fakultas Teknik Universitas Indonesia, 2024
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Diane Fitria
"Sistem deteksi aritmia otomatis sangat diperlukan karena keterbatsan dokter spesialis jantung di Indinesia. Paper ini akan mendiskusikan secara lengkap tentang studi dan implementasi dari sistem tersebut. Kami menggunakan berbagai macam metode pengolahan sinyal untuk mengenali aritmia berdasarkan sinyal ekg. Bagian utama dari sistem adalah klasifikasi. Kami menggukanakn jaringan syaraf tiruan berbasis LVQ yang meliputi LVQ1, LVQ2, LVQ2.1, FNLVQ, FNLVQ MSA, FNLVQ-PSO, GLVQ dan FNGLVQ. Hasil eksperimen menunjukkan untuk data non round robin tingkat akurasi sistem mencapai 94.07%, 92.54%, 88.09% , 86.55% , 83.66%, 82.29 %, 82.25%, dan 74.62%d berturut-turut untuk FNGLVQ, FNLVQ-PSO, GLVQ, LVQ2.1, FNLVQ-MSA, LVQ2, FNLVQ dan LVQ1. Sedangkan untuk data round robin tingkat akurasi sistem mencapai 98.12%, 98.04%, 94.31%, 90.43%, 86.75%, 86.12 %, 84.50%, dan 74.78% berturut-turut untuk GLVQ, LVQ2.1, FNGLVQ, FNLVQ-PSO, LVQ2, FNLVQ-MSA, FNLVQ dan LVQ1.

An automatic Arrythmias detection system is urgently required due to small number of cardiologits in Indonesia. This paper discusses only about the study and implementation of the system. We use several kinds of signal processing methods to recognize arrythmias from ecg signal. The core of the system is classification. Our LVQ based artificial neural network classifiers based on LVQ, which includes LVQ1, LVQ2, LVQ2.1, FNLVQ, FNLVQ MSA, FNLVQ-PSO, GLVQ and FNGLVQ. Experiment result show that for non round robin dataset, the system could reach accuracy of 94.07%, 92.54%, 88.09% , 86.55% , 83.66%, 82.29 %, 82.25%, and 74.62% respectively for FNGLVQ, FNLVQ-PSO, GLVQ, LVQ2.1, FNLVQ-MSA, LVQ2, FNLVQ and LVQ1. Whereas for round robin dataset, system reached accuracy of 98.12%, 98.04%, 94.31%, 90.43%, 86.75%, 86.12 %, 84.50%, and 74.78% respectively for GLVQ, LVQ2.1, FNGLVQ, FNLVQ-PSO, LVQ2, FNLVQ-MSA, FNLVQ and LVQ1."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2014
AJ-Pdf
Artikel Jurnal  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>