Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 173824 dokumen yang sesuai dengan query
cover
Gilang Rayhan Akbar
"Rotating machinery dalam industri minyak dan gas merupakan aset kritis yang beroperasi dalam medan kerja yang berat, sehingga beberapa bagian umum rentan mengalami fault. Fault merupakan anomali yang menunjukkan penyimpangan dari kondisi operasi normal pada suatu sistem, sehingga perlu dideteksi lebih dini, secara akurat, dan terotomasi. Salah satu metode yang dapat digunakan adalah dengan machine learning. Data yang digunakan dalam penelitian ini adalah sensor condition monitoring aset rotating machinery yang diperoleh dari sebuah perusahaan minyak dan gas di Indonesia. Data sensor yang diperoleh mencakup 3 operation parameters yakni kecepatan, suhu, dan vibrasi. Algoritme klasifikasi pada penelitian ini menggunakan supervised learning yakni Support Vector Machine (SVM), Random Forest (RF), dan K-Nearest Neighbors (KNN). Kinerja model machine learning dievaluasi menggunakan metrik accuracy, precision, F1 score, dan matthews correlation coefficient (MCC). Hasil model klasifikasi random forest menunjukkan hasil yang sangat baik dengan akurasi 98,5%, presisi 98,6%, f1-score 98,5%, dan MCC sebesar 97,2%. Analisis SHAP Explainer secara global mampu menjelaskan feature importance dan secara lokal yang memperlihatkan kontribusi variabel-variabel operating parameter yang berkontribusi paling besar pada kelas normal, alert, dan fault.

Rotating machinery in the oil and gas industry is a critical asset that operates in a tough work environment, where some of the common parts are prone to faults. Fault is an anomaly that indicates a deviation from the normal operating conditions of a system, so it needs to be detected early, accurately, and automated. The data used in this study is obtained from a condition monitoring sensor of rotating machinery in an oil and gas company in Indonesia. The acquired sensor data includes 3 operating parameters: speed, temperature, and vibration. The classification algorithms used in this research are supervised learning methods, namely Support Vector Machine (SVM), Random Forest (RF), and K-Nearest Neighbors (KNN). The performance of the machine learning models is evaluated using metrics such as accuracy, precision, F1 score, and Matthews correlation coefficient (MCC). The results of the random forest classification model show very good results with an accuracy of 98.5%, a precision of 98.6%, an f1-score of 98.5%, and an MCC of 97.2%. SHAP Explainer in global explanation is able to explain the feature importance and also locally which shows the contribution of operating parameter variables that contribute the most to the normal, alert, and fault classes."
Depok: Fakultas Teknik Universitas Indonesia, 2023
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Firman Arief
"ABSTRAK
Peralatan minyak dan gas memerlukan pemeliharaan untuk dapat beroperasi sesuai dengan apa yang diharapkan. Banyaknya peralatan di fasilitas pengolahan minyak dan gas akan mengakibatkan banyaknya kegiatan tim pemeliharan untuk melakukan pemeliharaan hal ini dikarenakan tidak adanya tingkat criticality peralatan sehingga semua peralatan dianggap penting untuk dipelihara. Penentuan aktifitas pemeliharaan di perusahaan minyak umumya hanya membuat jadwal pemeliharaan berdasarkan rekomendasi pabrik dan ini hal yang umum terjadi di industry minyak dan gas dan dilakukan pada saat fase beroperasi. Metode penelitian ini melakukan Reliability Availability Modeling(RAM) untuk mendapatkan downtime hours dan Number of F ailure (NOF) yang akan dipakai sebagai input untuk kajian Equipment Criticality Analysis (ECA), ECA dilakukan untuk menentukan criticality peralatan.Hasil ECA untuk tingkat CI dan C2 akan di lakukan kajian Reliability Centered Maintenance (RCM) untuk menentukan aktifitas yang tepat. Waktu eksekusi RAM, ECA dan RCM ini dilakukan pada fase Design yaitu fase sebelum fasilitas beroperasi sehingga hasil dari kajian diatas dapat membuat fasilitas lebih handal dalam beroperasi dan dapat mengurangi potensial Lost Production opportunity (LPO) baik yang tidak terencana dan terencana serta memberikan feedback kepada tim engineering untuk meningkatkan kehandalan pada saat beroperasi.

ABSTRACT
Oil and gas equipments need treatment to be able to operate in accordance with what is expected. Amount of equipment in the oil and gas processing facilities will lead to many maintenance activities for maintenance team to do this, because there is no equipment criticality tingkat so that all the equipments are considered essential to maintain. Determination of maintenance activities in Oil and Gas Company generally make maintenance schedule based on the manufacturer's recommendations and these things are common in the oil and gas industry and carried out during operation phase. This research method did RAM to get the NOF and the likelihood that will be used as input for the study of ECA, ECA conducted to determine the tingkat of criticality Equipment. The result of ECA for C1 and C2 will be follow up with RCM studies to determine the right maintenance activities. RAM, ECA and RCM are conducted at the Engineering phase before the facility is in operation.The results of the above studies can make facilities more reliable in operation and may reduce the potential LPO both unplanned and planned giving feedback to engineering for improving reliability during operation.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
T35622
UI - Tesis Membership  Universitas Indonesia Library
cover
Taufik Aditiyawarman
"Peningkatan keselamatan dan efisiensi dalam industri minyak dan gas bumi di Indonesia masih memerlukan pendekatan yang canggih untuk memelihara sistem perpipaan yang ada. Disertasi ini membahas penerapan metode Risk Based Inspection (RBI) dengan dukungan teknologi machine learning (ML) dan deep learning (DL) untuk mengembangkan model yang mampu mengidentifikasi akar permasalahan dan solusi untuk menanggulangi kegagalan tersebut. Penelitian dilakukan pada sampel ex-spool berdiameter 16’’ melalui pengujian metalografi dan penggunaan algoritma AdaBoost, Random Forests, dan Gradient Boosting. Metode klasifikasi masalah dilakukan berdasarkan prinsip K-Means Clustering dan Gaussian Mixture Model dan penelitian divalidasi menggunakan metode k-fold cross-validation. Model yang dihasilkan mampu mengidentifikasi dan mengklasifikasikan jenis kegagalan ke dalam 3 kelompok sesuai jenis risikonya masing-masing serta memberikan beragam metode pemeliharaan material yang lebih ekonomis. Program artificial intelligence ini diharapkan mampu meningkatkan keselamatan dan keandalan operasi perpipaan minyak dan gas di Indonesia melalui penerapan berbagai metode pemeliharaan pipa di masa depan.

Improving safety and efficiency in the oil and gas industry in Indonesia still requires a sophisticated approach to maintain the existing piping systems. This dissertation discusses the application of the risk-based inspection (RBI) method with the support of machine learning (ML) and deep learning (DL) technology to develop a model that is able to identify the potential root-cause and its solutions to overcome these failures. The research was carried out on a 16'' diameter ex-spool sample through metallographic testing and the use of AdaBoost, Random Forests, and Gradient Boosting algorithms. The problem classification method was carried out based on the principles of K-means clustering and the Gaussian Mixture Model, while the research was validated using the k-fold cross-validation method. The resulting model is able to identify and classify types of failure into three groups according to each type of risk and provides a variety of more economical material maintenance solutions. It is hoped that this artificial intelligence program can support efforts to increase the safety and reliability of oil and gas pipeline operations in Indonesia through the application of various pipeline maintenance methods in the future."
Depok: Fakultas Teknik Universitas Indonesia, 2024
D-pdf
UI - Disertasi Membership  Universitas Indonesia Library
cover
Chichester : Ellis Horwood, 1977
001.535 MAC
Buku Teks SO  Universitas Indonesia Library
cover
England: Ellis Hrwood Limited, 1979
006.3 MAC
Buku Teks  Universitas Indonesia Library
cover
Eugene Clarance
"Diabetes melitus tipe 2 (DMT2) merupakan salah satu tipe diabetes yang telah menjadi permasalahan besar dalam dunia kesehatan. Salah satu pengobatan DMT2 yang mendegrasi enzim glukagon dan meningkatkan sekresi insulin adalah inhibitor Dipeptidil Peptidase-IV (DPP-IV).  Inhibitor DPP-IV yang sudah digunakan memiliki efek samping yang bahaya, seperti pankreatitis akut, arthalagia, dan gagal jantung. Pada penelitian ini, dilakukan pengembangan model Virtual Screening (VS) menggunakan teknologi Artificial Intelligence (AI) untuk identifikasi inhibitor DPP-IV yang berpotensi. Pengembangan model VS dilakukan menggunakan konsep machine learning (ML) dan deep learning (DL). Pada penelitian ini, dilakukan 18 pengembangan model ML dan 8 model DL. Model VS DPP-IV yang optimal merupakan DNN dengan fitur Fingerprint dengan nilai parameter statistik lebih tinggi dari threshold VS optimal yaitu 0,85, dengan akurasi 0,91554, presisi 0,90815, sensitivitas 0,92319, selektivitas 0,90801, dan nilai F1 0,9156. Hyperparameter optimal model VS adalah tiga layer dengan jumlah neuron 2.000, 1.000, 100; nilai dropout 0; ukuran batch size 256; jumlah epoch 100; kecepatan learning rate 0,0001; dan tipe activation function merupakan RELU. Model VS DPP-IV dilakukan ujicoba terhadap database bindingDB dan didapat 24 ligan potensi. Berdasarkan perbandingan nilai binding affinity 24 ligan potensi terhadap ligan inhibitor DPP-IV menggunakan penambatan molekular, didapat satu ligan potensi berinteraksi dengan situs aktif S2 dan tujuh ligan potensi berinteraksi dengan situs aktif S3. Ligan tersebut memiliki nilai binding affinity lebih rendah dari ligan inhibitor DPP-IV yang FDA-approved dan lebih rendah dari -8 kcal/mol. Hasil ini menunjukkan bahwa model VS DPP-IV menggunakan AI dapat menjadi metode virtual screening dalam identifikasi inhibitor DPP-IV yang baru.

Diabetes mellitus type 2 (DMT2) is one of diabetes type that has been causing problems in the health sector. One of the DMT2 medications that can degrade glucagon enzyme and increase insulin secretion is a Dipeptydil Peptidase-IV (DPP-IV) inhibitor. However, DPP-IV inhibitor drugs result in unexpected side effects such as acute pancreatitis, arthralgia, and heart failure. This research developed a virtual screening (VS) model using Artificial Intelligence (AI) to identify potential DPP-IV inhibitors. VS models that were developed were 18 ML models and 8 DL models. DNN with fingerprint features was the VS model best optimal with statistical parameters that exceeds the optimum VS threshold value, which is 0,85, with accuracy 0,91554, precision 0,90815, sensitivity 0,92319, selectivity 0,90801, and F1 score 0,9156. Optimum VS model hyperparameter used a three-layered neuron with the neuron amount of each layer were 2000, 1000, and 100; zero dropout, 256 batch size, 100 epochs, learning rate 0,0001 with RELU as activation function. DPP-IV VS model was used to predict potential ligands using bindingDB and showed 24 ligands with an AI confidence level above 0.98. Based on the binding affinity comparison with DPP-IV inhibitors by molecular docking, it resulted one ligand interacting with active site S2 and seven ligands interacting with active site S3. These ligands had lower binding affinity value compared to FDA-approved DPP-IV inhibitor by docking. The result of this research showed that the DPP-IV VS model using AI could be a new VS model in identifying new DPP-IV inhibitors."
Depok: Fakultas Farmasi Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Kezia Sulami
"Machine Learning (ML) sebagai bagian dari Artificial Intelligence (AI) telah membuat komputer mampu melakukan hal-hal yang membutuhkan kecerdasan manusia secara otomatis. Binarized Neural Network (BNN) merupakan arsitektur ML modern yang memiliki keunggulan yakni penggunaan memori yang efisien dan performa yang baik. Namun, seperti neural network pada umumnya, BNN juga merupakan black-box model yang memiliki kesulitan dalam menjelaskan prediksi yang dihasilkan. Penelitian ini menggunakan teknik abduction untuk memperoleh minimal explanations, dalam bentuk himpunan pasangan fitur dan nilainya, dari hasil prediksi BNN. BNN dimodelkan sebagai model Mixed-Integer Linear Programming (MILP) dan selanjutnya disederhanakan menjadi model Integer Linear Programming (ILP) yang merupakan bentuk formal agar dapat dilakukan teknik abduction. Hasil penelitian menunjukkan bahwa teknik abduction dapat digunakan untuk menjelaskan hasil prediksi BNN. Penelitian ini juga menerapkan teknik abduction untuk menghasilkan penjelasan subset-minimal pada hasil prediksi BNN untuk beberapa dataset.

Machine Learning (ML) as part of Artificial Intelligence (AI) has enabled computers to do things that require human intelligence automatically. Binarized Neural Network (BNN) is a modern ML architecture that has some advantages: efficient use of memory and good performance. However, like other neural networks in general, BNN is also a black-box model that has difficulties in explaining the resulting predictions. This research employs the abduction technique to obtain minimal explanations, that is a set of pairs of features and its values, from a BNN prediction. BNN is modeled as a Mixed-Integer Linear Programming (MILP) model and then further simplified into an Integer Linear Programming (ILP) model which is a suitable formalism for finding explanations using abduction. This research shows that the abduction technique can be used to explain BNN predictions. Furthermore, this research applies the abduction technique to produce subset-minimal explanations on BNN predictions for several datasets."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
S-pdf
UI - Skripsi Membership  Universitas Indonesia Library
cover
Boston: Kluwer Academic Publishers, 1986
006.31 MAC
Buku Teks  Universitas Indonesia Library
cover
California: Tioga, 1983
001.535 MAC
Buku Teks SO  Universitas Indonesia Library
cover
Suyanto
Bandung: Informatika, 2007
006.3 SUY a
Buku Teks  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>