Ditemukan 87777 dokumen yang sesuai dengan query
Muhammad Salman Al-Farisi
"Penelitian ini bertujuan untuk meningkatkan kemampuan morphological analyzer pada Aksara agar dapat melakukan pemrosesan bahasa Indonesia informal. Metode yang digunakan pada Aksara adalah rule-based menggunakan nite-state trans- ducer dengan compiler bernama Foma. Adapun komponen yang ditingkatkan adalah komponen tokenizer, lemmatizer, dan POS tagger. Untuk menguji peneli- tian ini, dibuatlah sebuah gold standard yang terdiri dari 102 kalimat dengan 1434 token. Hasil pengujian memperlihatkan bahwa penelitian ini berhasil memiliki pen- ingkatan akurasi tokenisasi sebesar 4.6% dari Aksara v1.1. Untuk tahapan lemati- sasi pada kasus case sensitive terjadi peningkatan akurasi sebesar 11.82%. Evaluasi POS tagging juga berhasil mengalami peningkatan pada nilai F1-Score sebesar 14% dibandingkan dengan Aksara v1.1.
This study aims to improve the ability of the morphological analyzer in Aksara in order to be able to process the informal Indonesian. The method used in Aksara is rule-based, using a nite-state transducer with a compiler named Foma. The components that are being improved are tokenizer, lemmatizer, and POS tagger components. To test this research, a gold standard was created; It consists of 102 sentences with 1434 tokens. The test results show that this study has an increase in tokenization accuracy of 4.6% compared to Aksara v1.1. For the lematization stage in the case of case-sensitive word, there is an increase in accuracy of 11.82%. The POS tagging evaluation also increased its F1-Score value by 14% compared to Aksara v1.1."
Depok:
2022
TA-pdf
UI - Tugas Akhir Universitas Indonesia Library
Muhammad Yudistira Hanifmuti
"Morphological analyzer merupakan sebuah alat yang digunakan untuk melihat bagaimana proses pembentukan kata, menentukan kata dasar pembentuk, dan menge- tahui informasi linguistik yang terkandung pada suatu kata. Universal Dependencies (UD) merupakan sebuah framework acuan yang digunakan pada proses anotasi morfologi untuk berbagai bahasa. Sayangnya, belum ditemukan morphological analyzer untuk bahasa Indonesia yang menerapkan pedoman UD ini. Penelitian ini mengembangkan morphological analyzer untuk bahasa Indonesia yang diberi nama Aksara. Aksara dibangun menggunakan finite state compiler bernama Foma yang digunakan pada Mor- phind, morphological analyzer pada penelitian sebelumnya. Foma dapat memodelkan aturan-aturan pembentukan kata dalam bentuk finite state transducer. Pada Aksara juga dikembangkan tokenizer yang hasilnya menyesuaikan dengan hasil tokenisasi pada treebank UD. Implementasi Aksara menerapkan pedoman UD versi terbaru yaitu UDv2. Pengujian Aksara dilakukan dengan membandingkan performa Aksara dengan Morhpind. Hasil pengujian menunjukkan bahwa komponen tokenizer Aksara berhasil memiliki akurasi tokenisasi sebesar 96.60%, meningkat 23.89% dari akurasi tokenisasi oleh Mor- phind. Evaluasi POS tagging Aksara juga berhasil melewati hasil pemetaan Morphind dengan akurasi F1-score sebesar 87%, dengan kenaikan relatif sebesar 18% dari baseline.
Morphological analyzer is a tool used to do an analysis on word formation process, to identify the lemma for each word, and to do an analysis on the linguistic information. Universal Dependencies (UD) is a framework commonly used in morphological annota- tion process. Unfortunately, there is not a single Indonesian morphological analyzer that applies UDv2. This research is a development of morphological analyzer for Indonesian language named Aksara. Aksara was build using finite state compiler named Foma, which was used in Morphind, the previous research on Indonesian morphological analyzer. Foma can model the rules of word formation which is represented in the form of finite state transducer. This research also develops a tokenizer which its results are adjusted to the tokenization example on UD treebank. The Aksara implementation applies the latest UD guidelines, UDv2. Testing of Aksara is done by comparing the performance of Aksara with Morphind. The test results show that the tokenizer component of Aksara managed to have a tokenization accuracy of 96.60%, an increase of 23.89% from the accuracy of tokenization by Morphind. Evaluation of POS tagging with Aksara also managed to pass Morphind with an accuracy of F1-score of 87%, with a relative increase of 18% from the accuracy of Morphind."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Headington, Mark R.
Boston: Jones and Bartlett Publisher, 1997
005.133 HEA d
Buku Teks SO Universitas Indonesia Library
Addi Ryan
"Pengembangan sistem pendeteksi plagiarisme dibuat untuk mengatasi masalah plagiarisme yang kerap terjadi pada dunia akademis. Pada skripsi ini dibuat sistem pendeteksi plagiarisme otomatis pada karya tulis digital dwi bahasa Indonesia-Inggris dengan Bahasa Indonesia digunakan sebagai karya tulis yang akan diuji dan Bahasa Inggris sebagai karya tulis referensinya. Sistem menerapkan algoritma winnowing yang dilengkapi dengan metode penerjemah bahasa Googletrans API dan similar words. Algoritma winnowing merupakan algoritma yang dapat mendeteksi kesamaan antar teks dengan menggunakan fingerprint yang didapat dari proses hashing karakter teks. Penelitian dilakukan untuk meningkatkan akurasi sistem dan mengetahui metode penilai kesamaan teks yang akurat.
Dari hasil penelitian, didapatkan bahwa parameter terbaik algoritma winnowing secara umum terdapat saat nilai k-window = 5 dan nilai basis bilangan prima bernilai 3. Parameter n-gram bernilai kecil akan lebih akurat pada teks yang memiliki jumlah kata lebih sedikit dan/atau tingkat plagiarisme tinggi dan sebaliknya. Tingkat akurasi sistem pendeteksi plagiarisme otomatis dwi bahasa yang dikembangkan berkisar antara 75.02 hingga 99.51.
Metode Cosine Similarity menjadi metode penilai kesamaan teks terbaik dari hasil penelitian ini. Selain itu, metode penerjemahan Googletrans API juga memberikan kelebihan dalam hal akurasi dan kelengkapan data kamus dibandingkan dengan metode kamus terjemahan database.
The development of plagiarism detection system is made to overcome the problem of plagiarism that often occurs in the academic world. In this thesis, an automatic plagiarism detection system on bilingual digital paper Indonesian English is created with Indonesian is used as the tested paper and English as the reference paper. The system implements the winnowing algorithm that comes with the Googletrans API language translator method and similar words. Winnowing algorithm is an algorithm that can detect similarity between text by using fingerprint obtained from hashing process of text character. The study was conducted to improve system accuracy and to know accurate method of text equality assessment. From the study result, it is found that the best parameter of winnowing algorithm is generally occured when the value of k window 5 and the base value of the prime number is 3. The smaller value of n gram parameter will be more accurate in text that has fewer word counts and or high plagiarism levels and vice versa. The accuracy level of the automatic plagiarism detection system in the developed language ranged from 75.02 to 99.51 . The Cosine Similarity method is the best method of text equality assessment according to results of this study. In addition, the Googletrans API translation method also provides advantages in terms of accuracy and completeness of dictionary data as compared to database translation dictionary method."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Budi Selamet Raharjo
"Sistem Penilaian Otomatis SIMPLE-O selama ini dikembangkan dengan pemrograman PHP di Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia. Namun akurasi SIMPLE-O saat ini belum cukup tinggi untuk dapat digunakan secara praktis. SIMPLE-O kemudian dilanjutkan pengembangannya menggunakan pemrograman Bahasa C, tidak hanya untuk mencoba meningkatkan akurasi SIMPLE-O, tapi juga untuk memperluas penggunaannya. Untuk dapat meningkatkan akurasi penilaian SIMPLE-O diintegrasikan learning vector quantization LVQ pada pengembangannya. Skripsi ini membahas bagaimana pengembangan SIMPLE-O dengan LVQ menggunakan pemrograman Bahasa C.Seberapa banyak bagian data sampel yang digunakan pada saat training mempengaruhi performa penilaian. Semakin sedikit data yang digunakan pada fase training, maka akan terjadi penurunan akurasi pada fase evaluasi. Akurasi penilaian juga dipengaruhi proses ekstraksi ciri-ciri teks yang dilakukan menggunakan latent semantic analysis LSA dan singular value decomposition SVD . Akurasi penilaian dapat berubah ketika singular value yang dihasilkan, di proses terlebih dulu dengan frobenius norm dan vector angle. Faktor lainnya seperti jumlah kata-per-kolom matriks LSA tidak begitu mempengaruhi akurasi penilaian. Pada akhir percobaan, akurasi SIMPLE-O dengan LVQ secara rata-rata adalah 52.27 . Dengan menambahkan LVQ, akurasi SIMPLE-O mengalami peningkatan sebesar 41.67.
Sistem Penilaian Otomatis SIMPLE O was developed using PHP at Departemen Teknik Elektro Fakultas Teknik Universitas Indonesia. But the resulting accuracy of the SIMPLE O was not reliable enough to be used practically. Right now, SIMPLE O was being developed using C Programming Language. This was done to increase its reliability and to further widen its applications. To increase the accuracy of SIMPLE O, learning vector quantization LVQ was integrated as part of the new program. This Paper was written to address the development of SIMPLE O with LVQ.With less data used in LVQ training phase there will a decrease in the resulting accuracy of the validation phase. The accuracy was also affected by the method of how well the extraction of the text characteristic using latent semantic analysis LSA and singular value decomposition SVD . Additional process of the resulting singular value will result in change of accuracy. The number of words per column when creating the LSA matrix did not have any significant effect. At the end, SIMPLE O with LVQ has an average accuracy of 52.27. Implementation of LVQ give an increase of 41.67 of the accuracy."
Depok: Fakultas Teknik Universitas Indonesia, 2017
S68766
UI - Skripsi Membership Universitas Indonesia Library
Adam Arsy Arbani
"Departemen Teknik Elektro Universitas Indonesia sejak tahun 2007 telah mengembangkan sistem penilaian esai otomatis yang dinamakan dengan Simple-O. Simple-O menggunakan metode Latent Semantic Analysis LSA untuk membandingkan dua esai dengan cara mengekstrak esai tersebut menjadi matriks. Pengembangan sebelumnya dari Simple-O adalah penambahan Learning Vector Quantization LVQ yang merupakan metode dari artificial neural network. Skripsi ini akan membahas serta memberikan analisis terkait pengaruh penambahan fungsi persamaan kata pada sistem penilaian esai otomatis Simple-O terhadap akurasi dari program itu sendiri. Untuk melihat pengaruh penambahan fungsi persamaan kata pada sistem penilaian esai otomatis Simple-O ini, maka dilakukan lima skenario berbeda. Skenario tersebut adalah dengan memvariasikan jumlah keywords yang ada pada esai jawaban menjadi sejumlah 100, 80, 60, dan 20 mendekati jumlah keywords jawaban referensi. Dari hasil pengujian yang telah dilakukan, terdapat skenario yang mengalami penurunan akurasi dan kenaikan akurasi. Jika disimpulkan, rata-rata akurasi program Simple-O setelah penambahan fungsi persamaan kata mengalami peningkatan. Namun, peningkatan rata-rata akurasi yang terjadi tidak terlalu signifikan, peningkatan rata-rata akurasi yang terjadi setelah penambahan fungsi persamaan kata adalah sebesar 5.4 dari 90.9 menjadi 96.3.
Department of Electrical Engineering Universitas Indonesia has developed an automatic essay grading system called Simple O since 2007. Simple O uses the Latent Semantic Analysis LSA method to compare two essays by extracting the essay into matrix. The previous development of Simple O is the addition of Learning Vector Quantization LVQ which is a method of artificial neural network. This research will discuss and provide analysis related to the effect of adding word similarity function to the automatic essay grading system Simple O to the accuracy of the system itself. The experiment will be conducted with five different scenarios by varying the number of keywords in the students answer essay to 100, 80, 60, 40, and 20 of the reference essay keywords. According to the result, there are scenarios that has decreased and increased in accuracy. The average accuracy of the Simple O system after the addition of word similarity function has increased, though not significant. The average increase in accuracy after the addition of word similarity function is 5.4 from 90.9 to 96.3."
Depok: Fakultas Teknik Universitas Indonesia, 2018
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
Andrey Andoko
Jakarta: Elex Media Komputindo, 1989
001.642 AND t
Buku Teks SO Universitas Indonesia Library
Annisa Ananta Koesuma
"Penggunaan Python dipilih karena bahasa pemrograman ini bersifat open source dengan banyak tersedianya berbagai sumber dan Python juga diklaim sebagai bahasa yang menggabungkan kapabilitas, dengan kode sintaks yang sangat jelas, dan dilengkapi dengan bahasa yang besar dan komprehensif. Library Open CV juga tersedia secara gratis dan menyediakan banyak fungsi pemrosesan gambar. Pengoreksian citra CBCT yang dilakukan pada penelitian ini bertujuan untuk meningkatkan kualitas citra CBCT dengan melihat meningkatnya nilai yang didapat pada citra CBCT terkoreksi. Phantom CIRS 002LFC di-scan pada CBCT menggunakan half bow tie filter sesuai dengan protokol yang digunakan untuk scanning organ thorax. Penelitian ini menggunakan data citra pasien dengan diagnosa kanker paru dan laring masing-masing berjumlah dua dan satu orang. Hasil kalibrasi CBCT terhadap CT diperoleh bahwa nilai HU citra CBCT linier terhadap citra CT. Evaluasi PSNR dan SSIM digunakan pada penelitian ini sebagai parameter keberhasilan dari citra yang dikoreksi.
Python was chosen because this programming language is open source with many sources available and Python is also claimed to be a language that combines capabilities, with very clear syntax code, and is equipped with a large and complete language. CV Open Library is also available free of charge and provides many drawing functions. CBCT image correction carried out in this study aims to improve the quality of CBCT images by looking at the value obtained in the corrected CBCT image. Phantom CIRS 002LFC was scanned on CBCT using a half bow tie filter according to the protocol used for scanning the thorax organs. This study uses image data of patients diagnosed with lung and laryngeal cancer, respectively, two and one person. The CBCT calibration results against CT showed that the HU value of CBCT images was linear to CT images. PSNR and SSIM evaluations were used in this study as the confidence parameters of the corrected image."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
S-pdf
UI - Skripsi Membership Universitas Indonesia Library
Rudi Susanto
"Penerjemahan Bahasa FORTRAN 77 ke Bahasa Java dapat dilakukan walaupun kedua bahasa pemrograman mempunyai paradigma pemrograman yang berbeda. Dalam tahap penerjemahan, translator akan melakukan preprocessing pada kode masukan Bahasa FORTRAN 77 terlebih dahulu. Setelah itu, kode masukan akan dipecah menjadi token-token untuk kemudian diterjemahkan sesuai dengan grammar Bahasa Java yang telah diberikan kepada translator. Tahap terakhir yang dilakukan translator adalah menuliskan kode keluaran Bahasa Java ke file output. Uji coba dilakukan dengan membuat berbagai file yang mencakup semua statement Bahasa FORTRAN 77 yang diterjemahkan. Fokus utama penerjemahan adalah correctness. Kode keluaran Bahasa Java harus tetap memiliki semantik program yang sama dan menghasilkan nilai-nilai output yang sama dengan kode masukan Bahasa FORTRAN 77. Kesimpulan yang dihasilkan pada pengerjaan translator adalah bahwa semua struktur Bahasa FORTRAN 77 dapat diterjemahkan. Sebagian statement Bahasa FORTRAN 77 memiliki padanan struktur langsung sehingga dengan mudah dapat diterjemahkan. Statement lainnya dapat diterjemahkan dengan membuat mekanisme padanan struktur tersebut."
Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2004
S-Pdf
UI - Skripsi Membership Universitas Indonesia Library
D. Suryadi H.S.
Jakarta: Ghalia Indonesia, 1984
001.642 SUR b
Buku Teks SO Universitas Indonesia Library