Hasil Pencarian  ::  Simpan CSV :: Kembali

Hasil Pencarian

Ditemukan 19537 dokumen yang sesuai dengan query
cover
Fredina Destyorini
"The gas diffusion layer (GDL) is one of the critical components of a proton exchange membrane fuel cell (PEMFC). It is generally made of a fossil-fuel-based carbon material. In this study, carbon composite paper (CCP) for GDL was prepared by using carbon material obtained from coconut coir. To obtain the CCP, 80 wt% carbon material from the coconut coir and 20 wt% polymer binder (ethylene vinyl acetate and polyethylene glycol) were mixed in xylene solvent at 100°C, cast on molded glass, and then rolled. The carbon material consists of a mixture of carbon fibers (length: 2 mm) and powders (size: 74 µm). Subsequently, the CCP was treated with polytetrafluoroethylene solution (10 wt%). The physical properties of the CCPs, such as through-plane electrical conductivity, porosity, density, and hydrophobic properties, were investigated. Scanning electron microscopy and energy-dispersive spectroscopy mapping were used to analyze the morphology and polytetrafluoroethylene (PTFE) distribution in the CCP. The through-plane conductivity test showed that CCP with 70 wt% carbon fiber, 10 wt% carbon powder, and 20 wt% polymer was the optimum sample, and it showed the highest electrical conductivity of 2.22 S cm-1. The physical properties of PTFE-treated CCP, such as porosity, density, and contact angle, were almost similar to that of commercial carbon paper used as a GDL. Therefore, the CCP prepared from coconut coir can be applied as a GDL in a PEMFC."
Depok: Faculty of Engineering, Universitas Indonesia, 2016
UI-IJTECH 7:8 (2016)
Artikel Jurnal  Universitas Indonesia Library
cover
Fredina Destyorini
"The gas diffusion layer (GDL) is one of the critical components of a proton exchange membrane fuel cell (PEMFC). It is generally made of a fossil-fuel-based carbon material. In this study, carbon composite paper (CCP) for GDL was prepared by using carbon material obtained from coconut coir. To obtain the CCP, 80 wt% carbon material from the coconut coir and 20 wt% polymer binder (ethylene vinyl acetate and polyethylene glycol) were mixed in xylene solvent at 100°C, cast on molded glass, and then rolled. The carbon material consists of a mixture of carbon fibers (length: 2 mm) and powders (size: 74 µm). Subsequently, the CCP was treated with polytetrafluoroethylene solution (10 wt%). The physical properties of the CCPs, such as through-plane electrical conductivity, porosity, density, and hydrophobic properties, were investigated. Scanning electron microscopy and energy-dispersive spectroscopy mapping were used to analyze the morphology and polytetrafluoroethylene (PTFE) distribution in the CCP. The through-plane conductivity test showed that CCP with 70 wt% carbon fiber, 10 wt% carbon powder, and 20 wt% polymer was the optimum sample, and it showed the highest electrical conductivity of 2.22 S cm-1. The physical properties of PTFE-treated CCP, such as porosity, density, and contact angle, were almost similar to that of commercial carbon paper used as a GDL. Therefore, the CCP prepared from coconut coir can be applied as a GDL in a PEMFC."
2016
J-Pdf
Artikel Jurnal  Universitas Indonesia Library
cover
Rizki Pirsiani
"Sel tunam merupakan energi alternatif penghasil listrik yang dapat menggantikan peran energi bahan bakar fosil karena prosesnya yang ramah lingkungan. Salah satu jenis sel tunam adalah PEMFC (Polymer Electrolyte Membrane Fuel Cell). Dalam PEMFC terdapat komponen penting yang disebut dengan pelat bipolar. Pelat bipolar memenuhi 80% volume, 70% bobot, dan 60% biaya pembuatan sel tunam. Pada penelitian ini dibuat pelat bipolar karbon/karbon komposit dengan 80%wt matriks dan penguat yang terdiri dari 95%wt grafit dapur busur listrik (EAF) dan 5%wt MWCNT (Multi Walled Carbon Nanotubes) dan 20%wt polimer sebagai pengikat yang terdiri dari epoksi resin dan hardener dengan perbandingan 1:1.
Pembuatan pelat bipolar ini memvariasikan waktu pencampuran yaitu 30 detik, 60 detik, 90 detik, 120 detik, dan 150 detik. Proses pencampuran menggunakan pengaduk berkecepatan tinggi dengan kecepatan 28.000 rpm dan dicetak menggunakan metode cetak kompresi dengan tekanan 55 MPa, suhu 100oC, selama 4 jam.
Hasil penelitian menunjukkan bahwa waktu pencampuran optimum pada 30 detik dimana dihasilkan nilai densitas sebesar 1,61 gr/cm3, porositas 0,30%, kekuatan fleksural 51,29 MPa, dan konduktivitas listrik 7,53 S/cm. Sampel hasil uji fleksural diamati perpatahaannya dengan FESEM (Field Emission Scanning Electron Microscope). Hasil pengamatan menunjukkan pencampuran cukup optimum namun masih banyak MWCNT yang beraglomerat.

Fuel cell is one of alternative energy that produces electricity and can replace the use of fossil fuel because fuel cell is zero emission. Fuel cell has many types and one of them is PEMFC (Polymer Electrolyte Membrane Fuel Cell). In PEMFC, the important part is called bipolar plate. Bipolar plate meets the 80% volume, 70% weight and 60% cost of fuel cell fabrication.
In this study, the bipolar plate material made of carbon/carbon composites. Constituent materials of carbon/carbon composites were 80wt% matrix and reinforcement consist of 95wt% Graphite EAF (Electric Arc Furnace) and 5wt% MWCNT (Multi Walled Carbon Nanotubes) and 20wt% polymer as binder consist of epoxy resin and hardener with ratio 1:1. All materials were mix together with various mixing time. The variables of mixing time were 30 seconds, 60 seconds, 90 seconds, 120 seconds, and 150 seconds. The mixing process used high-speed mixer with mixing speeds 28.000 rpm and to form the plate used compression molding with pressure 55 MPa, 100°C, for 4 hours.
The test results showed that the optimum mixing time was 30 seconds which resulted density value was 1,61 gr/cm3, the percentage of porosity was 0,30%, the flexural strength was 51,29 MPa, and the electrical conductivity was 7,53 S/cm. Surface of flexural testing samples were observed with FESEM (Field Emission Scanning Electron Microscope). Observations using FESEM showed mixing at that time was optimum enough but still a lot of MWCNT forming as agglomerates.
"
Depok: Fakultas Teknik Universitas Indonesia, 2013
S44483
UI - Skripsi Membership  Universitas Indonesia Library
cover
Cici Safitri
"Modifikasi permukaan boron-doped-diamond (BDD) dengan Ni-Mn, Ni-Co dan Ni-Cu telah dilakukan untuk digunakan sebagai elektroda kerja pada sistem sel bahan bakar berbasis membran polimer elektrolit (Polymer Electrolyte Membrane Fuel Cell, PEMFC). Modifikasi dilakukan dengan rangkaian teknik wet chemical seeding (pembibitan kimia), electrochemical overgrowth of the seeds (penumbuhan kimia), annealing (pemanasan), serta refreshed and activation. Karakterisasi siklikvoltametri dan XPS menunjukkan spesi elekrokatalis Ni(OH)2 pada sampel Ni-Mn/BDD, Ni-Cu/BDD, dan Ni-Co/BDD dapat dideposisi pada potensial +0,32 V, +0,31 V dan +0.33 V berturut-turut, dengan energi ikat sebesar 855,6 eV. Agar dapat mengelektrooksidasi urea, dilakukan perubahan spesi α-NiOOH menjadi β-NiOOH yang lebih stabil dari Ni(OH)2 dengan siklikvoltametri dalam KOH 1 M selama 300 siklus. Poks tertinggi terdapat pada sampel Ni-Cu/BDD yakni 2.75 μA pada +0,59 V. Namun, pada pengaplikasian urea-PEMFC, Ni-Mn/BDD menunjukkan hasil terbaik menggunakan anolit 0,33 M dan KOH 0,1 M di ruang anoda serta katolit H2O2 2 M dan H2SO4 2 M di ruang katoda dengan densitas daya rata-rata 0,061733 mW/cm2, densitas arus rata-rata 0,185242 mA/cm2, potensial rata-rata sebesar 0,34 V vs SHE, dan efisiensi tegangan maksimal sebesar 15.83%. Sedangkan pada PEMFC berbahan bakar urin, densitas daya rata-rata yang dihasilkan 0.0889 mW/cm2, densitas arus rata-rata 0.189 mA/cm2, potensial rata-rata sebesar 0.66 V vs SHE dengan waktu pengoperasian selama 3600 detik

Surface modification on boron-doped diamond (BDD) using Ni-Mn, Ni-Co dan Ni-Cu have been performed for application as working electrodes in a Polymer Electrolyte Membrane Fuel Cell (PEMFC) system. The series of wet chemical seeding, electrochemical overgrowth of the seeds, annealing, refreshed and activation techniques has been applied to modify the surface area. Characterization using cyclicvoltammetry and XPS indicate that Ni(OH)2 able to be well deposited on Ni-Co/BDD, Ni-Mn/BDD, and Ni-Cu/BDD samples at potential +0,32 V, +0,31 V dan +0.33 V respectively with binding energy as 855,6 eV. To electrooxidize urea, the change of α-NiOOHto β-NiOOH from deposited Ni(OH)2 electrochemicaly can be conducted by giving constant potential for 300 cycles in 1 M KOH. Highest oxidation peak of Ni3+ is belong to Ni-Cu/BDD as high as 2.75 μA at +0,59 V. In contrary, application Ni-Mn/BDD to urea-PEMFC shows best result by using mixture of 0.33 M urea and 0.1 M KOH as anolyte in anodic chamber, while a mixture of 2 M H2O2 and 2 M H2SO4 as chatolyte in cathodic chamber with average power density 0,061733 mW/cm2, current density 0,185242 mA/cm2, and potential of 0,34 V vs SHE with 15,83% of maximum voltage effiency yield. Urine as fuel in PEMFC has been also applied into the system with producing average power density as 0.0889 mW/cm2, 0.189 mA/cm2 for average current density, and 0.66 V vs SHE for open circuit votage for 3600 second of operation time."
Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
T52013
UI - Tesis Membership  Universitas Indonesia Library
cover
Habibullah
"ABSTRAK
Tesis ini bertujuan untuk mengujikan persamaan yang diperoleh dari grafik karakteristik hubungan tegangan masukan optimum driver valve terhadap perubahan daya beban pada bukaan valve proporsional pada masukan sistem PEMFC sehingga bukaan valve akan bekerja secara otomatis sesuai dengan perubahan daya beban. Persamaan yang diambil ada dua yaitu persamaan polinomial dan linier. Masukan persamaan adalah daya beban dan keluarannya dijadikan tegangan masukan driver valve.
Hasil pengujian dengan kedua persamaan menunjukkan karakteristik tegangan dan arus keluaran sistem yang hampir sama dengan karakteristik pada bukaan valve optimum dan maksimum. Pemakaian gas H2 pada pengujian dengan kedua persamaan menunjukkan nilai yang hampir sama dengan bukaan valve optimum, sehingga lebih hemat dalam konsumsi gas H2 dibandingkan dengan bukaan valve maksimum.

ABSTRACT
This thesis aims to testing the equation which obtained from the graph characteristics relationships of the optimum input voltage driver valve to change the power load on the valve opening proportional to the input PEMFC system so that the valve opening will work automatically according to changes in load power. Equations are taken there are two linear equations and polynomials. Enter the equation is used as the power load and input voltage output driver valves.
Test results show similarities with both voltage and output current characteristics are almost the same system with the characteristics of the optimum and maximum valve opening. H2 gas usage on testing with both equations show similar values with optimum valve opening, making it more efficient than the maximum valve opening.
"
Depok: Fakultas Teknik Universitas Indonesia, 2011
T29528
UI - Tesis Open  Universitas Indonesia Library
cover
Fachryan Zuhri
"The microbial desalination cell (MDC) is a modification of the microbial fuel cell (MFC) system. The microbial desalination cell is a sustainable technology to desalinate saltwater by directly utilizing the electrical power generated by bacteria during the oxidation process of organic matter. In this study, tempe wastewater will be used as a substrate. Methylene blue (MB) at concentrations of 100 ?M, 200 ?M, and 400 ?M in the anolyte is added as a redox mediator, and the effect on electricity production and desalination performance are evaluated. The average power density increases by 27.30% and 54.54% at MB concentrations of 100 ?M and 200 ?M, respectively. On the other hand, the increase of the MB concentration in the anolyte results in a decrease in the salt removal percentage. The observation made using a scanning electron microscope showed the presence of MB adsorption on the surface of the anion exchange membrane (AEM) and is suspected to be the cause of the disruption of anion transfer between MDC chambers causing a decrease in the salt removal percentage."
Depok: Faculty of Engineering, Universitas Indonesia, 2016
UI-IJTECH 7:6 (2016)
Artikel Jurnal  Universitas Indonesia Library
cover
Fadhli Halim
"Dalam simulasi ini, dilakukan pemodelan dan simulasi Proton Exchange Membrane (PEM) fuel cell dengan pendekatan 3 dimensi 2 fasa, yaitu fasa gas dan fasa padatan dengan bentuk channel serpentine. Persamaan model yang diturunkan meliputi persamaan kontinuitas, persamaan momentum, persamaan energi persamaan transport ion dan persamaan current density. Kesemua persamaan ini dibedakan antara fasa padatan dan fasa gas. Fasa padatan terjadi pada GDL, Catalyst dan membrane baik disisi anode maupun cathode. Scdangkan fasa gas hanya terjadi pada Gas Channel anode dan Gas channel cathode. Penyelesaian numeris model menggunakan perangkat lunak MATLAB™ 6.0. Karena terlalu sulitnya melakukan pemecahan dengan menggunakan MATLABTM pada daerah perhitungan 3 dimensi 2 fasa dan dalam geometri yang komplek, maka model disederhanakan menjadl 2 buah model I dimensi, yaitu model pada sumbu y (lebar) dan model pada sumbu z{ketebalan). Hasil model dari penyederhanaan model kesumbu y dldapat profil kecepatan. konsentrasi, tekanan, temperatur. current density, tegangan ionik. Model 1 dimensi kearah sumbu y ini hanya dapat diselesaikan pada lebar 50 cm, jika melebihi lebar ini model tidak dapat diselesaikan karena menghasilkan sebuah matrik Jacobian dari metoda Newton-Raphson yang singular, hal ini disebabkan karena persamaan current density yang sangat stiff. Sedangkan hasil dari penyederhanaan model kesumbu z..."
Depok: Fakultas Teknik Universitas Indonesia, 2005
S49523
UI - Skripsi Membership  Universitas Indonesia Library
cover
Fredina Destyorini
"ABSTRAK
Penelitian ini membahas tentang proses pembuatan dan karakterisasi kertas karbon komposit berbasis bahan karbon dari serabut kelapa untuk aplikasi Gas Diffusion Layer (GDL) PEMFC. Kertas karbon komposit harus berpori, bersifat konduktif, dan hidrofobik agar dapat berfungsi sebagai GDL. Proses pembuatan kertas karbon komposit terdiri dari 3 tahap. Pada tahap pertama, bahan karbon berbentuk serat dengan panjang ± 1 mm dan serbuk karbon 200 mesh dihasilkan dari proses karbonisasi dan pirolisis serabut kelapa hingga suhu 1300°C. Pembuatan kertas karbon komposit pada tahap kedua dilakukan dengan cara mencampurkan serat dan serbuk karbon yang dihasilkan pada tahap pertama dengan polimer ethylene vinyl acetate (EVA) dan poly ethylene glycol (PEG) sebagai binder ke dalam pelarut xylene. Komposisi penggunaan antara serat dan serbuk karbon divariasi dari 0 wt% hingga 80 wt%. Proses pencampuran dilakukan pada suhu 90°C hingga membentuk slurry, dan dilanjutkan dengan proses pencetakan dengan teknik hand lay-up casting dan calendering.
Berdasarkan hasil pengujian konduktivitas listrik, kertas karbon komposit dengan 70 wt% serat karbon dan 10 wt% serbuk karbon memiliki nilai konduktivitas tertinggi yaitu sebesar 2,22 S/cm. Kombinasi penggunaan serat karbon dengan aspek rasio yang lebih tinggi dan serbuk karbon menghasilkan efek sinergi yang dapat meningkatkan konduktivitas listrik kertas karbon komposit. Proses dilanjutkan dengan pelapisan bahan hidrofobik polytetrafluoroethylene (PTFE) pada tahap ketiga dengan cara merendam kertas karbon dalam suspensi PTFE selama 30 menit kemudian dipanaskan hingga suhu 350°C. Konsentrasi suspensi PTFE divariasi dari 0 wt%, 10 wt%, 20 wt%, dan 30 wt% untuk menghasilkan kertas karbon dengan sifat yang optimum. Berdasarkan hasil karakterisasi dan analisis kertas karbon dengan 10 wt% PTFE memiliki konduktivitas listrik tertinggi sebesar 2,09 S/cm, porositas tertinggi sebesar 73,63%, densitas sebesar 0,42 gram/cm3, bersifat hidrofobik dengan sudut kontak sebesar 128,9o, namun sifat mekaniknya masih rendah dengan kekuatan tarik sebesar 0,02 kN/m dan Modulus Young sebesar 4,57 kN/m.

ABSTRACT
This study discusses the process of manufacture and characterization of carbon composite paper based on carbon material of coconut fibers for Gas Diffusion Layer (GDL) of PEMFC. Carbon composite paper should be porous, conductive, and hydrophobic in order to serve as GDL. The manufacturing process of carbon composite paper consists of three stages. In the first stage, carbon fiber with a length of ± 1 mm and carbon powder of 200 mesh produced from pyrolysis and carbonization process of coconut fibers at 1300°C. Manufacture of carbon composite paper at the second stage conducted by mixing the carbon fibers and carbon powder produced in the first stage with ethylene vinyl acetate (EVA) and poly ethylene glycol (PEG) as binder in the xylene as solvent. The composition of carbon fibers and carbon powder was varied from 0 wt% to 80 wt%. The mixing process is carried out at 90°C to form a slurry, followed by the hand lay-up casting and calendaring to form a sheet of paper.
Based on the results of electrical conductivity test, carbon paper composite with 70 wt% carbon fiber and 10 wt% carbon powder has the highest conductivity of 2,22 S / cm. Combination of carbon fiber with a higher aspect ratio and carbon powder generates synergy effects which increase the electrical conductivity of carbon composite paper. The process is continued with a hydrophobic treatment in the third stage by immersing carbon paper in a suspension of polytetrafluoroethylene (PTFE) for 30 minutes and then heated to a temperature of 350°C. PTFE suspension concentration was varied from 0 wt%, 10 wt%, 20 wt% and 30 wt% to produce the carbon paper with optimum properties. Based on the results of characterization and analysis, carbon paper with 10 wt% PTFE has the highest electrical conductivity of 2,09 S/cm, the highest porosity of 73,63%, density of 0,42 g/cm3, contact angle of 128,9o, but the mechanical properties are still low with the tensile strength of 0,02 kN/m and Young's modulus of 4,57 kN/m
"
Depok: Fakultas Teknik Universitas Indonesia, 2015
T45569
UI - Tesis Membership  Universitas Indonesia Library
cover
Desti Octavianthy
"Indonesia yang memiliki jumlah kota sebanyak 93 kota yang tersebar di banyak provinsi merupakan konsumen energi terbesar di Asia Tenggara yaitu sebesar 36% dari kebutuhan energi kawasan. Selain tingginya permintaan energi, isu lain yang krusial adalah tingginya produksi limbah di Indonesia, terutama pada daerah perkotaan. Penelitian ini dilakukan untuk memperoleh skema teknologi Waste to Energy (WtE) yang dapat diaplikasikan dan paling optimum dalam menghasilkan LCOE dan emisi GHG yang minimum melalui optimisasi multi objektif.
Teknologi yang digunakan di dalam penelitian ini adalah insinerasi, gasifikasi, anaerobic digestion, dan pirolisis dengan teknologi pembangkitan listrik menggunakan gas engine, gas turbin, serta teknologi fuel cell, yakni Solid Oxide Fuel cell (SOFC) dan Molten Carbonate Fuel cell (MCFC). Produksi bahan bakar hidrogen untuk fuel cell menggunakan proses Reforming. Penelitian dilakukan dengan meninjau aspek teknis melalui simulasi produksi listrik dari limbah padat perkotaan di kota Depok dengan menggunakan software ASPEN PLUS.
Dari aspek lingkungan, dilakukan analisis faktor emisi yang dihasilkan dari berbagai teknologi proses WtE melalui metode Life Cycle Assessment (LCA). Dari segi ekonomi, dilakukan perhitungan Levelized Cost of Electricity (LCOE) WtE. Emisi total dan LCOE merupakan fungsi objektif pada optimisasi multi objektif yang dilakukan dengan menggunakan software General Algebraic Modelling System (GAMS).
Hasil penelitan menunjukkan bahwa teknologi digesti anaerob dengan turbin gas sebagai teknologi pembangkitan merupakan teknologi WtE yang optimum pada tahun 2020-2035. Pada tahun 2035 hingga tahun 2050, teknologi gasifikasi dengan SOFC merupakan teknologi yang optimum dari segi teknis, ekonomi, maupun lingkungan. Penelitian ini diharapkan mampu menjadi inspirasi dan membawa pengaruh terhadap perbaikan sistem konversi limbah menjadi energi yang ada di kota Depok.

Indonesia, which has a total of 93 cities in many provinces, is the largest energy consumer in Southeast Asia, around 36% of the region`s energy needs. Besides the high demand for energy, another crucial issue is the high production of waste in Indonesia, especially in urban areas. This research was carried out to obtain the Waste to Energy (WtE) technology scheme that can be applied and optimum in producing minimum LCOE and GHG emissions through multi-objective optimization.
The technologies used in this study are incineration, gasification, anaerobic digestion, and pyrolysis with power generation technology which using gas engines, gas turbines, and fuel cell technology, namely Solid Oxide Fuel cell (SOFC) and Molten Carbonate Fuel cell (MCFC). The production of hydrogen fuel for fuel cells uses the Reforming process. The study was conducted by reviewing the technical aspects through simulating electricity production from municipal solid waste in Depok using the ASPEN PLUS software.
From the environmental aspect, emission factor analysis was produced from various WtE process technologies through the Life Cycle Assessment (LCA) method. From an economic standpoint, Levelized Cost of Electricity (LCOE) of WtE is calculated. Total emissions and LCOE are objective functions in multi-objective optimization that carried out using General Algebraic Modeling System (GAMS) software.
The research results show that anaerobic digestion technology with gas turbines as generation technology is the optimum WtE technology in 2020-2035. In 2035 until 2050, gasification technology with SOFC is the optimum technology from the technical, economic and environmental aspects. This research is expected to be able to inspire and influence the improvement of waste conversion into energy systems in the city of Depok.This research is expected to be able to inspire and influence the improvement of the waste conversion into energy systems in Depok.
"
Depok: Fakultas Teknik Universitas Indonesia, 2019
T53968
UI - Tesis Membership  Universitas Indonesia Library
cover
Harun Al Rasyid
"Teknologi fuel cell (selbahanbakar) merupakan salah satu teknologi yang menggunakan bahan bakar dari energi baru terbarukanya itu hidrogen. Teknologi ini dianggap bersih dan ramah lingkungan. Efisiensi konversi yang tinggi danemisi polutannya sangat rendah sehingga dampak lingkungan yang rendah juga membuatnya menjadi kandidat yang tepat untuk menggantikan teknologi konvensional ada. Aplikasidariteknologi fuel cell, antara lain untuk transportasi/ otomotif, pembangkitlistrikstasionerdan fuel cell portabel.Untuk teknologi fuel cell jenis proton exchange membrane (PEM) sebagai pembangkit listrik, khususnya di Indonesia masih belum berkembang. Oleh karena itu perlu dilakukan analisis tekno ekonomi dari pembangkit listrik fuel cell jenis PEM dengan melihat karakteristik kerja dan efisiensi sistem, khususnya peralatan disisi keluaran seperti konverter dan inverter terhadap beban rumah tangga(beban yang dipakai lampu) dari beberapa profil beban seperti profil beban statis dan fluktuatif. Hasil uji kinerja sistem pembangkit listrik fuel cell memperlihatkan karakteristik dari fuel cell, yang berupa kurva polarisasi perubahan tegangan terhadap perubahan arus beban.Dari Kurva polarisasi V-I didapatkan nilai polarisasi aktivasi (α) pada saat pembebanan fluktuatif lebih besar dibandingkan pada saat pembebanan statis, sedangkan nilai polarisasi ohmic (r) pada saat pembebanan fluktuatif lebih kecil dibandingkan pada saat pembebanan statis. Hal ini memperlihatkan proporsi energi listrik yang timbul saat perubahan laju reaksi pada pembebanan fluktuatif lebih besar dibandingkan pada pembebanan statis. Sehingga reaksi yang terjadi lebih cepat dan mengakibatkan tegangan akan lebih cepat turun. Dari segi keekonomian biaya energi pembangkit listrik fuel cell jenis PEM untuk kapasitas 500W dan 2 kW masih cukup besar yaitu Rp/kWh10.117,2 dan Rp/kWh 5.330,4. Tetapi untuk kapasitas 5kW ternyata jauh lebih rendah yaitu sebesar Rp/kWh3.048,7. Hal ini di karenakan selain biaya investasi yang menjadilebihkecil,biaya bahan bakar juga menjadi lebih kecil. Biaya bahan bakar bisa jauh lebih murah dikarenakan konsumsi gas hidrogen berdasarkan arus beban yang dipakai pada kapasitas 5kW hanya dua kali lipat jumlahnya dibandingkan kapasitas 500W, sedangkan produksi listrik yang dihasilkan sepuluh kali lipat.

Fuel cell technology utilizes fuels from renewable sources i.e. hydrogen. Therefore, this technology is considered clean and environmentally friendly. High conversion efficiency with very low pollutant emission makes this technology a favorable candidate to substitute the existing conventional energy conversion technology. Applications of fuel cell technology include power for transportation/automotive, stationary fuel cell, and portable fuel cell. PEM type fuel cell technology as a power generation has not been developed in Indonesia. Therefore, it is necessary to analyze techno-economic of the PEM fuel cell technology by examining its operation characteristics and system efficiency particularly conversion equipment at output side such as converter and inverter for household load (lighting) at various load profile i.e, static and fluctuated loads. Performance analysis that is presented in V-I polarization curve shows the fuel cells characteristics. From this curve, polarization activation value (α) at fluctuated loads is higher than that of static loads, whereas polarization ohm value (r) is lower at static loads than fluctuated loads. This result demonstrates electricity produced at fluctuated loads is higher compared to that at static load. Consequently, chemical reactions are faster that affect voltage to drop faster. Cost of energy for PEM fuel cell is still considerably high for 500 W and 2 kW that are Rp/kWh10.117,2 and Rp/kWh 5.330,4. While for 5 kW fuel cell system, COE is far lower that is Rp/kWh3.048,7. This is due to cost of investment and fuels decrease significantly. Cost of fuel can be reduced substantially because oxygen consumption at a 5 kW fuel cell system is only double than that of the 500 W system, whereas electicity production is 10 times higher.
"
Depok: Fakultas Teknik Universitas Indonesia, 2014
T42385
UI - Tesis Membership  Universitas Indonesia Library
<<   1 2 3 4 5 6 7 8 9 10   >>